用户名: 密码: 验证码:
无机强酸引发室温聚合制备毛细管电色谱整体柱的方法和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整体柱作为一种新型色谱分离介质,具有比表面积大、通透性好,传质阻力低和柱效高等特点。目前,整体柱的合成主要是通过各种单体和交联剂的热引发聚合或光和γ-射线引发聚合等。热引发需要加热,不能应用于热敏感的反应体系。光引发需要在透光的石英毛细管中进行,而辐射引发需要更苛刻的条件。此外,这些方法的聚合反应所用的催化剂或引发剂常常毒性较大,难以去除。因此,有必要开发其它的整体柱合成方法来弥补这些不足。本论文旨在克服传统的整体柱合成方法对外界光、热或者辐照等条件的依赖性,提供一种室温下无机强酸引发聚合构建整体柱的方法,并将此方法推广用于不同功能整体柱的合成。主要研究内容和创新点如下:
     (1)基于室温下无机强酸引发甲基丙烯酸酯的聚合反应,发展了一种简单、快速、室温下合成毛细管整体柱的新方法。该方法能够克服现有整体柱合成方法对热、光照、辐射或有毒催化剂的依赖性,整体柱合成可以在室温下快速完成。所用引发剂无机强酸便宜、易得,并且聚合反应对无机强酸的用量、种类以及反应的时间没有苛刻的要求。用该方法合成的整体柱可用于邻、间、对硝基苯酚异构体的分离、非甾类抗生素和胺类化合物的快速分离。对电渗流标记物硫脲的柱效高达230000理论塔板数每米。该方法合成的整体柱具有较好的重现性,与传统的热和紫外光引发聚合的整体柱的重现性相当。
     (2)在加热的条件下,氧化石墨烯的分散性大大降低。而利用无机强酸引发的室温合成整体柱的方法,氧化石墨烯就可以在预聚合混合物中均匀分散。据此,我们将氧化石墨烯均匀地掺杂在有机聚合物基质中,制备了新型的氧化石墨烯掺杂的电色谱整体柱,并用于毛细管电色谱分离。与未掺杂氧化石墨烯的整体柱相比,石墨烯的引入影响中性化合物的色谱行为,改善了分离。该工作探讨了氧化石墨烯作为分离介质的可行性,同时也进一步开发了无机强酸引发室温合成整体柱方法的新应用。
     (3)将无机强酸引发的室温合成整体柱的方法扩展到合成无机-有机杂化整体柱。无机强酸一方面可以催化硅氧烷单体的水解反应,另一方面可以引发烯基室温下的聚合反应。据此,我们利用无机强酸(盐酸)实现了含有烯基的硅氧烷单体(甲基丙烯酰氧丙基三甲氧基硅烷)的同步水解和烯基聚合反应,发展了一种制备无机-有机杂化整体柱的新方法。这种合成方法避免了常规有机聚合物整体柱合成时对毛细管内壁的烯基化处理,而且制备在室温下即可实现,极大地简化了操作。合成的整体柱具有连续、多孔的骨架结构,对一系列苯系物体现了良好的分离性能。
Monolithic materials with a porous "single particle" structure have been extensively evolved as separation media because of their large surface area, excellent permeability, fast mass transfer and enhanced efficiency. Compared with conventional packed columns, the monolithic capillary columns overcome the difficulties in the fabrication of retaining frits and the packing of small diameter particles into narrow-bore tubes, giving improved separation performance. Previous preparation of organic polymer-based monoliths usually requires additional conditions, such as elevated temperature, UV radiation,γ-irradiation, or even electro-beam irradiation. Furthermore, some polymerizations have to be performed with the use of catalyst that is toxic and difficult to remove. The purpose of this dissertation was to explore a novel methodology based on a room temperature strong inorganic acid initiated polymerization without the need for heating, UV-radiation, y-irradiation, or even electro-beam irradiation. New applications of the strategy to the preparation of different types of monolithic columns were also demonstrated. The main contents are summarized as follows:
     (1) Strong inorganic acid initiated polymerization was explored as a novel method for facile, room temperature, robust and rapid fabrication of monolith for capillary electrochromatography. Compared with conventional polymerizations, the present strong inorganic acid initiated polymerization avoided the involvement of heating, UV- andγ-irradiation, and strong inorganic acid was easier to be available than the initiator used in UV and thermally initiated polymerizations, offering the possibility for the facile fabrication of methacrylate-based monoliths at room temperature. It also had wide tolerance to the amount and variety of initiator, and reaction time. As separation media for capillary electrochromatography, the prepared monolithic columns not only provided good separation and reproducibility for neutral compounds with the number of theoretical plates even higher than 230000 plates m-1 for thiourea, but also were applicable for the separation of different types of analytes including nitrophenol isomers, non-steroidal anti-inflammatory drugs, and anilines. Column-to-column and batch-to-batch reproducibility for the prepared monoliths was acceptable and similar to the results obtained by thermal- and photo-initiation.
     (2) Graphene oxide sheets were first incorporated into an organic polymer monolith based on the room temperature strong inorganic acid initiated polymerization to form a novel monolithic stationary phase for capillary electrochromatography. Compared with the column without graphene oxide sheets, graphene oxide sheets incorporated polymer-based monolithic column where graphene oxide facilitated the separation of the selected neutral analytes, and led to different chromatographic retention. Furthermore, the proposed monolith also provided good reproducibility.
     (3) The room temperature polymerization protocol was explored for the inorganic monomer of y-methacryloxypropyltrimethoxysilane. A room temperature simultaneous hydrolysis and polymerization process was established as a novel method for the incorporation of y-methacryloxypropyltrimethoxysilane into the monolithic column for capillary electrochromatography. Hydrochloric acid was used to catalyst the hydrolysis reaction and to initiate the polymerization of the monomer. The proposed approach avoided the pretreatment of the capillary and the reaction was achieved at room temperature, providing great convenience for the operation. The prepared monolith exhibited distinct continuous porous structure and gave good performance for the separation of alkyl benzenes.
引文
[1]Pretorius, V.:Hopkins, B. J.; Schieke, J. D. Electro-osmosis:A new concept for high-speed liquid chromatography. J. Chromatogr:A 1974,99,23-30.
    [2]Deyl. Z.; Svec, F. (Eds). Capillary electrochromatography. Elsevier 2001.
    [3]邹汉法,刘震,叶明亮,张玉奎.毛细管电色谱及其应用.科学出版社 2001.
    [4]Svec. F.;Huber, C. G. Monolithic materials:Promises, challenges, achievements. Anal. Chem.2006,78.2100-2107.
    [5]Svec, F.; Kurganov, A. A. Less common applications of monoliths Ⅲ. Gas chromatography.J. Chromatogr.A 2008,1184,281-295.
    [6]Svec. F. Preparation and HPLC applications of rigid macroporous organic polymer monoliths. J. Sep. Sci.2004.27,747-766.
    [7]Svec. F. E.:Peters. C.; Sykora, D.;Frechet. J. M. J. Design of the monolithic polymers used in capillary electrochromatography columns. J. Chromatogr. A 2000,887,3-29.
    [8]Svec, F. Recent developments in the field of monolithic stationary phases for capillary electrochromatography. J. Sep. Sci.2005,28,729-745.
    [9]Svec, F.; Frechet, J. M. J. New designs of macroporous polymers and supports: From separation to biocatalysis. Science 1996,273,205-211.
    [10]Wu, R. A.; Hu, L. H.; Wang, F. J.; Ye, M. L.; Zou, H. F. Recent development of monolithic stationary phases with emphasis on microscale chromatographic separation. J. Chromatogr. A 2008,1184,369-392.
    [11]Svec, F. Less common applications of monoliths:Preconcentration and solid-phase extraction.J. Chromatogr. B 2006,841,52-64.
    [12]Svec, F. Less common applications of monoliths:I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports. Electrophoresis 2006,27,947-961.
    [13]吴仁安.毛细管电色谱整体柱的制备及应用研究.中国科学院大连化学物理研究所博士学位论文2002.
    [14]Colon, L. A.; Maloney, T. D.; Fermier, A. M. Packing columns for capillary electrochromatography.J. Chromatogr. A 2000,887,43-53.
    [15]Pesek, J. J.; Matyska, M. T. Open tubular capillary electrokinetic chromatography in etched fused-silica tubes.J. Chromatogr. A 2000,887,31-41.
    [16]Lammerhofer, M.; Sevec, F.; Frechet, J. M. J.; Lindner, W.; Capillary electrochromatography in anion-exchange and normal-phase mode using monolithic stationary phases. J. Chromatogr. A 2001,925,265-277.
    [17]Ericson, C.; Liao, J. L.; Nakazato, K.; Hjerten, S. Preparation of continuous beds for electrochromatography and reversed-phase liquid chromatography of low-molecular-mass compounds. J. Chromatogr. A 1997,767,33-41.
    [18]Xie, C.; Hu, J.; Xoap, H.; Su, X.; Dong, J.; Tian, R.; He, Z.; Zou, H. Preparation of monolithic silica column with strong cation-exchange stationary phase for capillary electrochromatography. J. Sep. Sci.2005,28.751-756.
    [19]Bedair, M; El Rassi, Z. Affinity chromatography with monolithic capillary columns I. Polymethacrylate monoliths with immobilized mannan for the separation of mannose-binding proteins by capillary electrochromatography and nano-scale liquid chromatography. J. Chromatogr. A 2004,1044,177-186.
    [20]Xie, S. F.; Svec, F.; Frechet, J. M. J. Rigid porous polyacrylamide-based monolithic columns containing butyl methacrylate as a separation medium for the rapid hydrophobic interaction chromatography of proteins. J. Chromatogr. A 1997, 775.65-72.
    [21]Cifuentes, A. Recent advances in the application of capillary electromigration methods for food analysis. Electrophoresis 2006,27,283-303.
    [22]Dabek-Zlotorzynska, E.; CeloRecent, V. Recent advances in capillary electrophoresis and capillary electrochromatography of pollutants. Electrophoresis 2006.27,304-322.
    [23]Gubitz, G.; Schmid, M. G. Chiral separation by capillary electromigration techniques. J. Chromatogr. A 2008,1204,140-156.
    [24]Miksik. I.; Sedlakova, P. Capillary electrochromatography of proteins and peptides. J. Sep. Sci.2007,30,1686-1703.
    [25]Hjerten, S.; Li, Y. M.; Liao, J. L.; Nakazato, K.; Mohammad, J.; Pettersson, G. Continuous beds:High-resolving, cost-effective chromatographic matrices. Nature 1992.356,810-811.
    [26]Baba, Y.;Tsuhako. M. Gel-filled capillaries for nucleic acid separations in capillary electrophoresis. Trends Anal. Chem.1992.11,280-287.
    [27]Svec, F.; Frechet. J. M. J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal. Chem.1992.64. 820-822.
    [28]Peters. E. C.; Svec. F.;Frechet. J. M. J. Rigid macroporous polymer monoliths. Adv. Mater.1999,11,1169-1181.
    [29]Buchmeiser. M. R. Polymeric monolithic materials:Syntheses, properties, functionalization and applications. Polymer 2007,48.2187-2198.
    [30]Hilder. E. F.:Svec, F.;Frechet. J. M. J. Polymeric monolithic stationary phases for capillary electrochromatography. Electrophoresis 2002.23,3934-3953.
    [31]平贵臣.毛细管电色谱聚合物整体柱的制备及应用基础研究.中国科学院大连化学物理研究所博士学位论文 2003.
    [32]吕海霞.新型有机聚合物毛细管电色谱整体柱的制备及应用研究.福州大学博士学位论文 2006.
    [33]Fujimoto, C. Charged polyacrylamide gels for capillary electrochromatographic separations of uncharged, low molecular weight compounds. Anal. Chem.1995, 67,2050-2053.
    [34]Fujimoto, C.; Fujise, Y.; Mastsuzawa, E. Fritless packed columns for capillary electrochromatography:Separation of uncharged compounds on hydrophobic hydrogels. Anal. Chem.1996,68,2753-2757.
    [35]Liao, J. L.; Chen, N.; Ericson, C.; Hjerten, S. Preparation of continuous beds derivatized with one-step alkyl and sulfonate groups for capillary electrochromatography. Anal. Chem.1996,68,3468-3472.
    [36]Peters, E. C.; Petro. M.; Svec, F.; Frechet, J. M. J. Molded rigid polymer monoliths as separation media for capillary electrochromatography. Anal. Chem. 1997,69,3646-3649.
    [37]Peters, E. C.; Petro, M.; Svec, F.; Frechet, J. M. J. Molded rigid polymer monoliths as separation media for capillary electrochromatography.1. Fine control of porous properties and surface chemistry. Anal. Chem.1998.70, 2288-2295.
    [38]Peters, E. C.; Petro, M.; Svec, F.; Frechet, J. M. J. Molded rigid polymer monoliths as separation media for capillary electrochromatography.2. Effect of chromatographic conditions on the separation. Anal. Chem.1998,70,2296-2302.
    [39]Svec, F.; Frechet, J. M. J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal. Chem.1992.64, 820-822.
    [40]Viklund, C.; Ponten, E.; Glad, B.; Irgum, K.; Horstedt, P.; Svec, F. "Molded" macroporous poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate) materials with fine controlled porous properties:Preparation of monoliths using photoinitiated polymerization. Chem. Mater.1997.9,463-471.
    [41]Safrany, A.; Beiler, B.; Laszlo, K.; Svec, F. Control of pore formation in macroporous polymers synthesized by single-step y-radiation-initiated polymerization and cross-linking. Polymer 2005,46,2862-2871.
    [42]Bandari, R.; Knolle, W.; Prager-Duschke, A.; Glasel, H. J.; Buchmeiser, M. R. Monolithic media prepared via electron beam curing for proteins separation and flow-through catalysis. Macromol. Chem. Phys.2007,208,1428-1436.
    [43]Cant6-Mirapeix, A.; Herrero-Martinez, J. M.; Benavente, D.; Mongay-Fernandez, C.; Simo-Alfonso. E. F. Peroxodisulfate as a chemical initiator for methacrylate-ester monolithic columns for capillary electrochromatography. Electrophoresis 2008,29.910-918.
    [44]潘祖仁.高分子化学(第四版).化学工业出版社 2007.
    [45]Peters, E. C.; Svec, F.; Frechet, J. M. J. Control of porous properties and surface chemistry in "molded" porous polymer monoliths prepared by polymerization in the presence of TEMPO. Macromolecules 1999,32,6377-6379.
    [46]Kanamori, K.; Nakanishi, K.; Hanada, T. Rigid macroporous poly(divinylbenzene) monoliths with a well-defined bicontinuous morphology prepared by living radical polymerization. Adv. Mater.2006,18,2407-2411.
    [47]Buchmeiser, M. R.; Atzl. N.; Bonn, G. K. Ring-opening-metathesis polymerization for the preparation of carboxylic-acid-functionalized, high-capacity polymers for use in separation techniques. J. Am. Chem. Soc.1997. 119.9166-9174.
    [48]Sinner, F. M.; Buchmeiser, M. R. Ring-opening metathesis polymerization: Access to a new class of functionalized, monolithic stationary phases for liquid chromatography. Angew. Chem. Int. Ed.2000.39,1433-1436.
    [49]Mayr. B.; Holzl, G.; Eder, K.; Buchmeiser, M. R.; Huber, C. G. Hydrophobic. pellicular. monolithic capillary columns based on cross-linked polynorbornene for biopolymer separations. Anal. Chem.2002,74,6080-6087.
    [50]Buchmeiser, M. R. Stationary phases for chromatography prepared by ring opening metathesis polymerization. J. Sep. Sci.2008,31,1907-1922.
    [51]Kanamori. K.;Hasegawa, J.; Nakanishi, K.;Hanada, T. Facile synthesis of macroporous cross-linked methacrylate gels by atom transfer radical polymerization. Macromolecules 2008,41,7186-7193.
    [52]Tsujioka, N.; Hira, N.; Aoki, S.; Tanaka, N.; Hosoya, K. A new preparation method for well-controlled 3D skeletal epoxy resin-based polymer monoliths. Macromolecules 2005,38,9901-9903.
    [53]Hosoya, K.; Hira, N.; Yamamoto, K.; Nishimura, M.; Tanaka, N. High-performance polymer-based monolithic capillary column. Anal. Chem.2006, 78,5729-5735.
    [54]叶芳贵.新型硅胶基质毛细管整体柱的制备及其电色谱研究.福州大学博士学位论文 2006.
    [55]Minakuchi, H.; Nakanishi, K.; Soga, N.; Ishizuka, N.; Tanaka, N. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal. Chem.1996,68,3498-3501.
    [56]Ishizuka. N.; Minakuchi, H.; Nakanishi, K.; Naohiro Soga, N.; Hosoya. K.; Tanaka, N. Chromatographic properties of miniaturized silica rod columns. J. High Resolut. Chromatogr.1998,21,477-479.
    [57]Tanaka, N.; Nogayam, H.; Kobayashi, H.; Ikgami, T.; Hosoya, K.; Monolithic silica columns for HPLC, micro-HPLC, and CEC. J. High Resolut. Chromatogr. 2000,23.111-116.
    [58]Ishizuka, N.; Minakuchi. H.; Nakanishi, K.; Soga, N.; Nagayama, H.; Hosoya, K.; Tanaka. N. Performance of a monolithic silica column in a capillary under pressure-driven and electrodriven conditions. Anal. Chem.2000,72,1275-1280.
    [59]Motokawa, M.; Kobayashi, H.; Ishizuka, N.:Minakuchi, H.; Nakanishi, K.; Jinnai, H.; Hosoya. T.; Ikegami, T.; Tanaka, N. Monolithic silica columns with various skeleton sizes and through-pore sizes for capillary liquid chromatography. J. Chromatogr. A 2002,961,53-63.
    [60]Yan, L. J.; Zhang. Q. H.; Zhang, J.; Zhang. L. Y.; Li, T.; Feng, Y. Q.; Zhang, L. H.; Zhang, W. B.; Zhang. Y. K. Hybrid organic-inorganic monolithic stationary phase for acidic compounds separation by capillary electrochromatography.J. Chromatogr. A 2004,1046,255-261.
    [61]Chen. Z. L.; Hobo, T. Chemically L-phenylalaninamide-modified monolithic silica column prepared by a sol-gel process for enantioseparation of dansyl amino acids by ligang excahange capillary electrochromatography. Anal. Chem.2001, 73,3348-3357.
    [62]Kato. M.; Matsumoto. N.; Sakai-kato, K.; Toyo'oka, T. A protein-encapsulation technique by the sol-gel method for the preparation of monolithic columns for capillary electrochromatography. Anal. Chem.2002,74,1915-1921.
    [63]Klodzinska, E.; Moravcova, D.; Jandera, P.; Buszewski, B. Monolithic continuous beds as a new generation of stationary phase for chromatographic and electro-driven separations. J. Chromatogr. A 2006,1109,51-59.
    [64]Dulay, M. T.; Quirino. J. P.:Bennett, B. D.; Kato, M.; Zare, R. N. Photopolymerized sol-gel monoliths for capillary electrochromatography. Anal. Chem.2001,73.3921-3926.
    [65]Kato, M.; Sakai-Kato, K.; Toyo'oka. T.; Dulay, M. T.; Quirino, J. P.; Bennett, B. D.; Zare, R. N. Effect of preparatory conditions on the performance of photopolymerized sol-gel monoliths for capillary electrochromatography. J. Chromatogr. A 2002.961,45-51.
    [66]Wang, H. F.; Zhu, Y. Z.; Yan, X. P.; Gao, R. Y.;Zheng, J. Y. A room temperature ionic liquid mediated non-hydrolytic sol-gel methodology to prepare molecularly imprinted silica-based hybrid monoliths for chiral separation. Adv. Mater.2006, 18,3266-3270.
    [67]Wang. H. F.;Zhu. Y. Z.; Lin, J. P.; Yan, X. P. Fabrication of molecularly imprinted hybrid monoliths via a room temperature ionic liquid mediated non-hydrolytic sol-gel route for chiral separation of zolmitriptan by capillary electrochromatography. Electrophoresis 2008,29,952-959.
    [68]Wu. M. H.; Wu. R. A.; Wang. F. J.;Ren. L. B.; Dong. J.; Liu. Z.;Zou. H. F. "One-pot" process for fabrication of organic-silica hybrid monolithic capillary columns using organic monomer and alkoxysilane. Anal. Chem.2009.81. 3529-3536.
    [69]Dulay. M. T.;Kulkarni. R. P.; Zare. R. N. Preparation and characterization of monolithic porous capillary columns loaded with chromatographic particles. Anal. Chem.1998,70,5103-5107.
    [70]Asiaie, R.; Huang, X.; Farnan, D.; Horvath, C. Stintered octadecylsilica as monolithic column packing in capillary electrochromatography. J. Chromatogr:A 1998,806,251-263.
    [71]Chirica, G. S.; Remcho, V.T. Silicate entrapped columns-new columns designed for capillary electrochromatography. Electrophoresis 1999,20,50-56.
    [72]Tang, Q.; Xin, B.; Lee, M.L. Monolithic columns containing sol-gel bonded octadecylsilica for capillary electrochromatography. J. Chromatogr. A 1999,837, 35-50.
    [73]Wistuba, D.; Schurig. V. Enantiomer separation by capillary electrochromatography on a cyclodextrin-modified monolith. Electrophoresis 2000,21,3152-3159.
    [74]Gatschelhofer, C.; Schmid b, M. G.; Schreiner, K.; Pieber, T. R.; Sinner, F. M.; Gubitz, G. Enantioseparation of glycyl-dipeptides by CEC using particle-loaded monoliths prepared by ring-opening metathesis polymerization (ROMP).J. Biochem. Biophys. Methods 2006,69,67-77.
    [75]Xie, R. X.; Oleschuk, R. Photoinduced polymerization for entrapping of octadecylsilane microsphere columns for capillary electrochromatography. Anal. Chem.2007,79,1529-1535.
    [76]Hill, J. W.; Petrucci, R. H. General Chemistry (3rd edition). Prentice Hall, 2002.
    [77]Andrews, R.; Jacques, D.;Qian, D. L. Multiwall carbon nanotubes:Synthesis and application. Acc. Chem. Res.2002,35,1008-1017.
    [78]Trojanowicz, M. Analytical applications of carbon nanotubes:A review. Trends Anal. Chem.2006,25,480-489.
    [79]Kartsova, L. A.; Makarov, A. A. Properties of carbon materials and their use in chromatography. Russ. J. Appl. Chem. (Translation of Zhurnal Prikladnoi Khimii) 2002,75,1725-1731.
    [80]Li, Q.; Yuan, D. Evaluation of multi-walled carbon nanotubes as gas chromatographic column packing.J. Chromatogr. A 2003,1003,203-209.
    [81]Incorporation of single-wall carbon nanotubes into an organic polymer monolithic stationary phase for μ-HPLC and capillary electrochromatography. Anal. Chem.2005,77,1398-1406.
    [82]Xiong, X.; Ouyang, J.; Baeyens, W. R. G.; Delanghe, J. R.; Shen, X. M.; Yang, Y. P. Enhanced separation of purine and pyrimidine bases using carboxylic multiwalled carbon nanotubes as additive in capillary zone electrophoresis. Electrophoresis 2006,27,3243-3253.
    [83]Huang, Y. J.; Wang, G. R.; Huang, K. P.; Hsieh, Y. F.; Liu, C. Y. Functionalized carbon nanotubes as the pseudostationary phase for capillary EKC separation of non-steroidal anti-inflammatory drugs. Electrophoresis 2009,30,3964-3970.
    [84]Novoselov. K. S.; Geim, A. K.; Morozov, S. V.;Jiang. D.; Zhang, Y.; Dubonos, S. V.;Grigorieva. I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004,306,666-669.
    [85]Geim, A. K. Graphene:status and prospects. Science 2009.324,1530-1534.
    [86]Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed.2009,48, 7752-7777.
    [87]黄毅,陈永胜.石墨烯的功能化及其相关应用.中国科学B辑:化学2009,39,887-896.
    [88]Shan, C. S. Yang, H. F.; Song, J. F.; Han, D. X. Ivaska. A.;Niu, L. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem.2009.81,2378-2382.
    [89]Dreyer. D. R.:Park, S.;Bielawski C. W.; Ruoff. R. S. The chemistry of graphene oxide. Chem. Soc. Rev.2010.39,228-240.
    [90]Mkhoyan, K. A.;Contryman, A. W.;Silcox. J.; Stewart. D. A.;Eda, G.; Mattevi. C.;Miller, S.;Chhowalla. M. Atomic and electronic structure of graphene-oxide. Nano Lett.2009.9,1058-1063.
    [91]Paredes. J. I.; Villar-Rodil, S.:Martinez-Alonso, A.;Tascon, J. M. D. Graphene oxide dispersions in organic solvents. Langmuir 2008.24,10560-10564.
    [92]Zhou, M.; Zhai. Y.M.;Dong, S. J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem.2009,81, 5603-5613.
    [93]Lu, C. H.;Yang, H. H.;Zhu, C. L.;Chen. X.;Chen, G. N. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed.2009,48,4785-4787.
    [94]Wang. L.; Lee. K.; Sun, Y. Y.; Lucking. M.; Chen. Z.; Zhao. J. J.;Zhang, S.B. Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 2009.3, 2995-3000.
    [1]Pretorius, V.; Hopkins, B. J.; Schieke, J. D. Electro-osmosis:A new concept for high-speed liquid chromatography. J. Chromatogr. A 1974,99,23-30.
    [2]Jiskra, J.; Claessens, H. A.; Cramers, C. A. Stationary and mobile phases in capillary electrochromatography. J. Sep. Sci.2003,26,1305-1330.
    [3]Eeltink, S.; Rozing, G. P.; Kok, W. T. Recent applications in capillary electrochromatography. Electrophoresis 2003,24,3935-3961.
    [4]Colon, L. A.; Maloney, T. D.; Fermier, A. M. Packing columns for capillary electrochromatography. J. Chromatogr. A 2000,887,43-53.
    [5]Pesek, J. J.; Matyska, M. T. Open tubular capillary electrokinetic chromatography in etched fused-silica tubes. J. Chromatogr. A 2000,887,31-41.
    [6]Wu, R. A.; Hu, L. H.; Wang, F. J.; Ye, M. L; Zou, H. F. Recent development of monolithic stationary phases with emphasis on microscale chromatographic separation. J. Chromatogr. A 2008,1184,369-392.
    [7]Svec, F. Recent developments in the field of monolithic stationary phases for capillary electrochromatography.J.Sep. Sci. 2005,28,729-745.
    [8]Hjerten. S.:Li, Y. M.; Liao, J. L.; Nakazato, K.; Mohammad, J.; Pettersson, G. Continuous beds:high-resolving, cost-effective chromatographic matrices. Nature 1992,356,810-811.
    [9]Baba, Y.; Tsuhako, M. Gel-filled capillaries for nucleic acid separations in capillary electrophoresis. Trends Anal. Chem.1992,11,280-287.
    [10]Svec, F.; Frechet, J. M. J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal. Chem.1992,64, 820-822.
    [11]Fujimoto, C. Charged polyacrylamide gels for capillary electrochromatographic separations of uncharged, low molecular weight compounds. Anal. Chem.1995, 67,2050-2053.
    [12]Peters, E. C.; Petro, M.; Svec, F.; Frechet, J. M. J. Molded rigid polymer monoliths as separation media for capillary electrochromatography. Anal. Chem. 1997,69,3646-3649.
    [13]Fields, S. M. Silica xerogel as a continuous column support for high-performance liquid chromatography. Anal. Chem.1996,68,2709-2712.
    [14]Minakuchi, H.; Nakanishi, K.; Soga, N.; Ishizuka, N.; Tanaka, N. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal. Chem.1996,68,3498-3501.
    [15]Svec, F.; Huber, C. G. Monolithic materials:Promises, challenges, achievements. Anal. Chem.2006,78,2100-2107.
    [16]Miller, S. Separations in a monolith. Anal. Chem.2004,76,99 A-101 A.
    [17]Guiochon, G. Monolithic columns in high-performance liquid chromatography. J. Chromatogr. A 2007,1168,101-168.
    [18]Allen, D.; El Rassi, Z. Recent applications in capillary electrochromatography. Electrophoresis 2003,24,3962-3976.
    [19]Svec, F.; Frechet. J. M. J. New designs of macroporous polymers and supports: From separation to biocatalysis. Science 1996,273,205-211.
    [20]Peters, E. C.; Svec, F.; Frechet, J. M. J. Rigid macroporous polymer monoliths. Adv. Mater.1999.11,1169-1181.
    [21]Svec, F.; Peters, E. C.; Sykora, D.; Frechet, J. M. J. Design of the monolithic polymers used in capillary electrochromatography columns. J. Chromatogr. A 2000,887,3-29.
    [22]Hilder, E. F.; Svec, F.; Frechet, J. M. J. Development and application of polymeric monolithic stationary phases for capillary electrochromatography. J. Chromatogr. A 2004,1044,3-22.
    [23]Buchmeiser, M. R. Polymeric monolithic materials:Syntheses, properties, functionalization and applications. Polymer 2007,48,2187-2198.
    [24]Hilder, E. F.; Svec, F.; Frechet, J.M. J. Polymeric monolithic stationary phases for capillary Electrochromatography. Electrophoresis 2002,23,3934-3953.
    [25]Svec. F., Frechet, J. M. J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal. Chem.1992,64, 820-822.
    [26]Viklund, C.; Ponten, E.; Glad, B.; Irgum, K.; Horstedt, P.; Svec, F."Molded" macroporous poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate) materials with fine controlled porous properties:Preparation of monoliths using photoinitiated polymerization. Chem. Mater.1997,9,463-471.
    [27]Safrany. A.; Beiler. B.; Laszlo. K.; Svec. F. Control of pore formation in macroporous polymers synthesized by single-step γ-radiation-initiated polymerization and cross-linking. Polymer 2005,46,2862-2871.
    [28]Bandari, R.;Knolle. W.; Prager-Duschke. A.; Glasel, H. J.;Buchmeiser, M. R. Monolithic media prepared via electron beam curing for proteins separation and flow-through catalysis. Macromol. Chem. Phys.2007.208,1428-1436.
    [29]Canto-Mirapeix. A.;Herrero-Martinez, J. M.;Benavente. D.;Mongay-Fernandez. C.; Simo-Alfonso, E. F. Peroxodisulfate as a chemical initiator for methacrylate-ester monolithic columns for capillary electrochromatography. Electrophoresis 2008,29,910-918.
    [30]Peters, E. C.; Svec, F.; Frechet, J. M. J. Control of porous properties and surface chemistry in "molded" porous polymer monoliths prepared by polymerization in the presence of TEMPO. Macromolecules 1999,32,6377-6379.
    [31]Kanamori, K.; Nakanishi, K.; Hanada, T. Rigid macroporous poly(divinylbenzene) monoliths with a well-defined bicontinuous morphology prepared by living radical polymerization. Adv. Mater.2006,18,2407-2411.
    [32]Buchmeiser, M. R.; Atzl, N.; Bonn, G. K. Ring-opening-metathesis polymerization for the preparation of carboxylic-acid-functionalized. high-capacity polymers for use in separation techniques. J. Am. Chem. Soc.1997. 119,9166-9174.
    [33]Sinner, F. M.; Buchmeiser, M. R. Ring-opening metathesis polymerization: Access to a new class of functionalized, monolithic stationary phases for liquid chromatography. Angew. Chem. Int. Ed.2000,39,1433-1436.
    [34]Mayr. B.; Holzl. G.; Eder, K.; Buchmeiser, M. R.; Huber, C. G. Hydrophobic, pellicular, monolithic capillary columns based on cross-linked polynorbornene for biopolymer separations. Anal. Chem.2002,74,6080-6087.
    [35]Buchmeiser, M. R. Stationary phases for chromatography prepared by ring opening metathesis polymerization. J. Sep. Sci.2008,31,1907-1922.
    [36]Kanamori, K.; Hasegawa, J.; Nakanishi, K.; Hanada, T. Facile synthesis of macroporous cross-linked methacrylate gels by atom transfer radical polymerization. Macromolecules 2008,41,7186-7193.
    [37]Tsujioka, N.; Hira, N.; Aoki, S.; Tanaka, N.; Hosoya, K. A new preparation method for well-controlled 3D skeletal epoxy resin-based polymer monoliths. Macromolecules 2005.38,9901-9903.
    [38]Hosoya, K.; Hira, N.; Yamamoto, K.; Nishimura, M.; Tanaka, N. High-performance polymer-based monolithic capillary column. Anal. Chem.2006. 78,5729-5735.
    [39]Bugni, E. A.; Lachtermacher, M. G.; Monteiro, E. E. C.; Mano, E. B.; Overberger, C.G. An unusual reaction polymerization in nitric acid medium. J. Polym. Sci., Part A:Polym. Chem.1986,24,1463-1486.
    [40]Mano, E. B.; Monteiro, E. E. C.; Mendes, L. C. Preparation of alkyl acrylate-acrylic acid copolymers by simultaneous hydrolysis and polymerization. Polym. Bull. 1990,23,497-504.
    [41]Vlakh. E. G.; Tennikova, T. B. Preparation of methacrylate monoliths. J. Sep. Sci. 2007,30,2801-2813.
    [42]Bernabe-Zafon, V.; Canto-Mirapeix, A.; Simo-Alfonso, E. F.; Ramis-Ramos, G.; Manuel Herrero-Martinez, J. Comparison of thermal-and photopolymerization of lauryl methacrylate monolithic columns for CEC. Electrophoresis 2009,30, 1929-1936.
    [43]Xu, Y. L.;Liu, Z. S.; Wang. H. F.; Yan, C.; Gao. R. Y. Chiral recognition ability of an (S)-naproxen imprinted monolith by capillary electrochromatography. Electrophoresis 2005,26,804-811.
    [1]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004,306,666-669.
    [2]Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater.2007,6, 183-191.
    [3]Geim, A. K. Graphene:Status and prospects. Science 2009,324,1530-1534.
    [4]Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene:The new two-dimensional nanomaterial. Angew. Chem. Int. Ed.2009,48,7752-7777.
    [5]Li, D.; Kaner, R. B. Graphene-based materials. Science 2008,320,1170-1171.
    [6]Rao, C. N. R.; Biswas, K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene, the new nanocarbon. J. Mater. Chem.2009,19,2457-2469.
    [7]Wu, J.; Pisula, W.; Mullen, K. Graphenes as potential material for electronics. Chem. Rev.2007,107,718-747.
    [8]Ang, P. K.; Chen, W; Wee, A. T. S.; Loh, K. P. Solution-gated epitaxial graphene as pH sensor.J.Am. Chem. Soc.2008,130,14392-14393.
    [9]Sakhaee-Pour, A.; Ahmadian, M. T.; Vafai, A. Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors. Solid State Commun. 2008,145,168-172.
    [10]Sakhaee-Pour, A.; Ahmadian, M. T.; Vafai, A. Potential application of single-layered graphene sheet as strain sensor. Solid State Commun.2008,147, 336-340.
    [11]Shan, C. S.; Yang, H. F.; Song, J. F.; Han, D. X.; Ivaska, A.; Niu, L. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem.2009,81,2378-2382.
    [12]Lu, C. H.; Yang, H. H.; Zhu, C. L.; Chen, X.; Chen, G. N. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed.2009,48,4785-4787.
    [13]黄毅,陈永胜.石墨烯的功能化及其相关应用.中国科学B辑:化学2009,39,887-896.
    [14]Wang, Y.; Li, Y. M.; Tang, L. H.; Lu, J.; Li, J. H. Application of graphene-modified electrode for the selective detection of dopamine. Electrochem. Commun.2009,11,889-892.
    [15]Wu, J. F.; Xu, M. Q.; Zhao, G. C. Graphene-based modified electrode for the direct transfer of Cytochrome c and biosensing. Electrochem. Commun.2010,12, 175-177.
    [16]Liu, H.; Gao, J.; Xue, M. Q.; Zhu, N.; Zhang, M. N.; Cao, T. B. Processing of graphene for electrochemical application:Noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir 2009,25, 12006-12010.
    [17]Liang, M. H.; Luo, B.; Zhi, L. J. Application of graphene and graphene-based mateials in clesn energy-related devices. Int. J. Energy Res.2009,33,1161-1170.
    [18]Valentini, L.; Cardinali, M.; Bon, S. B.; Bagnis, D.; Verdejo, R.; Lopez-Manchado, M. A.; Kenny, J. M. Use of butylamine modified graphene sheets in polymer solar cells.J. Mater. Chem.2010,20,995-1000.
    [19]Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y. Li, J. H. P25-Graphene composite as a high performance photocatalyst. ACS Nano 2010,4,380-386.
    [20]Ling, X.; Xie L. M.; Fang, Y.; Xu, H.; Zhang, H. L.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. F. Can graphene be used as a substrate for Raman enhancement? Nano Lett.2010,2,553-561.
    [21]Dreyer, D. R.; Park, S.; Bielawski C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev.2010,39,228-240.
    [22]Mkhoyan, K. A.; Contryman, A. W.; Silcox, J.; Stewart, D. A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Atomic and electronic structure of graphene-oxide. Nano Lett.2009,9,1058-1063.
    [23]Paredes, J. I.; Villar-Rodil, S.; Martinez-Alonso, A.; Tascon, J. M. D. Graphene oxide dispersions in organic solvents. Langmuir 2008,24,10560-10564.
    [24]Zhou, M.; Zhai, Y. M.; Dong, S. J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem.2009,81, 5603-5613.
    [25]Wang, L.; Lee, K.; Sun, Y. Y.; Lucking, M.; Chen, Z.; Zhao, J. J.; Zhang, S. B. Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 2009,3, 2995-3000.
    [26]Zhang, L. M.; Xia, J. G.; Zhao, Q. H.; Liu, L. W.; Zhang, Z. J. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 2009,6,537-544.
    [27]Yang, S. L.; Xu, B. F.; Zhang, J. Q.; Huang, X. D.; Ye, J. S.;Yu, C. Z. Controllable adsorption of reduced graphene oxide onto self-assembled alkanethiol monolayers on gold electrodes:Tunable electrode dimension and potential electrochemical applications. J. Phys. Chem. C 2010,114,4389-4393.
    [28]Cong, H. P.; He, J. J.; Lu, Y.; Yu, S. H. Water-soluble magnetic-functionalized reduced graphene oxide sheets:In situ synthesis and magnetic resonance imaging applications. Small 2009,6,169-173.
    [29]Yin, Z. Y.; Wu, S. X.; Zhou, X. Z.; Huang, X. Zhang, Q. H.; Boey, F.; Zhang, H. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 2009,6,307-312.
    [30]Eda, G.; Lin, Y. Y.; Mattevi, C.; Yamaguchi, H.; Chen, H. A.; Chen, I. S.; Chen, C. W.; Chhowalla, M. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater.2010,22,505-509.
    [31]Zuo, X. L.; He, S. J.; Li, D.; Peng, C.; Huang, Q.; Song, S. P.; Fan, C. H. Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces. Langmuir 2010,29,1936-1939.
    [32]Shao, Y. Y.; Wang, J.; Engelhard, M.; Wang, C. M.; Lin, Y. H. Facile and controllable electrochemical reduction of graphene oxide and its applications.J. Mater. Chem.2010,20,743-748.
    [33]Wang, Y.; Lu, J.; Tang, L. H.; Chang, H. X.; Li, J. H. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Anal. Chem.2009,81,9710-9715.
    [34]Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res.2008,1, 203-212.
    [35]Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z. Q.; Sheehan, P. E. Reduced graphene oxide molecular sensors. Nano Lett.2008,8,3137-3140.
    [36]Robinson, J. T.; Zalalutdinov, M.; Baldwin, J. W.; Snow, E. S.; Wei, Z. Q.; Sheehan, P.; Houston, B. H. Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Lett.2008,8,3441-3445.
    [37]Eda, G.; Fanchini, G.; Chho walla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008,3,270-274.
    [38]Ajayan, P. M. Nanotubes from carbon. Chem. Rev.1999,99,1787-1800.
    [39]Tenne, R. Inorganic nanotubesandfullerene-like nanoparticles. Nat. Nanotechnol. 2006,1,103-111.
    [40]Yang, K.; Zhu, L. Z.; Xing, B. S. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ. Sci. Technol:2006,40, 1855-1861.
    [41]Mauter, M. S.; Elimelech, M. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol.2008,42,5843-5859.
    [42]Andrews, R.; Jacques, D.; Qian, D. L. Multiwall carbon nanotubes:Synthesis and application. Acc. Chem. Res.2002,35,1008-1017.
    [43]Trojanowicz, M. Analytical applications of carbon nanotubes:A review. Trends Anal. Chem.2006,25,480-489.
    [44]Long, R. Q.; Yang, R. T. Carbon nanotubes as superior sorbent for dioxin removal. J. Am. Chem. Soc.2001,123,2058-2059.
    [45]Cai, Y. Q.; Jiang, G. B.; Liu, J. F.; Zhou, Q. X. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol a, 4-n-nonylphenol, and 4-tertoctylphenol. Anal. Chem.2003,75,2517-2521.
    [46]Kartsova, L. A.; Makarov, A. A. Properties of carbon materials and their use in chromatography. Russ. J. Appl. Chem. (Translation of Zhurnal Prikladnoi Khimii) 2002,75,1725-1731.
    [47]Li, Q.; Yuan, D. Evaluation of multi-walled carbon nanotubes as gas chromatographic column packing. J. Chromatogr. A 2003,1003,203-209.
    [48]Incorporation of single-wall carbon nanotubes into an organic polymer monolithic stationary phase for μ-HPLC and capillary electrochromatography. Anal. Chem.2005,77,1398-1406.
    [49]Xiong, X.; Ouyang, J.; Baeyens, W. R. G.; Delanghe, J. R.; Shen, X. M.; Yang, Y. P. Enhanced separation of purine and pyrimidine bases using carboxylic multiwalled carbon nanotubes as additive in capillary zone electrophoresis. Electrophoresis 2006,27,3243-3253.
    [50]Huang, Y. J.; Wang, G. R.; Huang, K. P.; Hsieh, Y. F.; Liu, C. Y. Functionalized carbon nanotubes as the pseudostationary phase for capillary EKC separation of non-steroidal anti-inflammatory drugs. Electrophoresis 2009,30,3964-3970.
    [51]Hjerten, S.; Li, Y. M.; Liao, J. L.; Nakazato, K.; Mohammad, J.; Pettersson, G. Continuous beds:High-resolving, cost-effective chromatographic matrices. Nature 1992,356,810-811.
    [52]Svec, F.; Huber, C. G. Monolithic materials:promises, challenges, achievements. Anal. Chem.2006,78,2100-2107.
    [53]Miller, S. Separations in a monolith. Anal. Chem.2004,76,99 A-101 A.
    [54]Svec, F.; Frechet, J. M. J. New designs of macroporous polymers and supports: From separation to biocatalysis. Science 1996,273,205-211.
    [55]Wu, R. A.; Hu, L. H.; Wang, F. J.; Ye, M. L.; Zou, H. F. Recent development of monolithic stationary phases with emphasis on microscale chromatographic separation. J. Chromatogr. A 2008,1184,369-392.
    [56]Svec, F. Less common applications of monoliths:Preconcentration and solid-phase extraction. J. Chromatogr. B 2006,841,52-64.
    [57]Svec, F. Less common applications of monoliths:I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports. Electrophoresis 2006,27,947-961.
    [58]吴仁安.毛细管电色谱整体柱的制备及应用研究.中国科学院大连化学物理研究所博士学位论文 2002.
    [59]Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc.1958,80,1339-1339.
    [60]Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol.2008, 3,101-105.
    [61]麻琪.氧化石墨烯纳米复合膜研究.天津大学硕士学位论文 2008.
    [1]Hjerten, S.; Li, Y. M.; Liao, J. L.; Nakazato, K.; Mohammad, J.; Pettersson, G. Continuous beds:High-resolving, cost-effective chromatographic matrices. Nature 1992,356,810-811.
    [2]Svec,F.; Huber, C. G. Monolithic materials:Promises, challenges, achievements. Anal. Chem.2006,78,2100-2107.
    [3]Miller, S. Separations in a monolith. Anal. Chem.2004,76,99 A-101 A.
    [4]Pretorius, V.; Hopkins, B. J.; Schieke, J. D. Electro-osmosis:A new concept for high-speed liquid chromatography. J. Chromatogr. A 1974,99,23-30.
    [5]Svec, F. Recent developments in the field of monolithic stationary phases for capillary electrochromatography. J. Sep. Sci.2005,28,729-745.
    [6]Hilder, E. F.; Svec, F.; Frechet, J. M. J. Development and application of polymeric monolithic stationary phases for capillary electrochromatography. J. Chromatogr. A 2004,1044,3-22.
    [7]邹汉法,刘震,叶明亮,张玉奎.毛细管电色谱及其应用.科学出版社 2001.
    [8]Cifuentes, A. Recent advances in the application of capillary electromigration methods for food analysis. Electrophoresis 2006,27,283-303.
    [9]Dabek-Zlotorzynska, E.; CeloRecent, V. Recent advances in capillary electrophoresis and capillary electrochromatography of pollutants. Electrophoresis 2006,27,304-322.
    [10]Gubitz, G.; Schmid, M. G. Chiral separation by capillary electromigration techniques. J. Chromatogr. A 2008,1204,140-156.
    [11]Miksik, I.; Sedlakova, P. Capillary electrochromatography of proteins and peptides. J. Sep. Sci.2007,30,1686-1703.
    [12]Eeltink, S.; Rozing, G. P.; Kok, W. T. Recent applications in capillary electrochromatography. Electrophoresis 2003,24,3935-3961.
    [13]Wu, R. A.; Hu, L. H.; Wang, F. J.; Ye, M. L.; Zou, H. F. Recent development of monolithic stationary phases with emphasis on microscale chromatographic separation. J. Chromatogr. A 2008,1184,369-392.
    [14]Colon, L. A.; Maloney, T. D.; Fermier, A. M. Packing columns for capillary electrochromatography. J. Chromatogr. A 2000,887,43-53.
    [15]Buchmeiser, M. R. Polymeric monolithic materials:Syntheses, properties, functionalization and applications. Polymer 2007,48,2187-2198.
    [16]Hilder, E. F.; Svec, F.; Frechet, J. M. J. Polymeric monolithic stationary phases for capillary electrochromatography. Electrophoresis 2002,23,3934-3953.
    [17]平贵臣.毛细管电色谱聚合物整体柱的制备及应用基础研究.中国科学院大连化学物理研究所博士学位论文 2003.
    [18]吕海霞.新型有机聚合物毛细管电色谱整体柱的制备及应用研究.福州大学博士学位论文 2006.
    [19]Minakuchi, H.; Nakanishi, K.; Soga, N.; Ishizuka, N.; Tanaka, N. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal. Chem.1996,68,3498-3501.
    [20]Ishizuka, N.; Minakuchi, H.; Nakanishi, K.; Naohiro Soga, N.; Hosoya, K.; Tanaka, N. Chromatographic properties of miniaturized silica rod columns.J. High Resolut. Chromatogr.1998,21,477-479.
    [21]Tanaka, N.; Nogayam, H.; Kobayashi, H.; Ikgami, T.; Hosoya, K.; Monolithic silica columns for HPLC, micro-HPLC, and CEC. J. High Resolut. Chromatogr. 2000,23,111-116.
    [22]Ishizuka, N.; Minakuchi, H.; Nakanishi, K.; Soga, N.; Nagayama, H.; Hosoya, K.; Tanaka, N. Performance of a monolithic silica column in a capillary under pressure-driven and electrodriven conditions. Anal. Chem.2000,72,1275-1280.
    [23]Motokawa, M.; Kobayashi, H.; Ishizuka, N.; Minakuchi, H.; Nakanishi,K.; Jinnai, H.; Hosoya, T.; Ikegami, T.; Tanaka, N. Monolithic silica columns with various skeleton sizes and through-pore sizes for capillary liquid chromatography. J. Chromatogr. A 2002,961,53-63.
    [24]Svec, F. Recent developments in the field of monolithic stationary phases for capillary electrochromatography. J. Sep. Sci.2005,28,729-745.
    [25]郭建宇.硅胶基质毛细管整体柱的制备、化学修饰及其色谱行为研究.复旦大学博士学位论文 2004.
    [26]谢传辉.毛细管硅胶整体柱的制备及其应用.中国科学院大连化学物理研究所搏士学位论文 2005.
    [27]叶芳贵.新型硅胶基质毛细管整体柱的制备及其电色谱研究.福州大学博士学位论文 2006.
    [28]Mammeri, F.; Bourhis, E. L.; Rozesa, L.; Sanchez, C. Mechanical properties of hybrid organi-inorganic materials. J. Mater. Chem.2005,15,3787-3811.
    [29]Fujimoto, C. Preparation of fritless packed silica columns for capillary electrochromatography. J. High Resolut. Chromatogr.2000,23,89-92.
    [30]Hayes, J. D.; Malik, A. Sol-gel monolithic columns with reversed electroosmotic flow for capillary electrochromatography. Anal. Chem.2000,72,4090-4099.
    [31]Yan, L. J.; Zhang, Q. H.; Zhang, J.; Zhang, L. Y.; Li, T.; Feng, Y. Q.; Zhang, L. H.; Zhang, W. B.; Zhang, Y. K. Hybrid organic-inorganic monolithic stationary phase for acidic compounds separation by capillary electrochromatography. J. Chromatogr. A 2004,1046,255-261.
    [32]Yan, L. J.; Zhang, Q. H.; Feng, Y. Q.; Zhang, W. B.; Li, T.; Zhang, L. H.; Zhang, Y. K. Octyl-functionalized hybrid silica monolithic column for reversed-phase capillary electrochromatography.J. Chromatogr. A 2006,1121, 92-98.
    [33]Xu, L.; Lee, H. K. Preparation, characterization and analytical application of a hybrid organic-inorganic silica-based monolith. J. Chromatogr. A 2008,1195, 78-84.
    [34]Tian, Y.; Zhang, L. F.; Zeng, Z. R.; Li, H. B. Calix[4] open-chain crown ether-modified, vinyl-functionalized hybrid silica monolith for capillary electrochromatography. Electrophoresis 2008,29,960-970.
    [35]Constantin, S.; Freitag, R. Microchip-based macroporous silica sol-gel monolith for efficient isolation of DNA from clinical samples. J.Sol-Gel Sci. Technol.2003, 28,71-80.
    [36]严丽娟,张庆合,李彤,张维,冯钰锜,张丽华,张玉奎.有机-无机杂化硅胶基质整体柱的制备及其电色谱性能.色谱2005,23,499-503.
    [37]张庆合,严丽娟,张维冰,张玉奎.分析化学2008,36,572-576.
    [38]Colon, H.; Zhang, X.; Murphy, J. K.; Rivera, J. G.; Colon, L. A. Allyl-functionalized hybrid silica monoliths. Chem. Commun.2005,2826-2828.
    [39]Dulay, M. T.; Quirino, J. P.; Bennett, B. D.; Kato, M.; Zare, R. N. Photopolymerized sol-gel monoliths for capillary electrochromatography. Anal. Chem.2001,73,3921-3926.
    [40]Kato, M.; Sakai-Kato, K.; Toyo'oka, T.; Dulay, M. T.; Quirino, J. P.; Bennett, B. D.; Zare, R. N. Effect of preparatory conditions on the performance of photopolymerized sol-gel monoliths for capillary electrochromatography. J. Chromatogr. A 2002,961,45-51.
    [41]Dulay, M. T.; Quirino, J. P.; Bennett, B. D.; Zare, R. N. Bonded-phase photopolymerized sol-gel monoliths for reversed phase capillary electrochromatography. J. Sep. Sci.2002,25,3-9.
    [42]Wang, H. F.; Zhu, Y. Z.; Yan, X. P.; Gao, R. Y.; Zheng, J. Y A room temperature ionic liquid mediated non-hydrolytic sol-gel methodology to prepare molecularly imprinted silica-based hybrid monoliths for chiral separation. Adv. Mater.2006, 18,3266-3270.
    [43]Wang, H. F.; Zhu, Y. Z.; Lin, J. P.; Yan, X. P. Fabrication of molecularly imprinted hybrid monoliths via a room temperature ionic liquid mediated non-hydrolytic sol-gel route for chiral separation of zolmitriptan by capillary electrochromatography. Electrophoresis 2008,29,952-959.
    [44]Wu, M. H.; Wu, R. A.; Wang, F.J.; Ren, L. B.; Dong, J.; Liu, Z.; Zou, H. F. "One-pot" process for fabrication of organic-silica hybrid monolithic capillary columns using organic monomer and alkoxysilane. Anal. Chem.2009,81, 3529-3536.
    [45]Bugni, E. A.; Lachtermacher, M. G.; Monteiro, E. E. C.; Mano, E. B.; Overberger, C. G. An unusual reaction polymerization in nitric acid medium. J. Polym. Sci., Part A:Polym. Chem.1986,24,1463-1486.
    [46]Mano, E. B.; Monteiro, E. E. C.; Mendes, L. C. Preparation of alkyl acrylate-acrylic acid copolymers by simultaneous hydrolysis and polymerization. Polym. Bull.1990,23,497-504.
    [47]Soppera, O.; Croutxe-Barghorn C.; Lougnot, D. J. New insights into photoinduced processes in hybrid sol-gel glasses containing modified titanium alkoxides.New J. Chem.2001,25,1006-1014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700