用户名: 密码: 验证码:
形状识别在地图综合中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
形状分析和形状识别是地图综合的重要内容之一,地图综合中首先就需要对地理要素进行结构的识别,包括对要素的分布模式和形状特征进行分析,以便获取地理要素和现象的分布规律,制定综合的总体策略。其二,同一要素在不同尺度的表达中应保持形状的主体轮廓的一致性,这就需要在综合算法中顾及形状的保真问题。其三,在地图综合的结果评价中,形状相似性是其重要的指标。地图是现实世界的抽象反映,没有形状的一致性人们很难将地图中的要素与真实的地理要素建立对应关系。但形状识别属于认知领域的范畴,具有很强的主观性和不确定性,目前形状识别的成果多集中在模式识别领域,因而,如何在地图综合的领域进行形状的分析与识别既存在挑战性,又具有极大的现实意义。本文主要在以下几个方面作一些尝试:
     (1)系统总结了支持形状识别的基础理论。从形状的定义及特点入手,介绍了认知心理学中有关模式识别的三种模型——模板匹配模型、原型匹配模型、特征匹配模型,阐述了人类对形状的认知规律。从计算机和信息科学的角度,介绍和总结了有关形状识别的方法、模型以及地图科学中要素表达的形状特点。
     (2)阐述了地理要素中面状要素的形状特征参数以及形状相似性识别的模型。重点将傅立叶形状描述子和形状数模型纳入到矢量面状要素的形状相似性度量中;分析了傅立叶形状描述子在刻画不同形状图形时的拟合精度;设计了一套适合建筑物的、具有平移、缩放、旋转形状度量不变性的形状数的求解方法,研究了不同尺度的形状数对形状度量的影响。
     (3)在认知心理学模式识别的原型匹配模型的启发下,提出了基于动态模板匹配的建筑物多边形的化简方法。从原型模板设计、动态模板生成、要素与模板的匹配、模板放样、以及化简成果的有效性探测等五个方面详细地介绍了基于动态模板匹配的建筑物化简模型的原理、操作流程,并用实验验证了这一方法的有效性。
     (4)从线状要素的形状特征单元——弯曲入手,详述了弯曲的划分、弯曲形状的识别、层次结构;总结和归纳了线状要素的单一特征参数、组合特征参数以及各参数的几何意义。
     (5)在探讨了线状要素形状二维性——弯曲性与方向性的基础上,运用BP神经网络系统将线状要素按其形状进行分类与分段,拟对不同形状的线状要素和线状要素子段采用不同的化简模型和参数。
     (6)阐述了线状要素化简可能带来的三个损失——点位精度、拓扑一致性、形状相似性,并简要分析了这三者之间的关系。在线状要素形状相似性分析的基础上,分析了不同的线状要素化简模型在化简中对形状的影响,得出了Douglas-Peucker化简模型具有精度损失最小、形状保真度最高的结论。
As an important characteristic of spatial cognition and a cognition result of graphic structure, pattern and distributing condition, shape plays a significant role in map generalization. Structural recognition of geographical features is essential in map generalization, which includes the analysis in distributing pattern and shape characteristic. Therefore, map generalization overall strategy could be established on the basis of the acquired distributing rule of geographical features and phenomena.Secondly, whereas a feature should be kept shape similarity in multi-scale representation, shape fidelity takes priority in generalization algorithm. Thirdly, shape similarity is an important index in map generalization evaluation. As an aspect in the field of cognition, shape recognition carries subjectivity and uncertainty. Therefore, shape analysis and recognition in map generalization is challanging and practical as well. This dissertation focused on the following:
     (1) Theoretical bases supporting shape recognition are systematically summarized. From the start of the definition of shape, the dissertation introduces three models about pattern recognition——template matching model, prototype matching model and feature matching model in a systematical way and expatiates on human's cognitive regularity to shape. From the angle of the science of computer and information, the method or model about shape recognition and characteristics of shape representation of features in cartography are introduced and summarized.
     (2) The shape characteristic value of area feature in GIS and the model of calculating shape similarity distance are interpreted in detail. The Fourier shape descriptor and shape number to calculating similarity distance of shape are placed great emphasis.The convergence speed and descriptive accuracy are analyzed when the Fourier descriptor applied in describing different kinds of shape. The method to obtain shape number with three invariances which is proper to building is devised and that the shape number with different scale exists influence on shape description is researched.
     (3) Under the elicitation of prototype matching model of pattern recognition in cognition psychology, the dissertation presents the method of simplification of building based on dynamic template matching. The theory and operational processing of the method are provided from the aspects of prototype template designing, dynamic template creating, template setting and detecting validity of simplification result. The method has been proved practical by data experiment.
     (4) shape characteristic unit——bend of line feature and its shape characteristic parameters are analysed. The partition, hierarchy of bend of line feature are explained. Simple shape characteristic parameters and composite shape characteristic parameters and their geometrical meaning are summarized.
     (5) On the basis of the research of two dimension attributes of shape of line feature, the line feature is devided into different classes and is partitioned into many segments which have same shape characteristics, and the segments are simplified through different simplification algorithms and simplification threshold.
     (6) The dissertation expatiates on the possible losses as a result of the simplification of line feature——position accuracy, topology consistency and shape similarity. The relations among the above-mentioned losses are also presented. The shape deformation of different line simplification model is analysed and the conclusion is drawed that Douglas-peucker simplification model is the most proper in position accuracy and fidelity of shape.
引文
1. Ai T, Guo R, Liu Y, A Binary Tree Representation of Bend Hierarchical Structure Based on Gestalt Principles. Forer P., Yeh A. G. O.,He J. (eds) Proceedings of the 9th International Symposium on Spatial Data Handling[C], Beijing,2000:2a30-2a43.
    2. Ai Tinghua, Shuai Yun, Li Jingzhong, The shape cognition and query supported by Fourier transform, "Advance in Spatial Data Handling", Springer-Verlag, The 13rd SDH international conference, Montpellier, France,2008.
    3. Alcaraz D, Paruelo J, Cabello J.Identification of current ecosystem functional types in the Iberian Peninsula.Global Ecology and Biogeography,2006,15(2):200-212.
    4. Aslan C. and Tari S., An Axis Based Representation for Recognition, Proc. Int'l Conf. Computer Vision,2005.
    5. Attneave F., Some informational aspects of visual perception. Psychological Review.1954,Vol.61,No. 3.
    6. Ballard, D.H., Strip trees:a hierarchical representation for curves[J].Communications of the ACM,1981,24(5):310-321
    7. Barillot X. and Plazanet, Analyse des Formes des Routes, in:A. Ruas(Dir.),Generalisation et representation multiple, Lavoisier, Paris,2002,pp.203-223.
    8. Bjorke,J. T. Framework for Entroy-based Map Evaluation, Cartography and Geographic Information systems,23(2):78-95,1996
    9. Blum H., Biological shape and Visual Science(Part Ⅰ), J. Theoretical Biology, vol.38, pp. 205-287,1973.
    10. Bo Su., Zhilin Li. The cartographic Journal, June 1995. Volume 32.
    11. Brassel, K.E. and Weibel, R., A Review and Conceptual Framework of Automated Map Generalization. International Journal of Geographical Information Systems,1998,2(3):229-244.
    12. Buttenfield,B.P., Line structure in graphic and geographic space[D], Ph.D. Dissertation, University of Washington, Seattle.1984.
    13. Buttenfield,B.P, Scale-Dependence and self-Similarity in Cartographic Lines. Cartographica,1989.26(1),79-100.
    14. Buttenfield,B.P., Map Generalization:Making Rules for Knowledge Representation,1991,Lognman Scientific and Techenical,Harlow,UK,pp,150-171.
    15. Dent, B. D. Communication Aspects of Value-By-Area Cartograms, The American Cartograoher,1975, 2(2):154-168.
    16. Cormely,R.G and Campbell, G.M. A Geometrically Efficient Bandwidth Line Simplification Algorithm. In Proceedings of the 4TH International Symposium on Spatial Data Handling,Zurich, August 1990,1,77-84.
    17. Cormely,R.G and Campbell, G.M. Integrating Quantitative and Qualitative Aspects of Digital Line Simplification. The Cartographic Journal.1992.29(1):25-30.
    18. Dettori,G and Puppo E. How Generalization Interacts with the Topological and Metric Structure of Maps, In:M.J. Kraak and M. Molenaar (eds.), Advance in GIS Research II (7th Int. Symposium on Spatial Data Handling), London:Taylor & Francis,1997.
    19. Dettori,G. and Puppo E. Towards a Formal Model for Multiresolution Spatial Maps, Advances in Spatial Database(SSD 1995),pp.152-169,1995
    20. Douglas D H, Peucker T K. Algorithm for the Reduction of the Number of Points Required to Represent a Digitized Line or Its Caricature[J]. The Canadian Cartographer,1973,(10):47-55.
    21. Dryden I. L. and Mardia K.V. Statistical Shape Analysis. John Willey and sons, West Sussex, England, 1998.
    22. Dutton G Scale, sinuosity and point selection in digital line generalization,Cartography Geogr Inf. 1999(22) 33-53.
    23. Freeman H. Computer processing of line-drawing images. Computing surveys,1974,6(1):57-97
    24. Garcia J.L. and Ariza,F.J. Generalization-oriented road line classification by means of an artificial neural network[J].GeoInformatica,doi:10.1007/s 10707-007-0026-z.
    25. Garcia J.L. and Ariza,F.J., Frequency filtering of linear features by means of wavelets. A Method and an example,Cartographic J.37(2000):39-49
    26. Gustavo M, A hierarchical shape representation by convexities and concavities and its application to shape matching, ph.D. Thesis the Graduate of the Louisiana State University and Agricultural and Mechanical College,2001.
    27. Hancock T.E.R., A Skeletal Measure of 2D Shape Similarity, Computer Vision and Image Understanding, vol.95,pp.1-29,2004.
    28. Hu, M K. Visual pattern recognition by moment invariants, IRE trans.Information Theory,1962,8(1),pp.179-187.
    29. Huang, N. E., Shen, Z., Long, S. R. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London, A454,903-995,1998.
    30. Jasinski M.J. The comparison of complexity measures for cartographic lines.1990,Technical Report 90-1,National center for geographic information and analysis, Buffalo,New York.
    31. Kasyap,R.L.,Chellappa R., Stochastic models for closed boundary analysis:representation and reconstruction,IEEEE Trans Inform. Theory, Vol IT-27,No.5,1981,pp.627-637.
    32. Kauppien H., Sepanen T. An experiment comparison of autoregressive and Fourier-based descriptors in 2D shape classification. IEEE Trans on PAMI,1995,2:201-207.
    33. Lamy, S., Ruas, A., Demazeau, Y., Jackson, M., Mackaness, W., and Weibel, R. The Application of Agents in Automated Map Generalization, CD-Rom Proceedings 19th Int. Cartographic Conference, Ottawa,1999.
    34. Leonard J, Kramer M A. Improvement of the back propagation algorithm for training neural networks[J].Computers Chem.Engng.1990,14(3):337-341.
    35. Li, Z. L. Mathematical Morphology in Digital Generalization of Raster Map Data. Cartography,1994,23(1).
    36. Li Z, Yan H, Ai T(2004) Automated Building Generalization based on Urban Morphology and Gestalt Theory, International Journal of Geographic Information Sciences,18(5):513-534.
    37. Li, Z. L., Khoshelham, K., Ding, X., et al., Empirical mode decomposition (EMD) transform for spatial analysis, in Advances in Spatial Analysis and Decision Making.
    38. Li, Z. L., Algorithmic Foundation of Multi-Scale Spatial Representation[M],2006, Boca Raton: Taylor & Francis Group,CRC Press.
    39. Liu T., Geiger D., and Kohn R.V., Representation and Self-Similarity of Shapes, Proc. Int'l Conf. Computer Vision,Jan.1998.
    40. Lonergan, M. E., Jones, C. B. and Ware, J. M. Optimal Map Generalization:Saving Time with Appropriate Measures of Imperfection, CD-Rom Proceedings 19th Int. Cartographic Conference,Section 8, Ottawa,1999.
    41. Mackaness,W. Map Generalization, Integration and Evaluation of map generalization, In:Buttenfield, B.P. and McMaster, R.B. (eds.):Map Generalization:Making Rules for Knowledge Representation. London:Longman, pp.217-227,1991.
    42. Mackaness,W. Map Generalization, Integration and Evaluation of map generalization, In:Buttenfield, B.P. and McMaster, R.B. (eds.):Map Generalization:Making Rules for Knowledge Representation. London:Longman, pp.217-227,1991.
    43. Mandelbrot, B.B., How long is the coastline of Britain? Statistical self-similarity and fractal dimension. Science,1967,154:636-638.
    44. Mandelbrot, B.B., The Fractal Geometry of Nature. San Francisco, W.H. Freeman and Co.1982.
    45. Martin T.,Howard B.,Mark H. Neural Network Design.2002,Beijing:China Machine Press.
    46. Martinez G.,A Hierarchical Shape Representation by Convexities and Concavities and Its Application to Shape Matching. A Dissertation of the Louisiana State University and Agriculture and Mechanical College.
    47. Marques J.P.,Pattern Recognition Concepts,Methods and Applications[M]. Springer-Verlag Berlin Heideberg New York,2002.
    48. McMaster,R.B., A Statistical Analysis of Mathematical Measures for Linear Simplification. The America Cartographer.1986.13(2):103-116.
    49. McMaster,R.B., Knowledge Acquisition for Cartographic Generalization:Experimental Methods. ESF GISDATA Work. Compiegne France Dec.1993. GIS and Generalization:Methodology and Practice. Taylor & Francis London.
    50. Mokhtarian F. and Mackworth A.K.,Scale-based description and recognition of planar curves and two-dimensional shapes, IEEE Trans. Pattern Anal. Mach. Intell.8(1986)34-43.
    51. Mokhtarian F. and Mackworth A.K., A theory of multi-scale,curvature based shape representation for planar curves,IEEE Trans. Pattern Anal. Mach. Intell.14(1992)789-805.
    52. Muller J.C.,Fractal dimension and consistencies in cartographic line representations[J], Cartograpic J. 1986(23):123-130.
    53. Piaget J. Inhelder B. The Child's conception of space[M]. New York:Norton,1967.
    54. Plazanet C., Affholder J G, Frith E. The Importance of Geometric Modeling in Linear Feature Generalization[J]. Cartography and Geographic Information Systems,1995,22(4):291-305.
    55. Plazanet C.. Measurements, characterization of classification for automated linear features generalization[J]. Proceedings AutoCarto 12,1995, Vol.4:59-68.
    56. Plazanet C.. Modelling Geometry for linear feature generalization[M]. Geographic Information Research, Part 3,Chapter 17,1997,London:Taylor & Francis.
    57. Plazanet C.,Bigolin, N.,Ruas,A., Experiments with learning techniques for sptial model enrichment and line generalization, Geoinformatics 2(1998)315-333.
    58. Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, Pearson Education, Inc., publishing as Prentice Hall.
    59. Rainsford D. and Mackaness W.,Template Matching in Support of Generalisation of Rural Buildings. In:Advances in Spatial Data Handling (SDH 2002), D.E. Richardson and P. Van Oosterom (eds.)(Berlin:Springer Verlag),pp.137-152.
    60. Richardson E. and Mackaness W.A.,Computational processes for map generalization, Cartography Geogr. Inf. Sci.22(1995):264-275.
    61. Rock I. Orientation and Form. Academic Press, New York and London,1973.
    62. Ruberto Di C., Recognition of Shape by Attributed Skeletal Graphs, Pattern Recognition, vol.37,pp. 21-31,2004.
    63. Siddiqi K., Shkoufandeh A. Dickinson S. et.al.,Shock Graphs and Shape Matching, Proc. Int'l Conf. Computer Vision, pp.222-229,1998.
    64. Sebastian T.B.,Klein P.N., and Kimia B.B. Recognition of Shapes by Editing Their Shock Graphs, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.26,no.5, pp.550-571, May 2004.
    65. Seter M. Generalization based on least squares adjustment[C]. International Archives of Photogrammetry and Remote. Amsterdam:[s.n.],2000:931-938.
    66. Xiang Bai, Latecki L. J. and Liu Wen-Yu. Skeleton Pruning by Contour Partitioning with Discrete Curve Evolution, IEEE Tracsactions on pattern analysis and machine intelligence, vol.29,No. 3,MARCH 2007.
    67. Skopeliti A.and Tsoulos L. On the parametric description of the shape of the cartographic line, 1999,Cartographica 36:53-65.
    68. Sonka,V.,Hlavac V. and Boyle R. Image Processing, Analysis and Machine Vision. Chapman&Hall Computing,1993.
    69. SU B, LI Z and G Lodwick. Algebraic Models for Elimination of Area Feature in the Digital Map Generalization. Mapping Sciences'94,1996.
    70. Uttal W. On Seeing Forms. Laurence Erinbaum Associates, Publishers, Hillsdale, New Jersey,1988.
    71. Van Oosterom, P., Schenkelaars, V. The development of an interactive multi-scale scale GIS[J]. International Journal of Geographical Information System,1995,9(5):489-507.
    72. Visvalinggam M., S.Herbert. A computer science perspective on the bendsimplification algorithm. Cartography and Gragraphic Information Science. Vol.26, No.4,1999:253-270.
    73. Visvalingam M. and Williamson P., Simplification and generalization of large scale data for roads:a comparison of two filtering algorithms[J]. Cartography Geogr. Inf. Syst.1995(22):264-275.
    74. Wang Z, Muller J C. Line Generalization Based on Analysis of Shape[J]. Cartography and Geographic Information Systems,1998,25(1):3-15.
    75. Wang Zeshen, Dan Lee. Building Simplification Based on Pattern Recognition and Shape Analysis[A]. SDH 2000-Conference Proceedings'Representation[C].[s.1]:[s.n.],2000.58-72.
    76. Ware, J.M. and Jones, C.B. Conflict Reduction in Map Generalization Using Iterative Improvement, Geoinfomatica,2(4):383-407,1998.
    77. Ware, J. M., Jones, C. B. A Spatial Model for Detecting (and Resolving) Conflict Caused by Scale Reduction, M.J. Kraak and M. Molenaar (eds.), Advance in GIS Research Ⅱ (7th Int. Symposium on Spatial Data Handling), London:Taylor & Francis,pp.547-558,1997.
    78. Ware, J. M., Jones, C. B. and Bundy, G. L. A Triangulated Spatial Model for Cartographic Generalization of Areal Objects, In:M.J. Kraak and M.Molenaar (eds.), Advance in GIS Research II (7th Int. Symposium on Spatial Data Handling), London:Taylor & Francis, pp.173-192,1997
    79. Ware, J. M., Jones C. B. A Triangulated Spatial Model for Cartographic Generalization of Areal Objects[C], Proceedings COSIT, Semmering, Austria, pp.173-192,1995.
    80. Weber,W. Map Generalization---An Information Science Approach,In:Opheim, H. ed. Contributions to Map Generalization Proceedings, Oslo, Norway:Norweigian Computing Center, pp.31-52,1980
    81. Weibel, R., Map Generalization in the Context of Digital Systems, Cartography and Geographic Information Systems.1995,22(4):259-263.
    82. Weibel, R., Generalization of Spatial Data:Principles and Selected Algorithms. In:M.van Kreveld, J. Nievergelt,T. Roos, P. Windmayer(eds.), Algorithmic Foundation of Geographic Information Systems. Springer,1997:99-152.
    83. Werschlein T., Weibel R. Use of neural networks in line generalization,in:Proceedings EGIS'94,paris,1994,pp.76-85.
    84. Xingwei Yang, Xiang Bai, Deguang Yu and Longin Jan Latecki. Shape Classification Based on Skeleton Path Similarity.2007.
    85. Zahn C.T., Roskies R.Z. Fourier descriptors for plane closed curves. IEEE Trans on Compters,1972,21:269-28.
    86. Zhu S.C. and Yuille A., FORMS:A Flexible Object Recognition and Modeling System, Proc. Int'l Conf. Computer Vision,1995.
    87.艾廷华.城市地图数据库综合的支撑数据模型与方法的研究[D].武汉测绘科技大学博士论文,2000.
    88.艾廷华,制图综合中建筑物的合并与化简[J].武汉测绘科技大学学报,2000,25(1):25-29.
    89.艾廷华,多尺度空间数据库建立中的关键技术与对策,科技导报,2004,12.
    90.艾廷华.适宜空间认知结果表达的地图形式,遥感学报,Vol.12.No.2,2008
    91.艾廷华,郭仁忠.基于Gestalt识别原则挖掘空间分布模式,测绘学报,2000(4):248-354.
    92.艾廷华,郭仁忠,刘耀林.曲线弯曲深度层次结构的二叉树表达[J].测绘学报,2001,30(4):343-348.
    93.艾廷华,郭仁忠.基于格式塔识别原则挖掘空间分布模式[J].测绘学报,2007,36(8):302-308.
    94.艾廷华,帅赟,李精忠,基于形状认知的空间查询,测绘学报,(审稿中)。
    95.陈孝春,叶懋冬,倪臣敏.基于二叉树的曲线描述方法[J].中国图形图象学报,2007,12(1):116-120.
    96.董长虹Matlab神经网络与应用[M],2005,北京:国防工业出版社。
    97.董卫华,2008.面向需求的示意性道路网络地图渐进式综合研究.武汉大学博士论文
    98.邓红艳,武芳,翟仁建,王辉连面向制图综合质量控制的数据模型——DFQR树[J].测绘学报,2007,36(2):443-456.
    99.段立娟.形状特征的编码描述研究综述[J].计算机科学,2007,34(8):215-218.
    100.胡伍生,沙月进.神经网络BP算法的误差分级迭代法[J].东南大学学报,2003,33(3):376-378.
    101.高俊.地图学四面体——数字化时代地图学的诠释[J].测绘学报,2004,33(1):6-11.
    102.高俊.地图的空间认知与认知地图学——地图学在文化与科技领域的新探索[A]中国地图学年鉴1991,中国地图出版社,1991.
    103.郭庆胜.线状要素图形综合的渐进方法研究[J],武汉测绘科技大学学报,1998,23(1):52-56.
    104.郭庆胜.以直角方式转折的面状要素图形简化方法[J],武汉测绘科技大学学报,1999,24(3):255-258.
    105.郭庆胜.地图自动综合的广义性和评价标准的研究[J],测绘信息与工程,2001,(1)
    106.郭庆胜等.空间推理与渐进式地图综合[M].2007,第一版,武汉:武汉大学出版社
    107.郭仁忠.空间分析[M].武汉:武汉测绘科技大学出版社,1997.
    108.郭仁忠,艾廷华.制图综合中建筑物的合并与化简[J].武汉测绘科技大学学报,2000,25(1):25-29.
    109.金文华,唐荣锡,何涛,唐卫清.简单多边形方向与顶点凸凹性的本质联系[J].计算机工程与设计,1999.10
    110.李德仁,李清泉,陈晓玲.信息新视觉——悄然崛起的地球空间信息学[M].湖北:湖北教育出版社,2001.
    111.李洪省,2007.居民地渐进式综合与传输的研究.武汉大学博士论文.
    112.刘鹏程,艾廷华,邓吉芳,基于最小二乘的建筑物多边形的化简与直角化[J],中国矿业大学学报,2008,37(5):699-704.
    113.刘亦书.一种新的形状特征—高斯描述子[J].中国图象图形学报,2007,Vol 12(3):483-490。
    114.刘颖.空间图形的表达、识别与综合.2005.信息工程大学博士论文.
    115.李学桥,马莉.神经网络工程应用[M].重庆:重庆大学出版社,1996:1-30.
    116.鲁学军,周成虎,龚建华.论地理学的形象思维——地理意象的发展[J],地理学报,1999,(5):401409.
    117.罗宾逊H A.李道义译地图学原理[M],北京:测绘出版社,1989.
    118.马耀峰,胡文亮,张安定,陈逢珍.地图学原理[M].2004,第一版,北京:科学出版社
    119.钱海忠等.采用斜拉式弯曲划分的曲线化简方法[J].测绘学报,2007,36(4):443-456.
    120.史佳颂,朱赟,黄继风.一种建筑物多边形合并、化简与优化的自动方案[J].计算机工程,2003,29(1).
    121.帅赞基于Gestalt认知原则的城市建筑群分布模式识别方法研究。武汉大学博士论文,2008
    122.田鹏,郑扣根,潘云鹤基于Strip-Tree的无级比例尺GIS多边形化简技术[J].软件学报,2001,12(10):1495-1502.
    123.谢帮旺,王家俊.一种基于轮廓的图像检索算法[J].中国图象图形学报,,2008,Vol 13(7):1368-1373。
    124.王斌,2006.形状分析的新方法及其应用.复旦大学博士论文
    125.王家耀.普通地图制图综合原理[M].1993,北京:测绘出版社
    126.王家耀,武芳.数字地图自动制图综合原理与方法[M].1997,北京:解放军出版社.
    127.王家耀.空间信息系统原理[M].北京:科学出版社,2001.
    128.王埂,汪安圣.认知心理学[M].北京:北京大学出版社,2001.
    129.王杰臣,闾国年.曲线矢量数据综合的微凹凸消除算法[J].测绘通报,2002(1):17-18.
    130.王辉连,武芳,张琳琳,邓红艳.数学形态学和模式识别在建筑物多边形化简中的应用[J],测绘学报,2005,34(3):269-276.
    131.王庆国,2007.三维城市建筑群模型的自动综合方法.武汉大学博士论文
    132.王树根,基于认知心理学的模式识别模型框架[J].武汉大学学报(信息科学版),2002,27(5):345-745.
    133.王涛,刘文印,孙家广等.傅立叶描述子识别物体的形状[J],计算机研究与发展,2002,39(12)。
    134.邬浩,潘云鹤,庄越挺,杨宇艇.基于对象形状的图象查询技术[J].软件学报,1998.5:343-349
    135.毋河海.地图综合基础理论与技术方法研究[M].2004,北京:测绘出版社
    136.毋河海.基于多叉树结构的曲线综合算法[J].武汉大学学报(信息科学版),2004,29(6):479-483.
    137.武芳,朱鲲鹏,邓红艳.地图自动综合质量与评价标准探析[J].测绘科学技术学报,2007,24(3): 160-163.
    138.武芳,邓红艳朱鲲鹏,朱强.基于质量控制的自动综合框架模型[J].测绘通报,2007,(9):43-46.
    139.武晓波,王世新,肖春生Delaunay三角网的生成算法研究[J].测绘学报,1999,28(1):28-35.
    140.闻新,周露,李翔等,MATLAB神经网络仿真与应用[M].2003,北京:科学出版社
    141.闻新,周露,王丹力等,MATLAB神经网络应用设计[M].2000,北京:科学出版社
    142.叶奕乾.图解心理学[M].1982,南昌:江西人民出版社
    143.应申.曲线的一致性化简及曲线相交的研究[D].武汉大学硕士学位论文,2002.
    144.张本昀,于甦新,陈常优,地理研究者的地图空间认知过程[J].地域研究与开发,2006,25(6)
    145.张传明,潘懋,吴焕萍等.保持拓扑一致性的等高线化简算法研究[J].北京大学学报,2007,43(2):216-222.
    146.张根寿,祝国瑞.面状地图表象的形态研究[J].武汉测绘科技大学学报,1994,19(1):29-36.
    147.张青年,秦建新.面状分布地物群识别与概括的数学形态学方法,地理研究,2000(1):22-27.
    148.张青年,廖克.基于结构分析的曲线概括方法[J].中山大学学报,2001,40(5):118-121.
    149.章明.视觉认知心理学[M],华东师范大学出版社,1991.
    150.赵宇,陈雁秋.曲线描述的一种方法:夹角链码[J].软件学报,2004,15(2):300-307.
    151.周培德.计算几何—算法设计与分析[M].清华大学出版社,2005
    152.祝国瑞.地图学[M].2003,第一版,武汉:武汉大学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700