用户名: 密码: 验证码:
金属矿地震数据采集与处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
资源与环境问题是21世纪人类社会面临的首要问题,实现资源的可持续发展是地球科学家的首要任务。在目前浅部资源接近枯竭的情况下,向地球深部要资源已成为资源勘查的必然趋势,而向地球深部要资源必需解决方法技术问题。传统的金属矿勘查技术不能满足深部资源勘查的要求。重、磁勘探方法垂向分辨率很低,且位场强度随距离的平方成反比衰减,在探测深部金属矿体方面存在严重缺陷,直流电法勘探深度太浅,电磁法在深部的分辨率通常又很低。因此,发展500米至2000米的大探测深度的地球物理技术是我国未来矿产资源勘查技术发展的重点,而地震方法能够解决500至2000米深度范围内勘探中的地质问题。
     论文针对大深度高密点金属矿地震勘探技术,主要完成工作有:
     1.首先简要介绍了金属矿地震勘探的研究现状,高密度地震采集技术的最新发展动态,并对应用于金属矿产的主要地震勘探方法技术的原理及应用范围进行了论述。
     2.基于勘探深度达2000米,矿体规模不小于50米这个地质问题,对地震波的激发、野外观测系统设计等方面进行了研究,提出了比较可行的方案。并对几个矿体模型进行了全波场正演计算,并对所得的正演数据进行了成像研究。
     3.结合全国危机矿山接替资源找矿项目《金属矿地震方法试验》中“罗河-大鲍庄金属矿地震勘探”进行了金属矿地震数据处理技术研究,通过分析原始资料,针对处理难点采用相应的处理措施,形成了一套切实可行的处理流程。针对金属矿地震勘探中的主要干扰波采用小波变换、Radon变换、径向道变换、曲波变换等处理技术进行了特殊处理,并对模型数据或实际数据进行了试算,取得了很好的效果。
     4.对散射波和反射波的关系进行了分析,对含有散射体的多个模型进行了全波场正演计算,用自己编写的基于等效偏移距的叠前偏移程序进行了散射波成像,得到了很好的效果,找到了处理散射波地震数据的正确途径。
     5.结合本人承担的物化探研究所基本科研业务费专项资金项目《大深度高密点金属矿地震方法技术试验研究》,采用最新引进的428XL地震数据采集系统,在内蒙古自治区化德县达盖滩铅锌矿上进行了方法技术实验,通过观测系统的优化,使得更有利于采集反射波和散射波;并得到清晰的初至波,有利于进行层析成像反演。通过各种处理技术对采集的原始数据进行了处理,取得了一定的效果。
Resources and environmental issues are chief problems in the 21st century. Resource sustainable development has always been the primary task for earth scientists. With shallow resources getting exhausted, development of deep resources has become an inevitable trend of resource exploration. Exploration methods and techniques are challenges that deep resource development must face, while traditional metal ore prospecting techniques can not meet requirements of the deep mineral exploration. Gravity and magnetic exploration methods have critical limitations in detecting deep metal ores, due to the low vertical resolution and fact that the potential field strength attenuation is in inverse proportion to distance square. Nor is DC electrical prospecting method suitable, owing to shallow detection depth. Electromagnetic exploration method is also limited because of its low vertical resolution in deep areas. Consequently, the development of geophysical technology for wide investigation depth range from 500m to 2000m will be the focus of future mineral resource exploration. Seismic exploration method can be used to solve geological exploration issues in the depth range of 500-2000m.
     Aiming at seismic exploration technique with great depth and density points for metal mine, this paper expounds the following:
     1. Brief introduction on present research situation of metal mine seismic exploration, as well as recent development trends of seismic acquisition technology with high density; Systematic discussion on principles and applications of seismic exploration methods and techniques for metal mine.
     2.Based on exploration with depth up to 2000m and ore scale not less than 50m, generation of seismic wave and design of field geometry system have been studied, and feasible schemes have been provided. Full-wave modeling has been conducted for several ore-body models, with imaging study on forward data.
     3. Aiming at the subproject“Seismic Method Test for Metal Mine”of the national program“Alternative Resources Exploration in Crisis Mines”, metal mine seismic data processing techniques have been investigated based on“Metal Mine Seismic Exploration in Luohe-Dabaozhuang Region”. A set of practical processing procedure has been formed through analyzing the real data and adopting corresponding measures based on different issues. Specific processing techniques, such as wavelet transform, Radon transform, radial trace transform and curverlet transform, etc. have been applied to eliminate main interference waves in metal mine survey. Relative programs have been written and trial calculations have been conducted on model data and actual data, obtaining very good effects.
     4. Relationship between scatter wave and reflection wave has been analyzed, and full-wave forward calculations have been conducted on several models containing scatterer. Scattered imaging has been done with the self-developed pre-stack migration programs based on equivalent offset, achieving better results, so that the correct way of processing seismic scatter wave data has been found.
     5. Based on my special fund project“Study on Seismic Exploration Technique with Great Depth and Density Points for Metal Mine”, the newly introduced 428XL seismic data acquisition system was applied to conduct experiment of methods and techniques at Da-gai-tan lead-zinc mine in Huade country of Inner Mongolia. Through optimization of the observing systems, acquisition of reflection wave and scatter wave has better effects and clearer first break wave can be obtained, which is favorable for accurate inversion on seismic tomography. Different processing techniques have been applied to treat real data with predetermined results.
引文
[1]Birch F. The velocity of compressional waves in rocks to 10 kilobars,1[J].Journal of Geophysical Research,1960,65:1083~1102
    [2]Birch F. The velocity of compressional waves in rocks to 10 kilobars,2[J].Journal of Geophysical Research,1961,66:2199~2224
    [3]Christensen N I. Measurement of dynamic properties of rocks at elevated temperatures and pressures[J].American Society for testing and materials,Spec.Tech.Pub.,1985,869: 93~107
    [4]Salisbury M H, Milkereit B, Ascough G, et al. Physical properties and seismic imaging of massive sulfides[J].Geophysics,2000,65(6):1882~1889
    [5]Salisbury M H, Milkereit B, Bleeker W. Seismic Imaging of Massive Sulfide Deposits: Part I, Rock Properties[J].Economic Geology,1996,91(5):821~828
    [6]Salisbury M H, Harvey C W, Matthews L. The acoustic properties of ores and host rocks in hardrock terranes[A]. in: Eaton D W, Milkereit B, Salisbury M H, eds. Hardrock Seismic Exploration[C].USA:SEG,2003.9~19
    [7]Barry J.Drummond, Bruce R.goleby, A.J.Owen,A.N.Yeates, C.Swager, Y.Zhang,and J.K.Jackson. Seismic reflection imaging of mineral systems: Three case histories. Geophysics,2000,65(6):1852-1861
    [8]C.C. Pretorius, W.F.Trewick, A.Fourie,and C.Irons. Application of 3-D seismics to mine planning at Vaal Reefs gold mine, number 10 shaft, Republic of South Africa. Geophysics,2000,65(6): 1862-1870
    [9] Milkereit B, Berrer E k, King A R, et al. Development of 3-D seismic exploration technology for deep nickel-copper deposits:A case history from the Sudbury basin, Canada [J]. Geophysics,2000,65(6):1890~1899
    [10]Bohlen T, Muller C, Milkereit B. Elastic seismic-wave scattering from massive sulfide orebodies: on the role of composition and shape[A].in: Eaton D W, Milkereit B, Salisbury M H,eds. Hardrock Seismic Exploration[C].USA:SEG,2003.70~89
    [11]孙明,林君.金属矿地震散射波场的数值模拟研究[J].地质与勘探,2001,37(4):68~70
    [12]李灿苹,刘学伟,王祥春等.地震波的散射理论和散射特征及应用[J].勘探地球物理进展,2005,28(2):81~89
    [13]李灿苹,刘学伟,李敏锋等.非均匀地质体散射特征初探[J].石油物探,2006,45(2):134~140
    [14]尹军杰,刘学伟,李文慧.地震波散射理论及其应用研究综述[J].地球物理学进展,2005,20(1): 123~134
    [15]尹军杰,刘学伟,黄雪继等.基于散射成像数值模拟的地震采集参数论证[J].石油物探,2005,44(1):58~64
    [16]徐明才,高景华,荣立新等.从金属矿地震方法的试验效果探讨其应用前景[J].中国地质,2004,31(1):108~112
    [17]徐明才,高景华,柴铭涛等.金属矿地震勘查方法技术[J].有色金属矿产与勘查,1997,6(4):232~237
    [18]徐明才,高景华,柴铭涛等.寻找隐伏金属矿的地震方法技术研究[J].物探与化探,2002,26(5):350~356
    [19]徐明才,高景华,荣立新等.散射波地震方法在蔡家营多金属矿区的试验研究[J].物探与化探,2003,27(1):49~54
    [20]徐明才,高景华,刘建勋.东秦岭地震剖面上莫霍面基本特征的研究[J].地质与勘探,2000,36(1):40~43
    [21]徐明才,高景华,柴铭涛等.内蒙古大井铜锡多金属矿区的地震方法试验研究[J].CPS/SEG国际地球物理会议论文集(详细摘要),2004:459~463
    [22]高景华.金属矿勘查中的地震理论模型研究[J].物探与化探,2002,26(5):350~356
    [23]尹军杰.地震散射波场特征的数值模拟研究[D]:[学位论文].北京:中国地质大学(北京),2005
    [24]尹军杰,刘学伟,李文慧.地震波散射理论及其应用研究综述[J].地球物理学进展,2005,20(1): 123~134
    [25]Bancroft J C,Geiger H D. The Equivalent offset CRP gathers[J].Expanded Abstracts of 64th Annual Internat SEG Mtg,1994,672~675
    [26]Bancroft J C,Geiger H D,Margrave G F. The equivalent offset method of prestack time migration[J].Geophysics,1998,63(6):2042~2053
    [27]Margrave G F, Bancroft J C, Geiger H D. Fourier prestack migration by equivalent wavenumber[J].Geophysics,1999,64(1):197~207
    [28]Margrave G F, Bancroft J C. The theoretical basis for prestack migration by equivalent offset[J].Expanded Abstracts of 66th Annual Internat SEG Mtg,1996,443~446
    [29]Bancroft J C. Natural anti-aliasing in equivalent offset prestack migration[J]. Expanded Abstracts of 66th Annual Internat SEG Mtg,1996,1465~1466b
    [30]Geiger H D, Bancroft J C. Equivalent offset prestack migration for rugged topography[J]. Expanded Abstracts of 66th Annual Internat SEG Mtg,1996,447~450 31]Li Xinxiang, Bancroft J C. Prestack migration residual statics analysis using equivalent offset mapping[J].Expanded Abstracts of 66th Annual Internat SEG Mtg,1999
    [32]Li Xinxiang, Bancroft J C. Integrated residual statics analysis with prestack time migration[J].Expanded Abstracts of 67th Annual Internat SEG Mtg,1997,1462~1465
    [93]Bancroft J C, Margrave G F, Geiger H D. A kinematic comparison of DMO-PSI and equivalent offset migration(EOM)[J].Expanded Abstracts of 67th Annual Internat SEG Mtg,1997,1575~1578.
    [33]Wang S, Bancroft J C, Foltinek D et al. Converted-wave(P-SV) prestack migration and velocity analysis[J].Expanded Abstracts of 66th Annual Internat SEG Mtg,1996,1575~1578
    [34]Li Xinxiang, Bancroft J C. Equivalent offset migration(EOM)enhancement by residual statics correction[J].Expanded Abstracts of 67th Annual Internat CSEG Mtg,1997
    [35]Bancroft J C, Li Xinxiang. Efficient computation of the equivalent offset traveltimes for EOM[J].Expanded Abstracts of 68th Annual Internat SEG Mtg,1998.
    [36]Schmitt D R, Mwenifumbo J, Pflug K A, et al. Geophisical logging for elastic properties in hard rocks: A tutorial[A].in: Eaton D W,Milkereit B, Salisbury M H, eds. Hardrock Seismic Exploration[C].USA:SEG,2003.20~41
    [37]Eaton D W.Weak elastic-wave scattering from massive sulfide orebodies [J].Geophysics,1999,64(1):289~299
    [38]Eaton D W,Clarke Greg .A Kichhoff integral method to model 3-D elastic-wave scattering[J].Expanded Abstracts of 70th Annual Internat SEG Mtg,2000,1~4
    [39]Clarke G J,Eaton D W. Influence of morphology and surface roughness on the seismic response of massive sulfides, based on elastic-wave Kirchhoff modeling[A].in: Eaton D W, Milkereit B, Salisbury M H, eds. Hardrock Seismic Exploration[C].USA:SEG,2003.45~58
    [40]Hobbs R W.3D modeling of seismic-wave propagation using complex elastic screens, with application to mineral exploration[A].in: Eaton D W, Milkereit B, Salisbury M H,eds. Hardrock Seismic Exploration[C].USA:SEG,2003.59~69
    [41]Juhlin C,Palm H. Experiences from shallow reflection seismics over granitic rocks in Sweden[A].in: Eaton D W, Milkereit B,Salisbury M H,eds. Hardrock Seismic Exploration[C]. USA:SEG,2003.93~109
    [42]Roberts B,Zaleski E,Perron G,et al.Seismic exploration of the Mantitouwadge Greenstone Belt,Ontario:A case history[A].in:Eaton D W,Milkereit B,Salisbury M H,eds. Hardrock Seismic Exploration[C].USA:SEG,2003.121~126
    [43]Drummond B J,Owen A J,Jackson J C,et al. Seismic-reflection imaging of the environment around the Mount Isa orebodies, northern Australia: A case study[A].in:Eaton D W,Milkereit B,Salisbury M H,eds. Hardrock Seismic Exploration[C].USA:SEG,2003.127~137144
    [44]Milkereit B, Eaton D, Berrer E. Towards 3-D seismic exploration technology for the crystalline crust[J].Expanded Abstracts of 66th Annual Internat SEG Mtg,1996b,638~641
    [45]Milkereit B,Eaton D,Wu J,et al. Seismic Imaging of Massive Sulfide Deposits: Part II, Reflection seismic profiling[J].Economic Geology,1996,91(5):829~834
    [46]Salisbury M H, Milkereit B, Ascough G. Physical properties and seismic imaging of massive sulfides[J].Geophysics,2000,65(6):1882~1889
    [47]Milkereit B, Eaton D. Imaging and interpreting the shallow crystalline crust[J]. Tectonophysics,1998,286:5~18
    [48]Milkereit B,Berrer E k,King A R,et al. Development of 3-D seismic exploration technology for deep nickel-copper deposits: A case history from the Sudbury basin, Canada[J]. Geophysics,2000,65(6):1890~1899
    [49]Evans B J,Urosevic M,and Taube A. Using surface-seismic reflection to profile a massive sulfide deposit at Mount Morgan, Australia[A].in: Eaton D W, Milkereit B, Salisbury M H, eds. Hardrock Seismic Exploration[C].USA:SEG,2003.157~163
    [50]Calvert A J,Perron G,Li Y.A comparison of 2D seismic lines shot over the Ansil and Bell Allard Mines in the Abitibi Greenstone Belt[A].in: Eaton D W,Milkereit B, Salisbury M H,eds. Hardrock Seismic Exploration[C].USA:SEG,2003.164~177
    [51]Calvert A J, Li Y. Seismic reflection imaging of a massive sulfide deposit at the Matagami mining camp, Quebec[J].Geophysics,1999,64(1):24~32
    [52]Adam E,Perron G, Arnold G,et al. 3D seismic imaging for VMS deposit exploration, Matagami,Quebec[A].in: Eaton D W, Milkereit B, Salisbury M H,eds. Hardrock Seismic Exploration[C].USA:SEG,2003.181~193
    [53]Stevenson F R,Higgs M A,Durrheim R J. Seismic imaging of precious and base-metal deposits in southern Africa[A].in: Eaton D W,Milkereit B,Salisbury M H,eds. Hardrock Seismic Exploration[C].USA:SEG,2003.141~156
    [54]Pretorius C C,Muller M R, Larrogue M,et al.A review of 16 years of hardrock seismic on the Kaapvaal Craton[A].in: Eaton D W,Milkereit B,Salisbury M H,eds. Hardrock Seismic Exploration[C].USA:SEG,2003.247~268
    [55]Eaton D W,Guest S,Milkereit B,et al. Seismic imaging of massive sulfide deposits: part III,Borehole seismic imaging of near-vertical structures[J].Economic Geology,1996,91:835~840
    [56]Adam E,Bohlen T,Milkereit B. Vertical seismic profiling at the Bell Allard orebody,Matagami, Qurbec[A].in: Eaton D W,Milkereit B, Salisbury M H,eds. Hardrock Seismic Exploration[C].USA:SEG,2003.181~193
    [57]Perron G,Eaton D W,Elliot B,et al. Application of downhole seismic imaging to map near-vertical structures: Normetal(Abitibi Greenstone Belt),Quebec[A].in: Eaton D W, Milkereit B,Salisbury M H,eds. Hardrock Seismic Exploration[C].USA:SEG,2003.194~206
    [58]Cosma C,Heikkinen P, Keskinen J.Multiazimuth VSP for rock characterization of deep nuclear waste disposal sites in Finland[A].in:Eaton D W, Milkereit B,Salisbury M H,eds. Hardrock Seismic Exploration[C].USA:SEG,2003.207~225
    [59]Pretorius C C,Trewick W F,Fourie A,et al. Application of 3-D seismics to mine planning at Vaal Reefs gold mine, number 10 shaft, Republic of South Africa[J]. Geophysics,2000,65(6):1862~1870
    [60]Stewart A Greenhalgh, Lain M Mason, Cvetan Sinadinovski. In-mine seismic delineation of mineralization and rock structure[J].Geophysics,2000,65(6):1908~1919
    [61]Adam E,Milkereit B,Salmon B. 3-D seismic exploration in the Val d’Or mining camp, Quebec[J].Expanded Abstracts of 68th Annual Internat SEG Mtg,1998,638~641
    [62]籍同冰,徐明才.俄罗斯金属矿地震勘探[J].物探化探译丛,1995,99(4):25~34
    [63]勾丽敏,刘学伟,雷鹏等.金属矿地震勘探技术方法研究综述(一)[J].勘探地球物理进展,2007,30(1):16~24
    [64]勾丽敏,刘学伟,雷鹏等.金属矿地震勘探技术方法研究综述(二)[J].勘探地球物理进展,2007,30(2):85~90
    [66]渥·伊尔马兹.地震资料分析[M].刘怀山,王克斌,童思友等译.北京:石油工业出版社,2006:152~153
    [67]姚姚.地震波场与地震勘探[M].北京:地质出版社,2006:75~122
    [68]张玉芬.反射波地震勘探原理和资料解释[M].北京:地质出版社,2007:40~62
    [69]吴安楚.无线单点检波器高密度地震采集[J].勘探地球物理进展,2009,32(2):101~106
    [70]刘振武,撒利明,董世泰,唐东磊.中国石油高密度地震技术的实践与未来[J].石油勘探与开发,2009,36(2):129~135
    [71]李庆忠,魏继东.高密度地震采集中组合效应对高频截止频率的影响[J].石油地球物理勘探,2007,42(4):363~369.
    [72]钱荣钧.关于地震采集空间采样密度和均匀性分析[J].石油地球物理勘探,2007,42(2):235~243
    [73]狄帮让.面元大小对地震成像分辨率的影响分析[J].石油地球物理勘探,2006,41(4):363~368
    [74]熊金良等.面元大小与纵向分辨率关系[J].石油地球物理勘探,2006,41(4):489~491
    [75]王海,赵会欣,晋志刚.观测系统对高密度地震采集资料的影响[J].石油地球物理勘探,2009,44(2):131~135
    [76]王喜双,谢文导,邓志文.高密度空间采样地震技术发展与展望[J].中国石油勘探,2007,1:49~53.
    [77] Ayman Shabrawi,et al.How single-sensor seismic improved image of Kuwait's Minagish Field, First Break. The Leading Edge,2005,Vol.23:63~69
    [78] Savazzi S, Spagnolini U, di Milano P. Wireless geophone networks for high density land acquisition technologies and future potential[J]. The Leading Edge,2008,27(7):882~886
    [79]Waterman P C and Truell R. Multiple scattering of waves[J].Math.phys.,1961,2:512~537
    [80]Wu R S. The perturbation Method for Elastic wave scattering[J].Pure Applied Geophys,1989,131:605~637
    [81]Miles J W. Scattering of Elastic waves by small inhomogeneities[J].Geophys,1960,15: 642~648
    [82]Herrera I and Mal A K.A perturbation method for elastic wave propagation,II-small inhomogeneities[J].Geophys.Res.,1965,70:871~873
    [83]Haddon R A W and Cleary J R.Evidence for scattering of seismic PKP waves near the mantle-core boundary[J].Phys.Earth and Planet.Int.,1974,8:211~234
    [84]Hudson J A.The scattering of elastic waves by granular media[J].Qu.J.Mech.Appl.Math., 1968,21:487~502
    [85]Hudson J A.Scattering waves in the coda of p[J].Geophys,1977,43:359~374
    [86]Gubernatis J E,Domany E and Krumhansl J A.Formal aspects of the theory of the scattering of ultrasound by flows in elastic materials[J].Appl.Phys.,1977a,48:2804~2811
    [87] Zhao Yonggui, Wang Chaofan, Chen Yanmin, et al. Seismic tomography and its application in mining[J]. Chinese Journal of Geophysics, 1996, 39(4) :585~592
    [88] Jie Zhang and M. Nafi Toks?z. Nonlinear refraction traveltime tomography[J]. Geophysics,1998,63(5):1726~1737
    [89]史大年,吕庆田,徐明才,赵金花.铜陵矿集区地壳浅表结构的地震层析研究[J].矿床地质,2004,23(3):383~389
    [90]杨文采.地球物理反演和地震层析成像[M].北京:地质出版社,1989.
    [91]张恒磊,张云翠,宋双,刘天佑.基于Curvelet域的叠前地震资料去噪方法[J].石油地球物理勘探,2008,43(5):508~513
    [92]包乾宗,高静怀,陈文超.Curvelet域垂直地震剖面波场分离[J].西安交通大学学报, 2007,41(6):650~654
    [93]杨家红,许灿辉,王耀南.基于快速曲波变换的图像去噪算法[J].计算机工程与应用, 2007,43 6):31- 33.
    [94] Starck J L , Candes E J , Donoho D L. The Curvelet transform for image denoising [J]. IEEE Transactions on Image Processing ,2002 ,11 (6) :670~684.
    [95]孙明,林君.τ?p变换在去除金属矿地震资料中的线性干扰[J].物探与化探.2001,25(6):432~436.
    [96]郭全仕,张卫华等.高精度拉冬变换方法及应用[J].石油地球物理勘探. 2005,40(6),622~627
    [97]戚敬华,李萍.利用τ?p变换技术实现多波波场分离[J].煤田地质与勘探.1998,Vol.26,No.5:54~57
    [98]刘喜武,刘洪,李幼铭.高分辨率Radon变换方法及其在地震信号处理中的应用[J].地球物理学进展.2004,19(1): 008~015.
    [99] M.A.Schonewill, A.J.W.Duijndam.Parabolic Radon transform,sampling and efficiency[J]. Geophysics,2001,66(2):667~678
    [100] Foster J.D,Mosher C.C. Suppression of multiples reflection using the Radon transform[J] . Geophysics,1992,57(3),386-395.
    [101]张永刚.地震波场数值模拟方法[J].石油物探. 2003,42(2),143~148
    [102]裴正森,牟永光.地震波传播数值模拟[J].地球物理学进展,2004,19(4):933~941.
    [103]佘德平.波场数值模拟技术[J].勘探地球物理进展,2004,27(1):16~21
    [104]季玉新,韩文功,沈财余,王成礼.胜利油田典型地质模型的地震正演[J].石油地球物理勘探. 2006,41(5),561~572
    [105]梁正洪,苏丕波,邱华.应用全波场正演模拟进行川西深层海相地震勘探工程设计参数论证的研究[J].物探化探计算技术. 2008,30(2),93~99
    [106]王德志,贾烈明,王帮助.基于勘探目标的观测系统设计[J].石油地球物理勘探,2006,41(5):4981
    [107]熊晓军,贺振华,文晓涛,黄德济.基于波动方程的地震观测系统设计方法研究[J].中国矿业大学学报,2007,36(1):132~136
    [108]李万万.基于波动方程正演的地震观测系统设计[J].石油地球物理勘探,2008,43(2):134~141
    [109]彭玉华.小波变换与工程应用[M].北京:科学出版社,2000
    [110]付燕.基于小波变换的地震信号分时分频相关去噪[J].煤田地质与勘探, 2002,30(6):52~54
    [111]夏洪瑞等,小波变换及其在去噪中的应用[J].石油地球物理勘探. 1994,29(3):274~285
    [112]夏洪瑞等,地震资料处理中相干干扰消除方法分析[J].石油物探.2003,42(4):526~528
    [113]夏洪瑞,郭庭超,周开明等.均值加权消除相干干扰[J].石油物探,2000,39(2):77~82
    [114]夏洪瑞,唐勇.径向道技术在消除相干噪声中的应用[J].勘探地球物理进展, 2007,30(6):449~454
    [115]余波,黄中玉,谈大龙等.径向道滤波法去线性干扰[J].石油物探.2005,44(2):109~112
    [116] Henley D. The radial trace transform: An effective domain for coherent noise attenuation and wavefield separation[J] . Expanded Abstract s of 69th Annual International SEG Meeting ,1999 ,1 204~1207
    [117]Henley D C. Effective noise attenuation and deconvolution in the radial trace domain [J] . Expanded Abstracts of 74th Annual International SEG Meeting ,2004,1969~1972
    [118]何文能等,金属矿地震勘探方法技术试验总结报告(内部),江西省地质矿产局,1994
    [119]徐明才,柴铭涛,荣立新等.拜仁达坝多金属矿区的地震方法试验研究[J].物探与化探.2007,31(3):221~225
    [120]徐明才,柴铭涛,荣立新等.厚覆盖区金属矿地震方法技术研究[J].物探化探计算技术. 2007,29(6):492~496
    [121] Ari Tryggvason. 2008. 3-D geologic modeling in the Skelleftea ore district based on reflection seismic data. Report for SGU project, 23 pp.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700