用户名: 密码: 验证码:
亚甲基桥联的吡唑/咪唑及相关反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要开展了亚甲基桥联的氮杂环配体双吡唑甲烷及双咪唑甲烷的功能化及其相关反应的研究,并取得了如下的结果:
     1、处理三苯基锡修饰的双(3,5-二甲基)吡唑甲烷配体与Mo(CO)6导致Sn-Csp3键对Mo(O)的氧化加成,形成四元金属杂环化合物CH(3,5-Me2Pz)2(CO)3-MoSnPh3。由于该配合物中存在两个四元金属杂环,而环张力和Mo-Csp3键的极性,使此化合物具有不寻常的反应活性。我们考察了该化合物及其钨类似物与不同的亲核试剂的反应活性。结果发现,当用亲核试剂叔丁基异腈处理该类化合物CH(3,5-Me2Pz)2(CO)3MSnPh3时,M-Csp3键发生断裂,并伴随有机锡结构单元的离去,得到还原消除产物CH2(3,5-Me2Pz)2M(CO)3(CNBu')(M=Mo或W)。而更加有意思的是,该类四元金属杂环化合物与亚磷酸酯作用时却意外地发生P-O/C键的交换反应,导致M-Csp3键的断裂,释放四元环的张力,同时伴随着有机锡结构单元的离去,得到具有κ3-[N,P,N]型配位模式的还原消除产物(RO)2PCH(3,5-Me2Pz)2M(CO)3(R为烷基或苯基);而在相似条件下,与三烷基磷或三芳基磷反应,仅得到了一个羰基被磷配体所取代的产物,而没有发生类似的P-C/C键交换反应。通过对其机理的初步研究表明,亚磷酸酯中好的离去基团是发生P-O/C键交换反应的关键。同时,金属活性对此类反应结果也有一定的影响。
     2、在过渡金属有机化学领域里,环戊二烯往往以负离子η5-形式提供6e与中心金属原子形成牢固的金属配位键。目前有关侧臂功能化环戊二烯的研究得到了人们广泛的关注,官能团的引入使环戊二烯配体得到了更加广泛的应用。近来双吡唑甲烷功能化的环戊二烯配体也已经被合成,我们考察了这类配体与羰基化合物的反应,比较了其与简单取代环戊二烯的反应活性差异。实验结果表明,这类双吡唑甲烷修饰的环戊二烯配体的反应活性显著的不同于简单取代的环戊二烯配体。6,6-二苯基富烯与双吡唑甲基负离子所形成的环戊二烯配体与W(CO)5THF反应,得到的是环戊二烯中的一个双键参与配位的κ3-π2NN型配合物;而6-苯基富烯与双吡唑甲基负离子所形成的环戊二烯配体与W(CO)5THF反应时,环戊二烯配体并没有参与配位,仅得到双吡唑甲烷配位的κ2-NN型化合物。反应过程中没有观察到简单环戊二烯与羰基钨反应所形成的双核化合物。
     3、硫族元素如S(Se)对过渡金属具有很好的亲和势,因此,含硫族元素的配体往往具有很强的配位能力。以前的研究表明,硫族元素修饰的双吡唑甲烷与有机锡氯化物和第六族金属羰基化合物反应时表现出了新颖的反应活性。鉴于S/Se修饰的双吡唑甲烷的反应性能,我们考虑通过扩展配体及变换反应的金属,来进一步考察该类杂原子修饰的双毗唑甲烷配体的反应活性,以期扩大该类配体的应用范围。因此我们利用S/Se修饰的双吡唑甲烷衍生物LiECH(3,5-Me2Pz)2(E=S或Se)直接与Fe3(CO)12反应,然后用不同的亲电试剂,如CH3I,PhCH2Br或Ph3SnCl等处理,合成了一系列结构新颖的金属配合物。结果表明,不同的硫族元素,以及不同的亲电试剂均极大的影响反应的结果。如LiSCH(3,5-Me2Pz)2与Fe3(CO)12反应,然后用卤代烃处理,得到新颖的二硫代羧酸酯配位的蝶状化合物。而LiSeCH(3,5-Me2Pz)2与之类似的反应,则得到少见的双吡唑乙酰基羰基铁衍生物。当用Ph3SnCl作为亲电试剂参加反应后,得到的是两个吡唑环不对称的蝶状化合物。
     4、双(1-甲基咪唑-2-基)甲烷与双吡唑甲烷具有相似的结构特征,在与金属作用时,它们都以螯合双齿配体的形式参与配位,形成类似结构的化合物。这促使我们来考察是否也能用芳基锡对双(1-甲基咪唑-2-基)甲烷桥头碳原子进行功能化修饰?我们的研究表明,类似于双吡唑甲烷的双(1-甲基咪唑-2-基)甲烷直接进行有机锡功能化是不能成功的。尽管如此,但仍可通过双(1-甲基咪唑-2-基)甲基负离子先与硫作用,后再与有机锡氯化物反应,得到间接的有机锡功能化的双(1-甲基咪唑-2-基)甲烷Ph2(Cl)SnSCH(mim)2 (mim=1-甲基眯唑-2-基),但这类配体的反应活性明显的不同于其双吡唑甲烷类似物。Ph2(Cl)SnSCH(mim)2与羰基铝反应时导致配体的分解,得到双(1-甲基咪唑-2-基)甲烷四羰基钼,而用W(CO)5THF处理该配体时导致Sn-S键对W(0)的氧化加成反应,得到双核化合物CH(mim)2(S)W(CO)3SnPh2Cl。另外,我们还考察了羰基钼(钨)与双(1-甲基眯唑-2-基)甲酮和双(1-甲基咪唑-2-基)甲烷以及双(1-甲基咪唑-2-基)乙烯的反应,合成了一系列功能化的双(1-甲基咪唑-2-基)甲烷金属羰基化合物,并研究了它们的电化学性质,结果发现这类化合物仅表现出一个不可逆的氧化过程。
     5、生物金属有机化学近年来得到了人们极大的关注。大量的金属有机化合物在生物、医学上得到了广泛的应用。比如用于抗菌及木材防腐、杀虫剂等。在这部分中很重要的一类化合物就是有机锡羧酸酯,它们由于新颖的结构以及生物活性,已经引起了人们广泛的关注。我们将吡啶、三唑等具有生物活性或药物活性的杂环引入羧酸中,设计合成了有机锡吡啶甲基硫代苯甲酸酯和2-[(1,2,4-三唑-1-基)甲基硫代]苯甲酸酯类化合物,并测定了它们的抗菌活性。在有机锡吡啶甲基硫代苯甲酸酯衍生物中Sn可以是四、五、六及七配位,并且N原子是否参与配位与其在吡啶环上的位置具有很大的关系,而对于有机锡2-[(1,2,4-三唑-1-基)甲基硫代]苯甲酸酯衍生物则表现为一维链状配位高分子结构。另外,生物活性测试表明,含三唑的有机锡羧酸酯类化合物比含吡啶的化合物的活性要高。
This dissertation mainly involves the modification of bis(pyrazol-1-yl)methanes and bis(imidazol-2-yl)methanes as well as their related reactions. The results are as follows:
     1、The reaction of (triphenylstannyl)bis(3,5-dimethylpyrazol-1-yl)methane with molybdenum carbonyl results in the oxidative addition of the Sn-Csp3 bond to give four-membered heterometallacycle CH(3,5-Me2Pz)2(CO)3MoSnPh3, which displays interesting reactivity owing to the ring strain and the polar Mo-C bond. The reaction of this complex and its tungsten analogs with nucleophilic regents such as'BuNC and PR3 has been carried out. Treatment of CH(3,5-Me2Pz)2(CO)3MSnPh3 (M=Mo or W) with 'BuNC leads to the cleavage of the M-Csp3 bond to give the reductive elimination product CH2(3,5-Me2Pz)2M(CO)3(CNBu') and concomitant loss of the organotin group. Interestingly, the reaction of these two heterometallacycles with P(OR)3 (R= Ph or Me) gives rise to the unexpected P-O/C exchange reaction with the cleavage of the M-Csp3 bond to give the novel reductive elimination products (RO)2P-CH(3,5-Me2Pz)2M(CO)3, which have an intriguingκ3-[N,P,N] coordination mode. However, similar reaction with PR3 (R=Ph or n-Bu) only yields the decarbonylated complexes, no similar P-C/C exchange reaction takes place. It seems that good leaving group in P(OR)3 plays a key role in the formation of (RO)2PCH-(3,5-Me2Pz)2M(CO)3.
     2、Cyclopentadiene usually acts as aη5 anion to provide six electrons to form strong coordination bonds with metal centers. Investigations on the side-arm functionalization of cyclopentadiene have attracted increasing attention and broadened the applications of cyclopentadiene ligands. Cyclopentadiene ligands functionalized with bis(pyrazol-1-yl)methanes have been synthesized recently and we have studied the reactivities of these ligands with carbonyl compounds. The results have revealed marked different reactivities between these ligands and simple substituted cyclopentadienes. In the reaction with W(CO)5THF, cyclopentadiene ligand from the reaction of 6,6-diphenyl fulvene with bis(pyrazol-1-yl)methyl anion provides aκ3-π2NN complex via the coordination of one double bond in the cyclopentadiene, while cyclopentadiene ligand from the reaction of 6-phenyl fulvene with bis(pyrazol-1-yl)methyl anion adopts K2-NN coordination mode as the cyclopentadiene acts as an innocent stander-by in the reaction with W(CO)5THF. No dinuclear complex was observed as the product of reaction like that in the similar reaction of simple substituted cyclopentadiene with carbonyl tungsten.
     3、Ligands with chalcogens such as S and Se are recognized for their remarkable coordination abilities owing to their strong affinity with transition metals. Former investigations have revealed novel reactivities of bis(pyrazol-1-yl)methanes modified with chalcogens in their reactions with organotin chloride and carbonyl complexes of group six metals. Taking into account of the impact of these modifications, we design the investigation on the reactivities of bis(pyrazol-1-yl)methanes modified with this type of heteroatoms through the expansion of the choices of ligands and metal centers, expecting to broaden the application of this type of ligands. A series of complexes with novel structures are synthesized in the reaction of our model S/Se-modified bis(pyrazol-1-yl)methane derivatives LiECH(3,5-Me2Pz)2 (E=S or Se) with Fe3(CO)12, followed by the treatment of electrophiles such as CH3I, PhCH2Br or Ph3SnCl. The results indicate that the formation of the complexes is affected by both the choice of chalcogens and electrophiles. For example, the reaction of LiSCH(3,5-Me2Pz)2 with Fe3(CO)12 followed by the treatment of alkyl halides provides novel butterfly complexes coordinated with dithiocarboxylates, while a unique bis(pyrazol-1-yl)acetyl iron carbonyl complex is observed in similar reaction of LiSeCH(3,5-Me2Pz)2. When Ph3SnCl acts as electrophile, butterfly complex with two unsymmetric pyrazolyl rings is formed.
     4、Bis(pyrazol-1-yl)methane and bis(1-methylimidazole-2-yl)methane exhibit some analogous structural features. For instance, they often act as chelating bidentate ligands upon coordinating to the metals, and their bridging carbon atoms can be modified by organic functional groups to form new polydentate ligands. As an extension of our investigations on bis(pyrazol-1-yl)methane, herein we study the functionalization of bis(1-methylimidazole-2-yl)methane by the organotin group and their related reactions. We find that the reaction of bis(1-methylimidazole
     -2-yl)methyl anion with triphenyltin chloride does not take place. But Ph2(Cl)SnSCH(mim)2 (mim=1-methylimidazole-2-yl) can be obtained by the reaction of LiSCH(mim)2 with Ph2SnCl2, which shows markedly different reactivity with its bis(pyrazol-1-yl)methane analogs. Reaction of Ph2(Cl)SnSCH(mim)2 with Mo(CO)6 leads to the decomposition of this ligand to give (CO)4Mo(mim)2CH2, while similar reaction with W(CO)5THF gives rise to the oxidative addition reaction of the Sn-S bond to the W(0) atom to yield CH(mim)2(S)W(CO)3SnPh2Cl. Reaction of bis(1-methylimidazole-2-yl)ketone [(mim)2C=O], bis(1-methylimidazole-2-yl)-methane [(mim)2CH2] and bis(1-methylimidazole-2-yl)ethene [(mim)2C=CH2] with M(CO)5L (M=Mo or W; L=CO or THF) has also been investigated, which yields six bidentate chelating complexes as well as a mono substituted pentacarbonyl tungsten derivative. The electrochemical behavior investigated by cyclic voltammetry indicates that all complexes exhibit one irreversible oxidative process.
     5、Bioorganometallic chemistry is attracting more and more attentions in recent years. A great amount of organometallic compounds have proved their values in the fields of biology and medicine, for examples as antitumor, pesticides, bactericides and wood preservatives. An important part of these complexes is the organotin carboxylates, which comes into notice due to their novel structures and biological activities. A series of organotin pyridylmethylthiobenzoates and 2-[(1,2,4-triazolyl-1-yl)methylthio]benzoates have been synthesized by the reaction of the corresponding acids with organotin oxide or hydroxide, and their fungicidal activity was tested. The tin atoms with four, five, six or seven-coordination geometry have been found in organotin pyridylmethylthiobenzoates. Organotin 2-[(1,2,4-triazolyl-1-yl)methylthio]benzoates form a linkage coordination polymer through the intermolecular Sn...N interactions. The results in the biological activity tests also demonstrate that organotin carboxylates with triazoles have higher activities than organotin carboxylates with pyridines.
引文
[1]W. T. Hua, Chemistry of Heterocyles. Beijing:Beijing Univ Press,1991,127
    [2]大木道则,金岗佑一,吉天善一著,安守忠译,含氮有机化合物概论[M],科学出版社,1983,195
    [3]S. Julia, J. M. del Mazo, L. Avila, et al. J. Org. Prep. Proc. Int.1984,16,299
    [4]W. A. Hermann, Angew. Chem. Int. Ed.2002,41,1290
    [5]N. T. S. Phan, M. Van der Sluys, C. W. Joned, Adv. Synth. Catal.2006,348,609
    [6]E. A. B. Kantchev, C. J. Obrien, M. G. Organ, Angew. Chem. Int. Ed.2007,46,2768
    [7]S. Wurtz, F. Glorius, Acc. Chem. Rev.2008,41,1523
    [8]J. E. Cosgriff, G. B. Deacon, Angew. Chem. Int. Ed.1998,37,286
    [9]G. L. Monica, G. A. Ardizzoia, Prog. Inorg. Chem.1997,46,151
    [10]A. P. Sadimenko, S. S. Basson, Coord. Chem. Rev.1996,147,247
    [11]J. R. Perera, M. J. Heeg, H. B. Schlegel, et al. J. Am. Chem. Soc.1999,121,4536
    [12]C. Pettinari, F. Marchetti, R. Pettinari, et al. Inorg. Chim. Acta 2003,355,157
    [13]C. D. Nicola, Y. Y. Karabach, A. M. Kirillov, et al. Inorg. Chem.2007,46,221
    [14]C. C. Quitmann, V. Bezugly, F. R. Wagner, et al. Z. Anorg. Allg. Chem.2006,632,1173
    [15]S. Trofimenko, J. Am. Chem. Soc.1970,70,5118
    [16]S. Julia, P. Sala, J. M. D. Mazo, et al. J. Heterocyle Chem.1982,19,1141
    [17]K. Fujisawa, T. Ono, H. Aoki, et al. Inorg. Chem. Commun.2004,7,330
    [18]I. Hegelmann, C. Eichhorn, B. Weibert, et al. Eur. J. Inorg. Chem.2003,339
    [19]D. L. Jameson, R. L. Castellano, Inorg. Synth.1998,32,51
    [20]D. D. LeCloux, C. J. Tokar, M. Osawa, et al. Organometallics 1994,13,2855
    [21]A. Antinolo, F. Carrillo-Hermosilla, E. Diez-Barra, et al. J. Chem. Soc.,Dalton Trans.1998, 3737
    [22]P. K. Byers, A. J. Canty, A. T. Honeyman, Adv. Organomet. Chem.1992,34,1
    [23]R. Gimenez, A. B. Manrique, S. Uriel, et al. Chem. Commun.2004,2064
    [24]Z. Shirin, C. J. Carrano, Polyhedron 2004,23,239
    [25]D. L. Reger, R. P. Watson, M. D. Smith, et al. Organometallics 2005,24,1544
    [26]K. B. Shiu, K. H. Yih, S. L. Wang, et al. J. Organomet. Chem.1991,414,165
    [27]C. Pettinari, G.G. Lobbia, A. Lorenzotti, et al. Polyhedron 1994,13,793
    [28]C. Pettinari, A. Cingolani, B. Bovio, Polyhedron 1996,15,115
    [29]C. Pettinari, R. Pettinari, Coord. Chem. Rev.2005,249,663
    [30]D. L. Reger, J. E. Collins, M. A. Matthews, et al. Inorg. Chem.1997,36,6266
    [31]E. Teuma, M. Loy, C. L. Berre, et al. Organometallics 2003,22,5261
    [32]D. L. Reger, E. A. Foley, M. D. Smith, Inorg. Chem.2009,48,936
    [33]D. L. Reger, E. A. Foley, M. D. Smith, Inorg. Chem.2010,49,234
    [34]M. Bortoluzzi, G. Paolucci, B. Pitteri, et al. Organometallics 2009,28,3247
    [35]M. G. B. Drew, S. Nag, D. Datta, Inorg. Chim. Acta 2009,362,591
    [36]C. Pettinari, R. Pettinari, F. Marchetti, et al. Inorg. Chem.2007,46,896
    [37]K. Fujisawa, Y. Noguchi, Y. Miyashita, et al.Inorg. Chem.2007,46,10607
    [38]A. Michaud, F. G. Fontaine, D. Zargarian, Inorg. Chim. Acta 2006,359,2592
    [39]E. Cavero, S. Uriel, P. Romero, et al. J. Am. Chem. Soc.2007,129,11608
    [40]A. Sanchez-Mendez, J. M. Benito, E. de Jesus, et al. Dalton Trans.2006,5379
    [41]A. Sanchez-Mendez, A. M. Ortiz, E. de Jesus, et al. Dalton Trans.2007,5658
    [42]A. Otero, J. Fernandez-Baeza, A. Antinolo, et al. J. Chem. Soc., Dalton Trans.1999,3537
    [43]I. Hegelmann, N. Burzlaff, Eur. J. Inorg. Chem.2003,409
    [44]W. N. Lipscomb, N. Strater, Chem. Rev.1996,96,2375
    [45]B. S. Hammes, M. T. Kieber, J. A. Letizia, Inorg. Chim. Acta 2003,346,227
    [46]S. Tampier, R. Muuller, A. Thorn, et al. Inorg. Chem.2008,47,9624
    [47]F. Marchetti, C. Pettinari, A. Cerquetella, et al. Inorg. Chem.2009,48,6096
    [48]M. Ortiz, A. Diaz, R. Cao, et al. Inorg. Chem. Acta 2004,357,19
    [49]A. Otero, J. Fernandez-Baeza, A. Antinolo, et al. Inorg. Chem.2007,46,8475
    [50]A. Otero, J. F. Baeza, J. A. Tejeda, Inorg. Chem.2009,58,5540
    [51]M. Porchia, G. Papini, C. Santini, et al. Inorg. Chem.2005,44,4045
    [52]S. Milione, V. Bertolasi, T. Cuenca, et al. Organometallics 2005,24,4915
    [53]G. Paolucci, M. Bortoluzzi, S. Milione, et al. Inorg. Chim. Acta 2009,362,4353
    [54]S. Milione, F. Grisi, R. Centore, et al. Organometallics 2006,25,266
    [55]A. D. Schofield, M. L. Barros, M. G. Cushion, et al. Dalton Trans.2009,85
    [56]F. Marchetti, M. Pellei, C. Pettinari, et al. J. Organomet. Chem.2005,690,1878
    [57]A. Otero, J. Fernandez-Baeza, A. Antinolo, et al. Inorg. Chem.2002,41,5193
    [58]A. Otero, J. Fernandez-Baeza, A. Antinolo, et al. Inorg. Chem.2005,44,5336
    [59]M. Pellei, S. Alidori, M. Camalli, et al. Inorg. Chim. Acta 2008,361,1456
    [60]J. Zhang, P. Braunstein, T. S. Andy Hor, Organometallics 2008,27,4277
    [61]T. Godau, F. Platzmann, N. Burzlaff, Dalton Trans.2009,254
    [62]A. Otero, A. L. Sanchez, J. F. Baeza, et al. Dalton Trans.2010,930
    [63]R. Y. Tan, H. B. Song, L. F. Tang, J. Organomet. Chem.2006,691,5964
    [64]R. Y. Tan, J. Hong, L. F. Tang, J. Organomet. Chem.2007,692,1708
    [65]S. B. Zhao, G. Wu, S. N. Wang, Organometallics 2008,27,1030
    [66]L. F. Tang, W. L. Jia, D. T. Song, et al. Organometallics 2002,21,445
    [67]L. F. Tang, W. L. Jia, X. M. Zhao, et al. J. Organomet. Chem.2002,658,198
    [68]L. F. Tang, S. B. Zhao, W. L. Jia, et al. Organometallics 2003,22,3290
    [69]Z. K. Wen, Y. F. Xie, L. F. Tang, J. Organomet. Chem.2008,693,1359
    [70]L. F. Tang, J. Hong, Z. K. Wen, Organometallics 2005,24,4451
    [71]Y. F. Xie, Z. K. Wen, L. F. Tang, Organometallics 2008,27,5684
    [72]K. B. Shiu, C. C. Chou, S. L. Wang, et al. Organometallics 1990,9,286
    [73]K. B. Shiu, L. Y. Yeh, S. M. Peng, et al. J. Organomel. Chem.1993,460,203
    [74]A. Otero, J. Fernandez-Baeza, A. Antinolo, et al. J. Am. Chem. Soc.2004,126,1330
    [75]A. Otero, J. Fernandez-Baeza, A. Antinolo, et al. Organometallics 2007,26,4310
    [76]A. Otero, J. Fernandez-Baeza, A. Antinolo, et al. Inorg. Chim. Acta 2009,362,2909
    [77]A. Otero, J. Fernandez-Baeza, A. Antinolo, et al. Organometallics 2008,27,976
    [78]A. Otero, J. F. Baeza, A. L. Sanchez, et al. Inorg. Chem.2008,47,4996
    [79]A. Otero, J. Fernandez-Baeza, A. Antinolo, et al. Inorg. Chem.2007,46,1760
    [80]L. F. Sanchez-Barba, A. Garces, M. Fajardo, et al. Organometallics 2007,26,6403
    [81]C. A. Moreno, A. Garces, L. S. Barba, Organometallics 2008,27,1310
    [82]D. L. Reger, J. E. Collins, M. A. Mathews, et al. Inorg. Chem.1997,36,6266
    [83]D. L. Reger, J. E. Collins, W. A. Flomer, et al. Polyhedron 2001,20,2491
    [84]M. G. Cushion, J. Meyer, A. Heath, et al. Organometallics 2010,29,1174
    [85]C. M. Nagaraja, M. Nethaji, B. R. Jagirdar, Organometallics 2007,26,6307
    [86]P. Rodriguez, E. Alvarez, M. C.Nicasio, et al. Organometallics 2007,26,6661
    [87]K. Fujisawa, A. Tateda, Y. Miyashita, et al. J. Am. Chem. Soc.2008,130,1205
    [88]A. J. Arduengo, R. L. Harlow, M. K. Kline, J. Am. Chem. Soc.1991,113,361
    [89]Y. Suzuki, T. Toyota, F. Imada, et al. Chem.Commun.2003,1314
    [90]R. Singh, R. M. Kissling, M. A. Letellier, et al. J. Org. Chem.2004,69,209.
    [91]T. Kano, K. Sasaki, K. Maruoka, Org. Lett.2005,7,1347
    [92]K. Hirano, I. Piel, F. Glorius, Adv. Synth. Catal.2008,350,984
    [93]N. T. S. Phan, M. Van der Sluys, C. W. Jones, Adv. Synth. Catal.2006,348,609
    [94]E. A. B. Kantchev, C. J. O'Brien, M. G. Organ, Angew. Chem. Int. Ed.2007,46,2768
    [95]S. Wurtz, F. Glorius, Acc. Chem. Rev.2008,41,1523
    [96]C. T. Burns, R. F. Jordan, Organometallics 2007,26,6726
    [97]S. Burling, L. D. Field, B. A. Messerle, et al. Organometallics 2007,26,4335
    [98]L. Peters, M. F. Tepedino, T. Haas, et al. Inorg. Chim. Acta 2009,362,2678
    [99]P. C. A. Bruijnincx, M. Lutz, A. L. Spek, et al. Eur. J. Inorg. Chem.2005,779
    [100]L. Peters, E. Hubner, N. Burzla, J. Organomet. Chem.2005,690,2009
    [101]P. C. A. Bruijnincx, M. Lutz, A. L. Spek, et al.J. Am. Chem. Soc.2007,129,2275
    [102]P. C. A. Bruijnincx,I. L. C. Buurmans, S. Gosiewska, et al. Chem. Eur. J.2008,14,1228
    [103]S. S. Rocks, W. W. Brennessel, T. E. Machonkin, et al. Inorg. Chim. Acta 2009,362,1387
    [104]V. V. Karambelkar, R. C. diTargiani, C. D. Incarvito, et al. Polyhedron 2004,23,471
    [105]L. Zhou, D. Powell, K. M. Nicholas, Inorg. Chem.2006,45,3840
    [106]L. Zhou, D. Powell, K. M. Nicholas, Inorg. Chem.2007,46,2316
    [107]R. E. Douthwaite, D. Haussinger, M. H. Green, Organometallics 1999,18,4584
    [108]R. E. Douthwaite, M. H. Green, P. J. Silcock, Organometallics 2001,20,2611
    [109]G. Papini, M. Pellei, G. G. Lobbia, et al. Dalton Trans.2009,6985
    [110]Y. Unger, A. Zeller, M. A. Taige, et al. Dalton Trans.2009,4786
    [111]E. M. McGarrigle, D. G. Gilheany, Chem. Rev.2005,105,1563
    [112]A. P. Forshaw, R. P. Bontchev, J. M. Smith, Inorg. Chem.2007,46,3792
    [113]T. Yagyu, K. Yano, T. Kimata, et al. Organometallics 2009,28,2342
    [114]W. A. Herrmann, C. P. Reisinger, M. Spiegler, J. Organomet. Chem.1997,557,93
    [115]Y. Wong, T. T. Jayanth, C. C. Cheng, Org. Lett.2006,8,5613
    [116]E. Shirakawa, T. Sato, Y. lmazaki, et al. Chem. Commun.2007,4513
    [117]G. Cahiez, C. Chaboche, C. Duplais, et al. Org. Lett.2009,11,277
    [118]Z. X. Xi, B. Liu, C. X. Lu, et al. Dalton Trans.2009,7008
    [1]P. W. Jennings, L. L. Johnson, Chem. Rev.1994,94,2241
    [2]K. J. Mashima, Synth. Org. Chem. Jpn.1998,56,171
    [3]J. Campora, P. Palma, E. Carmona, Coord. Chem. Rev.1999,193-195,207
    [4]I. Nakamura, Y. Yamamoto, Adv. Synth. Catal.2002,344,111
    [5]K. Tsuchiya, H. Kondo, H. Nagashima, Organometallics 2007,26,1044
    [6]M. Okazaki, K. A. Jung, H. Tobita, Organometallics 2005,24,659
    [7]P. E. Romero, W. E. Piers, J. Am. Chem. Soc.2007,129,1698
    [8]C. H. Suresh, J. Organomet. Chem.2006,691,5366
    [9]L. F. Tang, W. L. Jia, D. T. Song, et al. Organometallics 2002,21,445
    [10]L. F. Tang, S. B. Zhao, W. L. Jia, et al, Organometallics 2003,22,3290
    [11]L. F. Tang, J. Hong, Z. K. Wen, Organometallics 2005,24,4451
    [12]樊能廷著,有机合成事典,北京理工大学出版社,1992,762
    [13]S. A. Macgregor, Chem. Soc. Rev.2007,36,67
    [14]J. P. Keller, C. Schlierf, C. Nolte, et al. Synthesis 2006,354 and references therein
    [15]V. E. Albrow, A. J. Blake, R. Fryatt, et al. Eur. J. Org. Chem.2006,2549
    [16]E. Singleton, H. E. Oosthuizen, Adv. Organomet. Chem.1983,22,209
    [17]A. C. Sullivan, G. Wilkinson, M. Motevalli, et al. J. Chem. Soc.,Balton Trans.1988,53
    [18]M. H. Chisholm, C. E. Hammond, D. Ho, et al. J. Am. Chem. Soc.1986,108,7860
    [19]P. Zanella, N. Brianese, U. Casellato, et al. J. Chem. Soc., Dalton Trans.1987,2039
    [20]L. F. Tang, W. L. Jia, X. M. Zhao, et al. J. Organomet. Chem.2002,658,198
    [21]E. E. Pullen, D. Rabinovich, C. D. Incarvito, et al. Inorg. Chem.2000,39,1561
    [22]R. E. Cobbledick, L. R. J. Dowdell, F. W. B. Einstein, et al. Can. J. Chem.1979,57,2285
    [23]C. C. Yang, W. Y. Yen, G. H. Lee, et al.J. Organomet. Chem.2000,598,353
    [24]L. F. Tang, Z. H. Wang, Y. M. Xu, et al. Polyhedron 1998,17,3765
    [1]U. Siemeling, Chem. Rev.2000,100,1495
    [2]S. Prashar, A. Antinolo, A. Otero, Coord. Chem. Rev.2006,250,133
    [3]U. Siemeling, A. C. Auch, S. Tomm, Organometallics 2007,26,1112
    [4]H. Schumann, E. C. E. Rosenthal, J. Demtschuk, Organometallics 1998,17,5324
    [5]E. Otten, A. A. Batinas, A. Meetsma, et al. J. Am. Chem. Soc.2009,131,5298
    [6]S. Buschel, C. Daniliuc, P. G. Jones, et al. Organometallics 2010,29,671
    [7]N. Kanbayashi, K. Onitsuka, J. Am. Chem. Soc.2010,132,1206
    [8]L. F. Tang, J. F. Chai, S. B. Zhao, J. Organomet. Chem.2003,669,58
    [9]L. F. Tang, J. F. Chai, Z. H. Wang, Organometallics 2002,21,3675
    [10]S. S. Chen, Y. Y. Dou, M. Du, et al. J. Organomet. Chem.2006,691,3633
    [11]A. Otero, J. Fernandez-Baeza, A. Antinolo, et al. J. Am. Chem. Soc.2004,126,1330
    [12]A. Otero, J. Fernandez-Baeza, A. Antinolo, et al. Organometallics 2007,26,4310
    [13]A. Otero, J. Fernandez-Baeza, A. Antinolo, et al. Organometallics 2008,27,976
    [14]A. Otero, J. Fernandez-Baeza, A. Lara-Sanchez, et al. Inorg. Chem.2008,47,4996
    [15]A. Otero, J. Fernandez-Baeza, A. Antinolo, et al. Inorg. Chim. Acta 2009,362,2909
    [16]K. J. Stone, R. D. Little, J. Org. Chem.1984,49,1849
    [17]L. F. Tang, W. L. Jia, X. M. Zhao, et al. J. Organomet. Chem.2002,658,198
    [1]1. Hegelmann, N. Burzlaff, Eur. J. Inorg. Chem.2003,409
    [2]A. Otero, J. Fernandez-Baeza, A. Antinolo, et al. Organometallics 2001,20,2428
    [3]A. Otero, J. Fernandez-Baeza, A. Antinolo, et al. J. Am. Chem. Soc.2004,126,1330
    [4]A. Otero, J. Fernandez-Baeza, A. Antinolo, et al. Inorg. Chem.2007,46,1760
    [5]S. Tampier, R. Muuller, A. Thorn, et al. Inorg. Chem.2008,47,9624
    [6]F. Marchetti, C. Pettinari, A. Cerquetella, et al. Inorg. Chem.2009,48,6096
    [7]D. L. Reger, E. A. Foley, M. D. Smith, Inorg. Chem.2010,49,234
    [8]R.Y. Tan, H. B. Song, L. F. Tang, J. Organomet Chem.2006,691,5964
    [9]L. F. Tang, S. B. Zhao, W. L. Jia, et al. Organometallics 2003,22,3290
    [10]R. B. King, Organometallic Syntheses, Transition-Metal Corn-pounds; Academic Press: New York,1965,1,95
    [11]B. S. Hammes, C. J. Carrano, Inorg. Chem.2001,40,919
    [12]M. Muller, E. Lork, R. Mews, Angew. Chem, Int. Ed.2001,40,1247
    [13]L. F. Tang, W. L. Jia, Z. H. Wang, et al. J. Organomet. Chem.2002,649,152
    [14]A. Otero, J. Fernandez-Baeza, A. Antinolo, et al. Organometallics 2001,20,2428
    [15]L. C. Song, J. Cheng, Q. M. Hu, et al. Organometallics 2005,24, 472
    [16]L. C. Song, X. N. Fang, C. G. Li, et al. Organometallics 2008,27,3225
    [17]L. C. Song, L. X. Wang, M.Y. Tang, et al. Organometallics 2009,28,3834
    [18]L. C. Song, W. Gao, C. P. Feng, et al. Organometallics 2009,28,6121
    [19]R. Cammack, Nature 1999,397,214
    [20]M. Y. Darensbourg, E. J. Lyon, X. Zhao, et al. Proc. Natl. Acad. Sci. U.S.A.2003,100,3683
    [21]L. C. Song, Acc. Chem. Res.2005,38,21
    [22]P. M. Vignais, B. Billoud, Chem. Rev.2007,107,4206
    [23]L. C Song, H. T. Fan, Q. M. Hu, et al. Chem. Eur. J.2003,9,170
    [24]L. C. Song, G. H. Zeng, Q. M. Hu, et al. Organometallics 2005,24,16
    [25]M. C. O. Alfaro, N. Hernandez, I. Cerna, et al. J. Organomet. Chem.2004,689,885
    [26]L. C. Song, F. H. Gong, T. Meng, et al. Organometallics 2004,23,823
    [27](a) C. Chung, R. J. Lagow, J. Chem. Soc., Chem. Commun.1972,1079 (b) L. A. Shimp, R. J. Lagow, J. Am. Chem. Soc.1973,95,1343 (c) J. A. Morrison, C. Chung, R. J. Lagow,J.Am. Chem. Soc.1975,97,5015
    [28](a) R. West, P. C. Jones, J. Am. Chem. Soc.1969,91,6155 (b) R. West, P. A. Carney, I. C. Mineo, J. Am. Chem. Soc.1965,87,3788
    [29]J. R. Baran, Jr., R. J. Lagow, J. Am. Chem. Soc.1990,112,9415
    [30]Y. F. Xie, Z. K. Wen, R. Y. Tan, et al. Organometallics 2008,27,5684
    [1]C. Pettinari, Main Group Met. Chem.1999,22,661
    [2]A. P. Ssdimento, Adv. Heterocycl. Chem.2002, 83,117
    [3]B. Nathalie, R. Thomas, J. C. Kingsley, et al. Synthesis 2001,626
    [4]C. T. Burns, R. F. Jordan, Organometallics 2007,26,6737
    [5]S. Burling, L. D. Field, B. A. Messerle, et al. Organometallics 2007,26,4335
    [6]S. Abuskhuna, M. McCann, J. Briody, et al. Polyhedron 2004,23,1731
    [7]T. Ruether, K. J. Cavell, N. C. Braussaud, et al. J. Chem. Soc., Dalton Trans.2002,4684
    [8]J. P. Collman, M. Zhong, R. Boulatov, J. Chem. Res. (S) 2000,230
    [9]S. Elgafi, L. D. Field, B. A. Messerle, et al. J. Organomet. Chem.1999,588,69
    [10]L. Peters, E. Hubner, N. Burzla, J. Organomet. Chem.2005,690,2009
    [11]P. C. A. Bruijnincx, M. Lutz, A. L. Spek, et al. J. Am. Chem. Soc.2007,129,2275
    [12]P. C. A. Bruijnincx, I. L. C. Buurmans, S. Gosiewska, et al. Chem. Eur. J.2008,14,1228
    [13]L. Zhou, D. Powell, K. M. Nicholas, Inorg. Chem.2006,45,3840
    [14]B. Nathalie, R. Thomas, J. C. Kingsley, et al. Synthesis 2001,626
    [15]R.Y. Tan, H. B. Song, L. F. Tang, J. Organomet. Chem.2006,691,5964
    [16]L.F. Tang, W. L. Jia, Z. H. Wang, et al. J. Organomet. Chem.2002,649,152
    [17]Z. Wen, Z. Yang, H. Song, et al. Chin. J. Chem.2009,27,993
    [18]T. Szymanska-Buzar, Coord. Chem. Rev.2006,250,976
    [19]L. F. Tang, Z. H. Wang, Y. M. Xu, et al. Polyhedron 1999,18,2383
    [20]X. X. Gan, X. M. Zhao, H. B. Song, et al. Chinese J. Struct. Chem.2006,25,663
    [21]L. F. T ang, W. L. Jia, Z. H. Wang, et al. J. Organomet. Chem.2001,637-639,209
    [1]C. G. Hartinger, P. J. Dyson, Chem. Soc. Rev.2009,38,391
    [2]S. Top, E. B. Kaloun, A. Vessie, et al. ChemBioChem 2003,4,754
    [3]C. Biot, W. Daher, N. Chavain, et al. J. Med.Chem.2006,49,2845
    [4]D. S. Williams, P. J. Carroll, E. Meggers, Inorg. Chem.2007,46,2944
    [5]S. J. Dougan, A. Habtemariam, S. E. McHale, et al. Proc. Natl. Acad. Sci. USA 2008,105, 11628
    [6]N. N. Metzler, Chimia 2007,61,736
    [7]A. Vessieres, S. Top, W. Beck, et al. Dalton Trans.2006,529
    [8]D. Harmsen, G. Erker, R. Frohlich, et al. Eur. J. Inorg. Chem.2002,3156
    [9]K. N. Green, S. P. Jeffery, J. H. Reibenspies, et al. J. Am. Chem. Soc.2006,128,6493
    [10]L.Barisic, M. Cakic, K. A. Mahmoud, Chem. Eur. J.2006,12,4965
    [11]S. K. Hadjikakou, N. Hadjiliadis, Coord. Chem. Rev.2009,253,235
    [12]T. S. B. Baul,Appl. Organometal. Chem.2008,22,195
    [13]V. Chandrasekhar, K. Gopal, P. Thilagar, Ace. Chem. Res.2007,40,420
    [14]V. Chandrasekhar, S. Nagendran, V. Baskar, Coord. Chem. Rev.2002,235,1
    [15]M. Gielen,Appl. Organometal. Chem.2002,16,481
    [16]E. R. T. Tiekink,Appl. Organometal. Chem.1991,5,1
    [17]C. Ma, Q. Wang, R. Zhang, Inorg. Chem.2008,47,7060
    [18]V. Chandrasekhar, R. Thirumoorthi, Organometallics 2009,28,2096
    [19]Y. H. Wang, X. G. Du, X. Y. W, et al. Chem. J. Chinese Universities 2008,29,1781
    [20]H. D. Yin, C. H. Wang, Q. J. Xing, Polyhedron 2004,23,1805
    [21]M. K. Rauf, M. A. Saeed, Imtiaz-ud-Din, et al. J. Organomet. Chem.2008,693,3043
    [22]M. M. Amini, A. Azadmehr, V. Alijani, et al. Inorg. Chim. Acta 2009,362,355
    [23]J. T. Lu, S. S. Chen, M. Du, et al. Appl. Organometal. Chem.2006,20,448
    [24]X. X. Gan, X. Wang, H. K. Zhang, et al. Chinese J. Inorg. Chem.2008,24,1504
    [25]H. Takahiro, T. Hisashi, S. Yoshimasa, et al. PCT Int. Appl.2004, WO 2004078723, CA 141:260553
    [26]Y. Sadakazu, H. Masatoshi, H. Katsuo, et al.1988, JP 63253073, CA 110:173237
    [27]A. Szorcsik, L. Nagy, M. Scopelliti, et al. J. Organomet. Chem.2006,691,1622
    [28]Z. K. Wen, H. B. Song, M. Du, et al. Appl. Organometal. Chem.2005,19,1055
    [29]S. G. Teoh, S. H. Ang, E. S. Looi, et al. J. Organomet. Chem.1996,523,75
    [30]A. Szorcsik, L. Nagy, A. Deak, et al. J. Organomet. Chem.2004,689,2762
    [31]Y. Zhou, J. Tao, S. Ren, et al. J. Organomet. Chem.2005,690,2186
    [32]A. Szorcsik, L. Nagy, J. Sletten, et al. J. Organomet. Chem.2004,689,1145
    [33]H. D. Yin, G. L. Zhong, J. Gao, et al. J. Organomet. Chem.2006,691,1235
    [34]M. S. Kumar, S. Upreti, H. P. Gupta, et al. J. Organomet. Chem.2006,691,4708
    [35]T. S. B. Baul, W. Rynjah, E. Rivarola, et al. J. Organomet. Chem.2006,691,4850
    [36]R. Zhang, Y. Han, C. Ma, J. Inorg. Organometal. Poly. Mater.2006,16,25
    [37]S. G. Teoh, S. H. Ang, H. C. Lim, et al. J. Coord. Chem.1998,46,87
    [38]Q. Duong, X. Song, E. Mitrojorgji, et al. J. Organomet. Chem.2006,691,1775
    [39]L. Tian, Q. Yu, X. Zheng, et al. Appl. Organometal. Chem.2005,19,672
    [40]R. Willem, A. Bouhdid, M. Biesemans, et al. J. Organomet. Chem.1996,514,203
    [41]J. Holecek, A. Lycka, Inorg. Chim. Acta 1986,118, L15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700