用户名: 密码: 验证码:
茂金属及后过渡金属均相烯烃聚合催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文设计合成了多个系列的茂金属化合物,研究了它们对α筛烃以及极性烯烃甲基丙烯酸甲酯聚合的催化活性,为开发新型聚合催化剂奠定基础。
     首先通过氧桥单茂钛化合物(CPTiCl2)2O (1)与双桥连二环戊二烯基负离子反应,合成了一个新的双桥连双茂(μ-氧)双核钛配合物。将其与氢卤酸反应,以期望断裂氧桥得到顺式双茂型化合物,结果意外的得到了茂环解离产物。所有化合物均被详细表征,并对茂环解离的原因进行了探讨。随后用MAO作为助催化剂详细研究了该系列化合物催化乙烯及苯乙烯的聚合,发现该系列化合物对乙烯催化活性相近,催化剂结构对活性影响较小但对聚合物性质有较大影响。化合物1对苯乙烯聚合的催化活性远远高出其它催化剂,且所得聚合物为等规聚苯乙烯。详细研究了温度、时间、Al/Ti摩尔比等因素对聚合反应的影响,为双金属协同效应提供了一个较好的例证。
     对本组以往所报道的二茚铁类化合物与苯炔的Diels-Alder反应进行了扩展,研究了茚基钉及芴基钌化合物与苯炔的Diels-Alder反应,得到了相应的单苯炔及双苯炔加成产物,发现由于热稳定性的关系,钌类化合物的反应性比相应的铁化合物高。在芴基钌化合物与苯炔的反应中意外的得到副产物二苯基芴,尝试用芴基钌化合物与四氯苯炔的反应来解释其反应历程。用X-射线衍射测定了芴基钌化合物苯炔加成产物的分子结构。最后初步尝试了典型化合物在Grubbs催化剂催化下的开环易位聚合反应(ROMP),但没有成功。
     首次报道了二茚铁作为中性单组分催化剂催化极性单体甲基丙烯酸甲酯(MMA)和苯乙烯的聚合,详细考察了温度、溶剂以及加入助催化剂对聚合反应的影响,发现提高温度能够大大加快聚合反应速率及单体转化率,溶剂极性以及助催化剂对反应有很大的影响,并对该聚合反应的机理进行了初步探讨,研究了加入自由基阻聚剂对苯醌和TEMPO的聚合反应,发现在自由基阻聚剂的存在下聚合仍然能够进行,否定了该聚合反应的自由基机理,尝试提出了一个可能的机理,即配位聚合机理,并将该聚合反应扩展到茚基铁、茚基钌、芴基钌类似物上。
In this dissertation, several series of metallocene catalysts were designed and synthesized, and their polymerization behaviors of a-olefins and polar monomers were also studied, which could be a basis for developing new types of catalysts for olefin polymerization.
     A new doubly bridged bis(cyclopentadienyl) dinuclear (μ-oxo)titanium complex was desiged to be synthesized by the reaction of the lithium compound of the doubly bridged bis(cyclopentadienyl) ligand with the (μ-oxo)semitetallocene titanium complex 1 ([CpTiCl2]2O). Treatment of the compound with concentrated HCl or HBr gave the corresponding Cp-decoordinated products, instead of the expected cis dinuclear metallocene complexes. All these titanium complexes were fully characterized. Their catalytic properties for ethylene and styrene polymerization were also studies in the presence of MAO. The results indicated that these complexes had similar activities for ethylene polymerization and the structures of catalysts had a little effect on catalystic activity but great effects on the properties of the polymers. Compound 1 showed a much higher activity towards styrene polymerization than the others, and the produced polymer is isotactic polystyrene. The influences of temperature, time, Al/Ti ratio were studied in details, which provided a good example for cooperative effects of bimetallic complexes.
     To extend the Diels-Alder reaction of benzyne with indenyl iron which reported by our group before the reactions of indenyl and fluorenyl ruthenium complexes with benzyne were studied and the corresponding monoadducts or bisadducts were obtained. Reaction of fluorenyl ruthenium compound with benzyne gave the monoadduct and a byproduct,9,9'-dipehenylfluorene. The possible mechanism of the formation of the byproduct was also studied. Typical complex was also tested for ring-opening metathesis polymerization (ROMP) in the presence of Grubbs' second generation catalyst [(H2IMes)(PCy3)RuCl2=CHPh] but was found to be inactive under normal conditions.
     Bis(indenyl)iron as a neutral single-component catalyst methyl methacrylate (MMA) and styrene polymerization was found and the influence of temperature, solvent and cocatalysts were studied in details. A preliminary investigation of the mechanism of the polymerization was carried out. A radical mechanism was denied and a possible mechanism was propesed. In order to extent the application scope of the polymerization, research on the indenyl iron, indenyl nickel and fluorenyl rutheniym complexes were also conducted.
引文
[1] Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H. Das Miilheimer Normaldruck PolySthylenVerfahren.Angew Chem. 1955, 67,541-547.
    [2]Natta, G. Stereospezifische Katalysen und isotaktische Polymere. Angew Chem. 1956, 68.393-403.
    [3]Breslow. D. S.; Newburg, N. R. Bis-(cyclopentadienyl)-titanium dichloride-alkylaluminumcomplexes as catalysts for the polymerization of ethylene. J. Am. Chem. Soc. 1957, 79,5072-5073.
    [4]Reichert. K. H.; Meyer, K. R. Makromol. Chem., 1973,169, 163.
    [5]Herwig. J.; Kaminsky. W. Polym. Bull. (Berlin) 1983, 9, 464.
    [6]Kaminsky. W.; Miri, M.; Sinn, H.; Woldt R. Makromol. Chem. Rapid Commun. 1983, 4.417.
    [7]Wild, F. R. W. P.; Zsolnai, L.; Huttner, G; Brintzinger, H. H. ansa-Metallocene Derivatives:IV. Synthesis and molecular structures of chiral ansa-titanocene derivatives with bridgedtetrahydroindenyl ligands. J. Organomet. Chem. 1982,232,233-247.
    [8]Wild. F. R. W. P.; Huttner, G; Brintzinger, H. H. onso-Metallocene derivatives: VII.Synthesis and crystal structure of a chiral anso-zirconocene derivative withethylene-bridged tetrahydroindenyl ligands. J. Organomet. Chem. 1985,288, 63-67.
    [9] Ewen, J. A. Mechanisms of stereochemical control in propylene polymerizations withsoluble Group 4B metallocene/methylalumoxane catalysts. J. Am. Chem. Soc. 1984, 106,6355-6364.
    [10] Kaminsky, W.; Kulper, K.; Brintzinger. H. H.; Wild, F. R. W. P. Polymerization of Propeneand Butene with a Chiral Zirconocene and Methylalumoxane as Cocatalys. Angew. Chem.Int. Ed. Engl. 1985.24, 507-508.
    [11] Ewen, J. A.; Jones, R. L.; Razavi, A. Syndiospecific propylene polymerizations with GroupIVB metallocenes. J. Am. Chem. Soc. 1988.110. 6255-6256.
    [12] (a) Shista. C; Hathom. R. M.; Marks. T. J. Group 4 metallocene-alumoxane olefinpolymerization catalysts. CPMAS-NMR spectroscopic observation of cation-likezirconocene alkyls. J. Am. Chem. Soc. 1992. 114. 1112-1114. (b) Gasman, P. G; Calstrom,M. R. Isolation, and partial characterization by XPS, of two distinct catalysts in theZiegler-Natta polymerization of ethylene. J. Am. Chem. Soc. 1987, 109, 7875-7876. (c)Eisch, J. J.; Pombrick. S. I.; Zheng. G X. Organometallic compounds of Group III. 52.Active sites for ethylene polymerization with titanium(IV) catalysts in homogeneous media:
    multinuclear NMR study of ion-pair equilibria and their relation to catalyst activity.Organometallics, 1993,12,3856-3863.
    [13] Hlatky, D. J.; Turner, H. W. 1990, US Pat. Appl. 459921; Chem. Abstr. 1991,115, 256897.
    [14] Yang, X.; Stern, C. L.; Marks, T. J. Models for organometallic molecule-support complexes.Very large counterion modulation of cationic actinide alkyl reactivity. Organometallics,1991,10, 840-842.
    [15] Zambelli, A.; Luongo, P.; Grassi, A. Isotactic polymerization of propene: homogeneouscatalysts based on group 4 metallocenes without methylalumoxane. Macromolecules, 1989,22,2186-2189.
    [16] Chien, J. C. W.; Tsai, W. M.; Rausch, M. D. Isospecific polymerization of propylenecatalyzed by rac-ethylenebis(indenyl)methylzirconium cation. J. Am. Chem. Soc. 1991,113,8570-8571.
    [17] Sinclair, K.; Wilson, R. Chem. & Ind., 1994,857.
    [18] Thayer, A. M. Chem. Eng. News, 1995, Sept. 11,15.
    [19] Keim, W.; Kowaldt, F. H.; Goddard, R.; KrQger, C. Novel Coordination of(Benzoylmethylene)triphenylphosphorane in a Nickel Oligomerization Catalyst. Angew.Chem. Int. Ed. Engl, 1978,17,466-467.
    [20] Johnson, L. K.; Killian, C. M.; Brobkhart, M. New Pd(II)- and Ni(II)-Based Catalysts forPolymerization of Ethylene and alpha-Olefms. J. Am. Chem. Soc. 1995,117,6414-6415.
    [21] Killian, C. M.; Tempel, D. J.; Jonhsoh, L. K.; Brookhart, M. Living Polymerization ofa-Olefins Using Ni(II)-a-Diimine Catalysts. Synthesis of New Block Polymers Based ona-Olefins. J. Am. Chem. Soc. 1996,118,11664-11665.
    [22] Jonhson, L. K.; Mecking, S.; Brookhart, M. Copolymerization of Ethylene and Propylenewith Functionalized Vinyl Monomers by Palladium(ll) Catalysts. J. Am. Chem. Soc. 1996,118,267-268.
    [23] Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M. Mechanistic Studies of thePalladium-Catalyzed Copolymerization of Ethylene and a-Olefins with Methyl Acrylate. J.Am. Chem. Soc. 1998,120,888-899.
    [24] Britovsek, G J. P.; Gibson, V. C.;Kimberley, B. S.; Maddox, P. J.; McTavish, S. J.; Solan, GA.; White, A. J. P.; Williams, D. J. Novel olefm polymerization catalysts based on iron andcobalt Chem. Commun. 1998,849-850.
    [25] Small, B. L.; Brookhart, M.; Bennett, A. M. A. Highly Active Iron and Cobalt Catalysts forthe Polymerization of Ethylene. J. Am. Chem. Soc. 1998,120,4049-4050.
    [26] Bennett, A. M. A.; Brookhart, M. Iron-Based Catalysts with Exceptionally High Activitiesand Selectivities for Oligomerization of Ethylene to Linear a-Olefins. J. Am. Chem. Soc.1998,720,7143-7144.
    
    [27] Jordan, R. F.; Dasher, W. E.; Echols, S. F. Reactive cationic dicyclopentadienylzirconium(IV) complexes. J. Am. Chem. Soc. 1986, 108,1718-1719.
    [28] Kaminsky, W.; Bark, A.; Steiger, R. Stereospecific polymerization by metallocene/aluminoxane catalysts. J. Mol. Catal. 1992, 74,109-119. [29] Cam, D.; Giannini, U. Makromol. Chem. 1992,193,1049.
    [30] Tait, P.; in Trasition Metals and Organometallics as Catalysts for Olefin Polymerization, eds.Kaminsky. W.; Sinn, H. Springer Press, Berlin, 1988. [31] Jordan, R. F.; Lapointe, R. E.; Bajgur, C. S.; Echols, S. F.; Willett, R. Chemistry of cationiczirconium(IV) benzyl complexes. One-electron oxidation of dO organometallics. J. Am.Chem. Soc. 1987,109, 4111-4113. [32] Jordan, R. F.; Echols, S. F. Synthesis and chemistry of [Cp2Zr(CH3CN)3][BPh4]2: afive-coordinate, dicationic zirconocene complex. Inorg. Chem. 1987,26,383-386.
    [33] Jordan, R. F.; Bajgur, C. S.; Willert, R.; Scott, B. Ethylene polymerization by a cationicdicyclopentadienyl zirconium(IV) alkyl complex. J. Am. Chem. Soc. 1986,108,7410-7411.
    [34] Jordan, R. F. Chemistry of Cationic Dicyclopentadienyl Group 4 Metal-Alkyl Complexes.Adv. Organomet. Chem. 1991,32, 325-387.
    [35] Hlatky, G G; Upton, D. J.; Turner, H. W. USPatAppl 1990,459921.
    [36] Bochmann, M.; Jaggar, A. J. Cationic titanium alkyls as alkene polymerisation catalysts:Solvent and anion dependence. J. Organomet. Chem. 1992,424, C5-C7.
    [37] Kamingsky, W.; Steiger, R. Polymerization of olefins with homogeneouszirconocene/alumoxane catalysts. Polyhedron 1988, 7,2375-2381.
    [38] Corradine, P.; Guerra, G Prog. Polym. Sci., 1991,16,239.
    [39] Woo. T. W.; Fan, L.; Ziegler, T.; ( Eds. Fink, G; Mulhaupt, R.; brintzinger, H. H.). ZieglerCatalysts. Springer, Berlin, 1995, p291.
    [40] Lohrenz, J. C. W.; Woo, T. K.; Fan. L.; Ziegler, T. A density functional study on theinsertion mechanism and chain termination in Kaminsky-type catalysts; comparison offrontside and backside attack. J. Organomet. Chem. 1995, 497, 91-104.
    [41] Cossee, P. The formation of isotactic polypropylene under the influence of ziegler-nattacatalysts. Tetrahedron Lett., 1960, ;. 17-21.
    [42] Cossee. P. J. Catal., 1964,3, 80
    [43] Ystenes, M. J. Catal. 1991, 129,383.
    [44] Mogstad, A. L.; Waymouth, R. M. Chain transfer to aluminum in the homogeneouscyclopolymerization of 1,5-hexadiene. Macromolectdes 1992, 25,2282-2284.
    [45] Chien, J. C. W.; Wang, B. P. Metallocene-methylaluminoxane catalysts for olefinpolymerization. V. Comparison of Cp2ZrCl2 and CpZrCl3. J. Polym. Sci., Part A. Polym.Chem. 15-38.
    [46] Resconi, L.; Piemontesi, R; Franciscono, G; Abis, L.; Fiorani, T. Olefin polymerization atbis(pentamethylcyclopentadienyl)zirconium and -hafnium centers: chain-transfermechanicsms. J.Am. Chem.Soc. 1992,114,1025-1032.
    [47] Eshuis, J. J. W.; Tan, Y. Y.; Meetsma, A.; Teuben, J. H.; Renkema, J.; Evens, G G Kineticand mechanistic aspects of propene oligomerization with ionic organozirconium and-hafnium compounds: crystal structures of [Cp*2MMe(THT)]+[BPh4]" (M = zirconium,hafnium). Organometallics 1992,11,362-369.
    [48] Kaminsky, W.; Arndt, M. Advances in Polymer Science 1997,127, 143 (Springer-Verlag,Berlin Heidelberg). [49] Wang, B. Q.; Mu, B.; Deng, X. B. et al. Synthesis and structures of cycloalkylidene-bridgedcyclopentadienyl metallocene catalysts: effects of the bridges of     [51] Lee, I. M.; Gauthier, W. J.; Ball, J. M.; Iyengar, B.; Couins, S. Electronic effects ofZiegler-Natta polymerization of propylene and ethylene using soluble metallocene catalysts.Organometallics 1992,77,2115-2122.
    [52] Mohring, P. C; Coville, N. J. Group 4 metallocene polymerisation catalysts: quantificationof ring substituent steric effects. Coordin Chem Rev 2006,, 250,18-35.
    [53] Janiak, C; Versteeg, U.; Lange, K. C. H.; Weimann, R.; Hahn, E. The influence ofelectronic and steric effects and the importance of polymerization conditions in the ethylenepolymerization with zirconocene/MAO catalysts. J. Organomet. Chem. 1995,507,219-234
    [54] J. C. W. Chien, A. Razavi, J. Polym. Sci. Part A: Poly. Chem., 1988,26,2369. [55] Flory, P. J. Principles of Polymer Chemistry, Cornell University Press, Ithaca, 1986, P317.
    [56] Kaminsky, W.; Luker, H. Makromol. Chem. Rapid. Common., 1989,5,225. [57] Kaminsky, W.; Makromol. Chem. Rapid. Commun. 1989,6,225.
    [58] Hermann, W. A.; Morawietz, M. J. A.; Hermann, H. F.; KQber, F. Tin-bridgeda/uo-metallocenes of zirconium: synthesis and catalytic performance in olefinpolymerization. J. Oganomet. Chem. 1996,509,115-117.
    [59] Deckers, P. J. W.; Hessen, B.; Teuben, J. H. Swithing a catalyst system from ethenepolymerization to ethene trimerization with a hemilabile ancillary ligand. Angew. Chem. Int.Ed. 2001, 40, 2516-2519. (b) Otten, E.; Batinas, A. A.: Meetsma, A.; Hessen, B. Versatilecoordination of cyclopentadienyl-arene ligands and its roles in titanium-catalyzed ethylenetrimerization. J. Am. Chem. Soc. 2009,131, 5298-5312.
    
    [60] (a) Shapiro, B. J.; Bunnel, E.; Schedfer, W. P.; Bercaw, J. E. Scandium complex [{(η~5-C_5Me_4)Me_2Si(;η~1-NCMe_3)}(PMe3)ScH]2: a unique example of a single-component a-olefin polymerization catalyst. Organometallics 1990, 9, 867-869. (b) Dowchemical, European Patent No. 416815, 1991. (c) Exxon Chemical Patents, European Patent NO. 420436, 1991. (d) Williams, L. A.; Marks, T. J. Chemisorption Pathways and Catalytic Olefin Polymerization Properties of Group 4 Mono- and Binuclear Constrained Geometry Complexes on Highly Acidic Sulfated Alumina. Organometallics 2009, 28, 2053-2061. (e) Sakai, S.; Kojima, Y. Theoretical studies on the role of bridging group of CGC type ligands for the Ziegler-Natta catalysis. J. Organomet. Chem. 2009, 694,3276-3280. (f) Nabika, M.; Katayama, H.; Watanabe, T.; Kawamura-Kuribayashi, H.; Yanagi, K.; Imai, A. ansa-Cyclopentadienyl-Phenoxy Titanium(IV) Complexes (PHENICS): Synthesis, Characterization, and Catalytic Behavior in Olefin Polymerization. Organometallics 2009, 28, 3785-3792. (g) Raith, A.; Altmann, P.; Cokoja, M.; Herrmann, W. A.; Kuhn, F. E. eta(5),eta(l)-Coordinated cyclopentadienyl transition metal complexes featuring sigma-metal-carbon ansa bridges. Coord. Chem. Rev. 2010, 254,608-634.
    [61] Rodrigues, A. S.; Carpentier, J. F. Groups 3 and 4 single-site catalysts for styrene-ethyleneand styrene-alpha-olefin copolymerization. Coord. Chem. Rev. 2008,252,2137-2154.
    [62] Liu, J.; Nomura, K. Highly efficient Ethylene/Cyclopentene copolymerization withexclusive 1,2-cyclopentene incorporation by (Cyclopentadienyl)(ketimide)titanium(IV)Complex-MAO catalysts. Adx Synth Catal 2007,349.2235-2240.
    [63] Li, X. F.; Hou, Z. M. Organometallic catalysts for copolymerization of cyclic olefins.Coord. Chem. Rev. 2008, 252, 1842-1869.
    [64] Resconi, L.; Jones, R. L.; Rheingold, A. L.; Yap, G P. A. High-Molecular-Weight AtacticPolypropylene from Metallocene Catalysts. 1. Me2Si(9-Flu)2ZrX2 (X = CL Me).Organometallics 1996,15. 998-1005.
    [65] Wang, B. Q. /4w.?7-metallocene polymerization catalysts: Effects of the bridges on thecatalytic activities. Coor. Chem. Rev. 2006, 250, 242-258.
    [66] (a) Resconi. L.; Cavallo, L.; Fait. A.: Piemontesi. F. Selectivity in propene polymerization with metallocene catalysts. Chem. Rev 2000.100. 1253-1345. (b) Miller. S. A. Insertion vs. site epimerization with singly-bridged and doubly-bridged metallocene polymerization catalysts. J. Organomet. Chem. 2007. 692, 4708-4716. (c) Xiao. A. G; Wang, L.: Liu. Q. Q.: Dong. X. C. Recent research progress in influence of the ansa-zirconcene catalytic system on the polypropylene microstructure. Des. Monomers. Polym. 2007. 10, 281-295. (d) Antinolo. A.; Fernandez-Galan. R.; Molina. N.; Otero. A.; Rivilla. I.; Rodriguez, A. M. New alkenyl-substituted group 4 C-ansa-metallocene complexes. Reactivity of the substituent at the carbon ansa bridge. J Organomet Chem 2009, 694. 1959-1970. (e) Han, Y.:Kim, H.; Lee, M. H.; Kim, Y.; Lee, J.; Lee, Y. S.; Do, Y. Aminosilylene-bridgedansa-zirconocenes for branched polyethylenes with bimodal molecular weight distributions.J. Organomet. Chem. 2009, 694,4216-4222. (f) Caporaso, L.; de Rosa, C; Talarico, G TheRelationship between Catalyst Precursors and Chain End Groups in Homogeneous PropenePolymerization Catalysis. J.Polym. Sci. Pol Chem. 2010,48,699-708. (g) Liu, Y.; Liu, Y.;Drew, M. G B. Correlation between regioselectivity and site charge in propenepolymerisation catalysed by metallocene. Struct. Chem. 2010,21,21-28.
    [67] Soga, K.; Park, J. R.; Shiono, T. Polym. Commun., 1991,10,310.
    [68] PeQecchia, C; Proton A4 Zambelli, A. NonideaUties -exhibited by crosslinkingcopolymerization of methyl methacrylate and ethylene glycol dimethacrylate.Macromolecules 1992,25,4490-4500.
    [69] Spaleck, Ma Antberg, h/L; Rotanann, J4 WattHS; A.; Bachmann, B.; Kiprof, P.; Behm, J.;Herrmann, W.A; High Molecular Weight Polypropylene through Specifically DesigneZtrconocene Catalysts. Angew. Chem. Int. Ed. Engl. 1992,31,1347-1350.
    [70] Stehling, U.; Diebold, J.; Kirsten, R.; R5u, W.; Brintriqger, H. H4 Jungling, S.; MQlhaupt,R.; Langhanser, F. i?isa-Zirconocene Polymerization Catalysts with Anelated Ring Ligands- Effects on Catalytic Activity and Polymer Chain Length. Orgmometcdlics 1994, IS,964-970.
    [71] Spleck, W.; Kiiber, E; TWnter, A.; Rohrmann, J.; Bachmarm, B.; Antberg, M.; Doue. V.;Paulus, E. F. EfBcient Synthesis of rac-(Ethylenebis(indenyl))ZrX2 Complexes via AmineElimfaiatioa OrgammetaUics 1995,14,5-7.
    [72] TomasL S.; Razavi, A.; Ziegler, T. Density functional theory investigation into thestereocontrol of the syndiospecific polymerization of proyylene catalyzed by Cs-symmetricTfrconocenes. Organometallics 2007,26,2024-2036.
    [73] Patsidis, K.; Alt, H. G; Milius, W.; PalackaL S. J. The synthesis, characterization andpolymerization behavior of ansa cyclopentadienyl fluorenyl complexes; the X-raystructures of the complexes [(C_(l3)H_8)SiR_2(C_5H_4)]ZrCl_2 (R=Me orPh)./ Organomet. Chem.1996,509,63-71. [74] Langli, G; Romming, C; Undheim, K. Spirane-bridged arm η~5-cyclQpentadienyl-η5-fluorenyl-zirconocene precaljsts,J;Organomet.Chem- 2006,691, 3089-3097. [75] Leclere, M. K.; Waymaum, R, ML Angew. Chem: 1st. Ed. Engl. 1998,37,922-925. [76] Spaleck, W.; ANAerg, M.; Dolle, V, et al. Stereorigid metallocenes: correlations betweenstructure and behavior in homopolymerizations of propylene. New. J. Chem. 1990, 14,499-503. [77] Farina, M.; Disilvestro, G; Sozzani, P. Hemiisotactic polypropylene: a key point in theelucidation of the polymerization mechanism with metallocene catalysts. Macromalecules1993,26, 946-950.
    [78] Kaminsky, W.; Rabe, O.; Schupfner, G. U. et al. Crystal structure and propenepolymerization characteristics of bridged zirconocene catalysts. J. Organomet. Chem. 1995,497,181-194.
    [79] Miller, S. A.;Bercaw, J. E. Isotactic-Hemiisotactic Polypropylene from C]-Symmetricansa-Metallocene Catalysts: A New Strategy for the Synthesis of ElastomericPolypropylene. Organometallics 2002,21,934-945.
    [80] Miller, S. A.;Bercaw, J. E. Mechanism of Isotactic Polypropylene Formation withC]-Symmetric Metallocene Catalysts. Organometallics 2006,25,3576-3592.
    [81] Coates, G. W.; Waymouth, R. M. Oscillating Sterocontrol: A Strategy for the Synthesis ofThermoplastic Elastomeric Polypropylene. Science, 1995,267,217-219.
    [82] (a) W. Spaleck, M. Aulbach, B. Bachmann, F. Kuber, A. Winter, Macromol. Symp. 1995, 89,237. (b) Lincoln, A. L; Wilmes, G. M.; Waymouth, R. M. Dynamic NMR studies ofcationic bis(2-phenylindenyl) zirconium pyridyl complexes: Evidence for syn conformersin solution. Organometallics 2005, 24, 5828-5835.
    [83] Caporaso, L.; de Rosa, C; Talarico, G The Relationship between Catalyst Precursors andChain End Groups in Homogeneous Propene Polymerization Catalysis. J. Polym. Sci. Pol.Chem. 2010,48,699-708.
    [84] Venditto, V.; Guerra, G; Corradini, P.; Fusco, R. Possible model for chain end control ofstereoregularity in the isospecific homogeneous Ziegler-Natta polymerization. Polymer,1991,31, 530-537.
    [85] Wondimagegn, T.; Wang, D. Q.; Razavi, A.; Ziegler, T. In Silico Design of C\ and CsSymmetric Fluorenyl-Based Metallocene Catalysts for the Synthesis ofHigh-Molecular-Weight Polymers from Ethylene/Propylene Copolymerization.Organometallics 2009,28, 1383-1390.
    [86] Han, Y.; Kim, H.; Lee, M. H.; Kim, Y.; Lee, J.; Lee, Y. S.; Do, Y. Aminosilylene-bridgedawsa-zirconocenes for branched polyethylenes with bimodal molecular weight distributions.J. Organomet. Chem. 2009, 694.4216-4222.
    [87] Wang. D. Q.; Tomasi, S.; Razavi. A.; Ziegler, T. Why do C|-symmetric ansa-zirconocznecatalysts produce lower molecular weight polymer's for ethylene/propylenecopolymerization than for ethylene/propylene homopolymerization? Organometallics 2008.27. 2861-2867.
    [88] Matsugi, T.; Fujita, T. High-performance olefin polymerization catalysts discovered on thebasis of a new catalyst design concept. Chem Soc Rev 2008, 37, 1264-1277.
    [89] Roll. W.; Zsolnai, L.; Huttner. G; Brintzinger, H. H. ansa-metallocene derivatives : XI.Synthesis and crystal structure of a chiral awso-titanocene derivative with
    trimethylene-bridged tetrahydroindenyl ligands. J. Organomet. Chem. 1987,322, #5-70.
    [90] Voly, J. A.; Green, M. L. H.; Gardiner, I. M.; Prout, K. Poljanerisation of ethylene andpropene using new chiral zirconium derivatives. Crystal structure of[ZrLlCl2]|K2LH4S,5S)-trans^,5-bis(lF-inden-l-ylmethyl)-2,2^imethyl-l,3-dioxolane].J. Chem. Soc DaltonTrans. 1991,2207-2216.
    [91] Huttenloch, M. E.; Diebold, J.; Rief, U.; Brintzinger, H. H.; Gilbert, A. M.; Katz, T. J.cwwo-Metallocene derivatives. 26. Biphenyl-bridged metallocenes that are chiral,configurationally stable, and ftee of diastereomecs. Organometallics 1991,11,3600-3607.
    [92] Stehling, U.; DiebokLX; Khsten, R.; JtBtii W.; BmHm^s^M.M^ Jungling, S.; Miilhaupt,R.; Langhauser, F..arasa-Zircon0cene'Polymerization Catalysts -with Anelated Ring Ligands- Effects on Catalytic Activity and Polymer Chain Length. Organometallics 1994, 13,
    [93] Splei*, W.; Kflber, R; Wwtes,Ar, Rohrmann, J^ Backmann, B.; Anftetg, M.; Doue, V.;Paulus, E. F. Efficient Synthesis of r?ac^thylenebis(indenyl))ZtX2 Complexes via AmineElimination. Organometallics 1995,14,5-1.
    [94] T. Tustsui, N. Kashiwa, A. Mizuno, Makromol. Chem, Rapid Comnum. 1990,11,565.
    [95] Chien, J. C. W.; Sugimoton, R. TCinetics and stereochemical control of propylenepolymerization initiated by ethylene bis(4,5,6,7-teteii!y&?>l-inde?yl) zirconiumdichlorideAnethyl aluminoxane catalyst J. Pofym. Sci. Part A. 1991,29,459-470.
    [96] Natta, a Pino, P.; Mantica,£4 Mazzanti,    [97] G Natta, F. Danussoand,D. Stoiesi, Makromol. Chem. 1958,28,253.
    [98] Natta, G; Pasquon, I.; Zambelli, A. Stereospecific Catalysts for the Head-To-TailPolymerization of Propylene to & Crystalline Syndiotactic Polymer. J. Am. Chem. Soc. 1962,84,1488-1490.
    [99] Ishihara, N.; Seimiga, T.; Kuramoto, M.; Uoi, M. Crystalline syndiotactic polystyrene.Macromolecules 1986,19,2464-2465. [100] Ishihara, N.; Kuramata M.; Uoi, M. Stereospecific polymerization of styrene giving thesyndiotactic polymer. Macromolecules 1988,21,3356-3360.
    [101]     [102] Chien, J. C. W.; Salajka, Z.; Dong, S. J. Polym. Sci. Polym. Chem. Ed 1991,29, 1243.
    [103] Chien, J. C. W.; Dong, S. Polym. Bull. (Berlin) 1992.29,515.
    [104] Zambelli, A.; Pellecchia, C; Olive, L; Longo, P.; Grassi, A. Mdkromol. Chem. 1991,192,223.
    [105] Pellecchia, C; Longo, P.; Grassi, A.; Ammendola, P.; Zambelli Macromol. Chem. RapidCommun. 1987, 8,277.
    [106] Ready, T. E.; Chien, J. C. W.; Rausch, M. D. (η~5-Indenyl)trichlorotitanium. An improvedsyndiotactic polymerization catalyst for styrene. Macromolecules, 1993,26, 5822-5823.
    [107] Foster, P.; Chien, J. C. W.; Rausch, M. D. Highly Stable Catalysts for the StereospecificPolymerization of Styrene. Orgmometdlics, 1996,15,2404-2409.
    [108] Farnham, W. B.; Hertler, W. U.S. Patent 4,728,706,1988.
    [109] Collins, S.; Ward, S. G Group-transfer polymerization using cationic zirconocenecompounds. J. Am. Chem. Soc. 1992,114, 5460-5462.
    [110] Chen, E. Y. -X. Coordination Polymerization of Polar Vinyl Monomers by Single-SiteMetal Catalysts. Chem. Rev. 2009,109,5157-5214.
    [111] Rodriguez-Delgado, A.; Mariott, W. R.; Chen, E. Y. -X. Living and synidoselectivepolymerization of methacrylates by constrained geometry titanium alkyl and enolatecomplexes. Macromolecule 2004,37, 3092-3100.
    [112] Rodriguez-Delgado, A.; Mariott, W. R.; Chen, E. Y. -X. Synthesis and MMApolymerization of chiral ansa-zirconocene ester enolate complexes with C2- and Cs-Hgation.J. Organomet. Chem. 2006, 691, 3490-3497.
    [113] Ning, Y. L.; Chen. E. Y. -X. Metallocene-catalyzed polymerization of methacrylates tohighly syndiotactic polymers at high temperatures. J. Am. Chem. Soc. 2008, 130.2463-2465.
    [114] Deng. H.; Shiono, T.; Soga, K. lsospecific polymerization of methyl methacrylate initiatedby chiral zirconocenedimethyl/Ph3CB(C6F5)4 in the presence of lewis acid.Macromolecules, 1995,28,3067-3073. [115] (a) Britovsek, G. J. P.; Gibson, V. C; Wass, D. F. The search for new-generation olefinpolymerization catalysts: Life beyond metallocenes. Angew. Chem., Int. Ed 1999. 38.428-447. (b) lttel, S. D.; Johnson, L. K.; Brookhart, M. Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev. 2000, 100, 1169-1203. (c) Gibson, V. C; Spitzmesser, S. K. Advances in non-metallocene olefm polymerization catalysis. Chem. Rev. 2003,103, 283-315. (d) Boffa, L. S.; Novak, B. M. Copolymerization of polar monomers with olefins using transition-metal complexes. Chem. Rev. 2000, 100, 1479-1493. (e) Speiser. F.; Braunstein, P.; Saussine, L. Catalytic ethylene dimerization and oligomerization: Recent developments with nickel complexes containing P,N-chelating ligands. Ace. Chem. Res. 2005, 38, 784-.793 (f) Zhang, J.; Wang, X.; Jin, G-X. Polymerized metallocene catalysts and late transition metal catalysts for ethylene polymerization. Coord. Chem. Rev. 2006, 250, 95-109. (g) Small, B. L.; Rios, R.; Fernandez, E. R.; Carney, M. J. Oligomerization of ethylene using new iron catalysts bearing pendant donor modified alpha-diimine ligands. Organometcdlics 2W1,26,1744-1749.
    [116] (b) Small, B. L.; Brookhart, M.; Bennett, A. M. A. Highly active iron and cobalt catalysts for the polymerization of ethylene. J. Am. Chem. Soc. 1998,120,4049-4050. (c) Britovsek, G J. P.; Bruce, M.; Gibson, V. C. Iron and cobalt ethylene polymerization catalysts bearing 2,6-bis(imino)pyridyl ligands: Synthesis, structures, and polymerization studies. J. Am. Chem. Soc. 1999, 121, 8728-8740. (d) Liu, C.-K.; Jin, G-X, Acta Chim. Sin. 2002, 60, 157-161. (e) Liu, C.-K.; Jin, G-X. New J. Chem. 2002,26,1485-1489. (f) Kooistra, T. M.; Hekking, K. F. W.; Knijnenburg, Q.; Bruin, B. D.; Budzelaar, P. H. M.; Gelder, R. d.; Smits, J. M. M.; Gal, A. W. Cobalt chloride complexes of N-3 and N-4 donor ligands. Eur. J. Inorg. Chem. 2003, 648-655. (g) Chen, J.-X.; Huang, Y.-B.; Li, Z.-S.; Zhang, Z.-C; Wei, C.-X.; Lan, T.-Y.; Zhang, W.-J. Syntheses of iron, cobalt, chromium, copper and zinc complexes with bulky bis(imino)pyridyl ligands and their catalytic behaviors in ethylene polymerization and vinyl polymerization of norbornene. J. Mol. Catal. A: Chem. 2006,259, 133-141.
    [117] (a) Small, B. L.; Brookhart, M. Iron-based catalysts with exceptionally high activities and selectivities for oligomerization of ethylene to linear alpha-olefins. J. Am. Chem. Soc. 1998, 120, 7143-7144. (b) Britovsek, G J. P.; Mastroianni, S.; Solan, G A.; Baugh, S. P. D.; Redshaw, C; Gibson, V. C; White, A. J. P.; Williams, D. J.; Elsegood, M. R. J. Oligomerisation of ethylene by bis(imino)pyridyliron and cobalt complexes. Chem-Eur. J. 2000,5,2221-2231.
    [118] Britovsek, G J. P.; Gibson, V. C; Spitzmesser, S. K.; Tellmann, K. P.; White, A. J. P.; Williams, D. J. Cationic 2,6-bis(imino)pyridine iron and cobalt complexes: synthesis, structures, ethylene polymerisation and ethylene/polar monomer co-polymerisation studies. J Chem Soc Dalton 2002, 1159-1171.
    [119] (a) Dawson, D. M.; Walker. D. A.; Thornton-Pett, M; Bochmann, M. Synthesis andreactivity of sterically hindered iminopyrrolato complexes of zirconium, iron, cobalt and nickel. J. Chem. Soc, Dalton. Trans. 2000, 459-466. (b) Tohi, Y.; Matsui, S.; Fujita, T. (Mitsui Chemicals, Inc., Japan). PCT Int. Appl. WO9965951, 1999; Chem. Abstr. 2000,132, 50392. (c) Xu. W.; Wang, Q.; Wurz, R. P. (Nova Chemicals (International) S.A., Switzerland). Eur. Patent EP1046647, 2000; Chem. Abstr. 2000, 133, 322296. (d) Tohi, Y.; Matsui, S.; Fujita. T. (Mitsui Chemicals, Inc., Japan). PCT Int. Appl. WO9965952. 1999; Chem. Abstr. 2000,132, 50393.
    [120] Britovsek, G. J. P.; Bruce, M.; Gibson, V. C; Kimberley, B. S.; Maddox, P. J.; Mastroianni, S.; McTavish, S. J.; Redshaw, C; Solan. G. A.; Stromberg, S.; White. A. J. P.; Williams, D. J. Iron and cobalt ethylene polymerization catalysts bearing 2,6-bis(imino)pyridyl ligands: Synthesis, structures, and polymerization studies. J. Am. Chem. Soc. 1999,121, 8728-8740.
    [121] Kaul, F. A. R.; Puchta, G. T.; Frey, G. D.; Herdtweck, E.; Herrmann, W. A. Iminopyridine complexes of 3d metals for ethylene polymerization: Comparative structural studies and ligand size controlled chain termination. Organometallics 2007,26, 988-999.
    [122] Smit, T. M.; Tomov, A. K.; Gibson, V. C; White, A. J. P.; Williams, D. J. Dramatic effect of heteroatom backbone substituents on the ethylene polymerization behavior of bis(imino)pyridine iron catalysts. Inorg. Chem. 2004, 43,6511-6512.
    [123] Britovsek, G J. P.; Gibson, V. C; Mastroianni. S.; Oakes, D. C. H.; Redshaw, C; Solan, G. A.; White, A. J. P.; Williams, D. J. lmine Versus Amine Donors in Iron-Based Ethylene Polymerisation Catalysts. Eur. J. Inorg. Chem. 2001,431-437.
    [124] Britovsek, G. J. P.; Baugh, S. P. D.; Hoarau. O.; Gibson, V. C; Wass, D. F.; White, A. J. P.; Williams, D. J. The role of bulky substituents in the polymerization of ethylene using late transition metal catalysts: a comparative study of nickel and iron catalyst systems. Inorg Chim Acta 2003.345, 279-291.
    [125] Luo, H. K.; Yang, Z. H.; Mao, B. Q.; Yu. D. S.; Tang. R. G In situ UV-VIS studies on late-transition metal catalysts for ethylene polymerization. J. Mol. Catal. a-Chem. 2002, 777, 195-207.
    [126] Talsi, E. P.: Babushkin. D. E.; Semikolenova. N. V.; Zudin. V. N.; Panchenko, V. N.; Zakharov, V. A. Polymerization of ethylene catalyzed by iron complex bearing 2,6-bis(imine)pyridyl ligand: H-l and H-2 NMR monitoring of ferrous species formed via catalyst activation with AlMe3. MAO. AIMe.VB(C_6F_5)_3 and AlMe_3/CPh.t(C_6F5)4. Macromol. Chem. Physic. 2001, 202,2046-2051.
    [127] Britovsek. G. J. P.; Clentsmith. G. K. B.; Gibson. V. C; Goodgame, D. M. L.; McTavish, S. J.; Pankhurst. Q. The nature of the active site in bis(imino)pyridine iron ethylene polymerisation catalysts. Catal. Commun. 2002, 5. 207-211.
    [128] Britovsek. G. J. P.; Gibson. V. C; Spitzmesser. S. K.; Tellmann. K. P.; White. A., J. P.; W.D. Cationic 2,6-bis(imino)pyridine iron and cobalt complexes: synthesis, structures, ethylene polymerisation and ethylene/polar monomer co-polymerisation studies. J. Chem. Soc, Dalton Trans. 2002, 1159-1171.
    [129] (a) Rodriguez-Delgado, A.; Campora, J.; Naz, A. M.; Palma, P.; Reyes, M. L. Separation of a diiminopyridine iron(II) complex into rac- and meso- diastereoisomers provides evidence for a dual stereoregulation mechanism in propene polymerization. Chem. Commvn. 2008, 5230-5232. (b) Mikenas, T. B.; Zakharov, V. A.; Echevskaya, L. G; Matsko, M. A. Kinetic features of ethylene polymerization over supported catalysts [2,6-bis(imino)pyridyI iron dichloride/magnesium dichloride] with AIR(3) as an activator. J. Polym. Sci. Pol. Chem. 2007, 45, 5057-5066. (c) Kaul, F. A. R.; Puchta, G T.; Frey, G D.; Herdtweck, E.; Herrmann, W. A. Iminopyridine complexes of 3d metals for ethylene polymerization: Comparative structural studies and ligand size controlled chain termination. Organometallics 2007, 26, 988-999. (d) Pellecchia, C; Mazzeo, M.; Pappalardo, D. Isotactic-specific polymerization of propene with an iron-based catalyst: polymer end groups and regiochemistry of propagation. Macromol. Rapid Commun. 1998,19,651-
    [130] (a) Huang, R.; Koning, C. E.; Chadwick, J. C. Effects of hydrogen in ethylene polymerization and oligomenzation with magnesium chloride-supported bis(imino)pyridyl iron catalysts. J. Polym. Sci. Pol. Chem. 2007,45,4054-4061. (b) Small, B. L.; Brookhart. M. Polymerization of propylene by a new generation of iron catalysts: Mechanisms of chain initiation, propagation, and termination. Macromolecules 1999,32,2120-2130.
    [131] (a) Matsunaga, P. T. (Exxon Chemical Patents Inc., USA). PCT Int. Appl. WO9957159, 1999; Chem. Abstr. 1999, 131, 351802. (b) For the synthesis and characterization of the Felll complex, see: Fryzuk, M. D.; LeznofI, D. B.; Ma, E. S. E.; Rettig, S. J.; Young, V. G. Synthesis, structure, and reactivity of paramagnetic Iron(II) and Iron(lII) amidodiphosphine complexes. Organometallics 1998,17,2313-2323.
    [132] For the synthesis and characterization of the Fell! complex, see: de Koster, A.; Kanters, J. A.; Spek, A. L.; van der Zeijden, A. A. H.; van Koten, G; Vrieze, K. Acta Crystallogr. C 1985,41,893-895.
    [133] (a) Matsui, S.; Nitabaru, M.; Tsuru, K.; Fujita, T.; Suzuki, Y.; Takagi, Y.; Tanaka, H. (Mitsui Chemicals, Inc., Japan). PCT Int. Appl. WO9954364, 1999; Chem. Abstr. 1999, 131 310946. (b) LePichon, L.; Stephan, D. W.; Gao, X.; Wang, Q. Iron phosphinimide and phosphinimine complexes: Catalyst precursors for ethylene polymerization. Organometallics 2002,27,1362-1366.
    [134]Britovsek. G J. P.; Gibson, V. C; Kimberley, B. S.; Maddox. P. J.; McTavish, S. J.; Solan. G. A.; White. A. J. P.; Williams, D. J. Novel olefin polymerization catalysts based on iron and cobalt. Chem. Commun., 1998, 849-850.
    [135] (a) Enders, M.; Fernandez, P.; Ludwig, G.; Pritzkow, H. New Chromium(HI) Complexes as Highly Active Catalysts for Olefin Polymerization. Organometallics 2001, 20, 5005-5007. (b) Enders, M.; Ludwig, G.; Pritzkow, H. Nitrogen-Functionalized Cyclopentadienyl Ligands with a Rigid Framework: Complexation Behavior and Properties of Cobalt(I), -(II), and -(III) Half-Sandwich Complexes. Organometallics 2001,20, 827-833. (c) Laine, T. V.; Klinga, M.; Maaninen, A.; Aitola, E.; Leskela, M. Effect of metal on the ethylene polymerization behavior of a diimine-based homogeneous late transition metal catalyst system. Acta Chem. Scand. 1999, 53, 968-973.
    [136] (a) Ittel S D , Johnson L K. Brookhart M. Late-Metal Catalysts for Ethylene Homo- and Copolymerization. Chem. Rev. 2000, 100, 1169-1204. (b) Gibson V C, Spitzmesser S K. Advances in Non-Metallocene Olefin Polymerization Catalysis. Chem. Rev. 2003, 103, 283-316. (c) Takeuchi, D. Recent progress in olefin polymerization catalyzed by transition metal complexes: new catalysts and new reactions. Dalton. Trans. 2010, 39, 311-328. (d) Rodriguez, B. A.; Delferro, M.; Marks, T. J. Bimetallic Effects for Enhanced Polar Comonomer Enchainment Selectivity in Catalytic Ethylene Polymerization. J. Am. Chem. Soc. 2009,131, 5902-5919. (e) Li, L. D.; Jeon, M.; Kim, S. Y. Synthesis, characterization and ethylene polymerisation of 9,10-phenanthrenequinone-based nickel(II)-alpha-diimine complexes. J. Mol. Catal. a-Chem. 2009,303,110-116.
    [137] (a) Camacho, D. H.; Salo, E. V.; Guan, Z. B.: Ziller, J. W. Nickel(II) and palladium(II) complexes with an alkane-bridged macrocyclic ligand: Synthesis, characterization, and polymerization tests. Organometallics 2005,24,4933-4939. (b)Camacho, D. H.; Salo. E. V.; Ziller, J. W.; Guan, Z. Cyclophane-based highly active late-transition-metal catalysts for ethylene polymerization. Angew. Chem. Int. Ed., 2004,43,1821-1825.
    [138] Strauch. J. W.; Erker, G.; Kehr, G.; Frohlich, R. Formation of a butadienenickel-based zwitterionic single-component catalyst for ethylene polymerization: An alternative activation pathway for homogeneous Ziegler-Natta catalysts of late transition metals. Angew. Chem., Int. Ed. 2002.41,2543-2546.
    [139] (a) Boardman, B. M.; Bazan, G. C. alpha-lminocarboxamidato Nickel Complexes. Accounts. Chem. Res. 2009, 42,1597-1606. (b) Berkefeld, A.; Drexler, M.; Moller. H. M.; Mecking, S. Mechanistic Insights on the Copolymerization of Polar Vinyl Monomers with Neutral Ni(II) Catalysts. J. Am. Chem. Soc. 2009.131. 12613-12622. (c) Wang. L. Y.; Cao, D. R.; Wil Q. Highly active polymerization of methyl methacrylate catalyzed by Pd-based beta-ketoiminato complexes/MAO systems. Eur. Polym. J. 2009, 45, 1820-1825. (d) Marques, M. M.; Fernandes, S.; Correia. S. G.; Ascenso, J. R.; Caroco, S.; Gomes, P. T.; Mano. J.; Pereira, S. G; Nunes, T.; Dias. A. R.; Rausch. M. D.; Chien, J. C. W. Synthesis of acrylamide/olefin copolymers by a diimine nickel catalyst. Macromol. Chem. . 2000,201, 2464-2468. (e) Marques, M. M.; Fernandes, S.; Correia, S. G; Caroco, S.; Gomes, P. T.; Dias, A. R.; Mano, J.; Rausch, M. D.; Chien, J. C. W. Synthesis of polar vinyl monomer-olefin copolymers by alpha-diimine nickel catalyst Polym. Int. 2001, 50, 579-587. (f) Chien, J. C. W.; Fernandes, S.; Correia, S. G; Rausch, M. D.; Dickson, L. C; Marques, M. M. Polymerization of olefins and polar monomers catalyzed by bis(imino)Ni(Il)/dibutylmag -nesium/alkylaluminium halide systems. Polym. Int. 2002. 51. 729-737.
    [140] (a) Mecking, S. Reactor blending with early/late transition metal catalyst combinations in ethylene polymerization. Macromol. Rapid Commun. 1999, 20, 139-143. (b) de Souza, R. F.; Casagrande, O. L. Recent advances in olefin polymerization using binary catalyst systems. Macromol. Rapid Commun. 2001, 22, 1293-1301. (c) Mota, F. F.; Mauler, R. S.; de Souza, R. E; Casagrande, O. L. Tailoring polyethylene characteristics using a combination of nickel alpha-diimine and zirconocene catalysts under reactor blending conditions. Macromol. Chem. Phys. 2001,202,1016-1020. (d) Kunrath, F. A.; de Souza, R. F.; Casagrande, O. L. Combination of nickel and titanium complexes containing nitrogen ligands as catalyst for polyethylene reactor blending. Macromol.Rapid Commun. 2000, 21, 277-280. (e) Popeney, C. S.; Rheingold, A. L.; Guan, Z. B. Nickel(II) and Palladium(II) Polymerization Catalysts Bearing a Fluorinated Cyclophane Ligand: Stabilization of the Reactive Intermediate. Organometallics 2009,28,4452-4463. (f) Bahuleyan, B. K.; Kim, J. H.; Seo, H. S.; Oh, J. M.; Ahn, I. Y.; Ha, C. S.; Park, D. W.; Kim, I. Polymerization of Methyl Methacrylate with Nickel(II) and Palladium(II) Iminopyridyl Mononuclear Bimetallic Complexes. Catal. Lett. 2008,126,371-377. (g) Noel, G; Roder, J. C; Dechert, S.; Pritzkow, H.; Bolk, L.; Mecking, S.; Meyer, F. Pyrazolate-based dinuclear alpha-diimine-type palladium(II) and nickel(II) complexes - a bimetallic approach in olefin polymerisation. Adv. Synth. Catal. 2006,348,887-897.
    [141] (a) Pinheiro, M. F.; Mauler, R. S.; de Souza, R. F. Biphasic ethylene polymerization with a diiminenickel catalyst. Macromol. Rapid Commun. 2001,22,425-428. (b) Held, A.; Bauers, F. M.; Mecking, S. Coordination polymerization of ethylene in water by Pd(II) and Ni(II) catalysts. Chem. Commun. 2000,301-302.
    [142]Held, A.; Mecking, S. Coordination polymerization of ethylene in water by Pd(II) and Ni(II) catalysts. Chem. Eur. J. 2000.6,4623-4629.
    [143] Killian, C. M.; Johnson, L. K.; Brookhart, M. Preparation of Linear a-Olefins Using Cationic Nickel(II) a-Diimine Catalysts. Organometallics 1997,16,2005-2007.
    [144] Cooley, N. A,; Green, S. M.; Wass, D. F.; Heslop. K.; Orpen, A. G; Pringle, P. G Nickel Ethylene Polymerization Catalysts Based on Phosphorus Ligands. Organometallics 2001, 20,4769-4771.
    [145] (a) Speiser, F.; Braunstein. P.; Saussine, L.; Welter, R. Nickel Complexes with New Bidentate P,N Phosphinitooxazoline and -Pyridine Ligands: Application for the Catalytic Oligomerization of Ethylene. Inorg. Chem. 2004,43,1649-1658. (b) Speiser, R; Braunstein, P.; Saussine, L.; Welter, R. Nickel complexes with oxazoline-based P,N-Chelate ligands: Synthesis, structures, and catalytic ethylene oligomerization behavior. Organometallics 2004, 23, 2613-2624. (c) Speiser, F.; Braunstein, P. New Nickel Ethylene Oligomerization Catalysts Bearing Bidentate P,N-Phosphinopyridine Ligands with Different Substituents a to Phosphorus. Organometallics 2004, 23, 2625-2632. (d) Speiser, F.; Braunstein, P. Nickel Complexes Bearing New P.N-Phosphinopyridine Ligands for the Catalytic Oligomerization of Ethylene. Organometallics 2004, 23, 2633-2640. (e) Flapper, J.; van Leeuwen, P. W. N. M; Elsevier, C. J.; Kamer, P. C. J. Nickel and Palladium Complexes of Pyridine-Phosphine Ligands Bearing Aromatic Substituents and Their Behavior as Catalysts in Ethene Oligomerization. Organometallics 2009,28,3264-3271. (f) Flapper, J.; Kooijman, H.; Lutz, M.; Spek, A. L.; van Leeuwen, P. W. N. M.; Elsevier, C. J.; Kamer, P. C. J. Nickel and Palladium Complexes of Pyridine-Phosphine Ligands as Ethene Oligomerization Catalysts. Organometallics 2009, 28, 1180-1192. (g) Flapper, J.; Kooijman, H.; Lutz, M.; Spek. A. L.; van Leeuwen, P. W. N. M.; Elsevier, C. J.; Kamer, P. C. J. Nickel and Palladium Complexes of New Pyridine-Phosphine Ligands and Their Use in Ethene Oligomerization. Organometallics 2009,28, 3272-3281.
    [146] (a) Heinicke, J.; He, M. Z.; Dal, A.; Klein, H. F.; Hetche, O.; Keim, W.; Florke, U.; Haupt, H. J. Methyl(2-phosphanylphenolatol[P,O])nickel(II) complexes - Synthesis, structure, and activity as ethene oligomerization catalysts. Eur. J. Inorg. Chem. 2000, 431-440. (b) Heinicke, J.: Koesling, M.; Brull, R.; Keim, W.; Pritzkow. H. Nickel chelate complexes of 2-alkylphenylphosphanylphenolates: Synthesis, structural investigation and use in ethylene polymerization. Eur. J. Inorg. Chem. 2000, 299-305. (c) Soula, R.; Broyer, J. P.; Llauro. M. F.; Tomov, A.; Spitz. R.; Claverie, J.; Drujon, X.; Malinge, J.; Saudemont, T. Very active neutral P.O-Chelated nickel catalysts for ethylene polymerization. Macromolecules 2001. 34.2438-2442.
    [147] (a) Soula, R.; Novat. C; Tomov. A.; Spitz, R.; Claverie. J.; Drujon, X.; Malinge. J.: Saudemont, T. Catalytic polymerization of ethylene in emulsion. Macromolecules 2001. 34, 2022-2026. (b) Tomov. A.: Broyer, J. P.; Spitz. R. Emulsion polymerization of ethylene in water medium catalysed by organotransition metal complexes. Macromo] Symp 2000, 150. 53-58.
    [148] Gibson V C. Tomov A. Functionalised polyolefin synthesis using [P.OJNi catalysts. Chem. Commun. 2001, 1964-1965.
    [149] (a) Komon. Z. J. A.; Bu, X. H.; Bazan, G C. Synthesis of andHexene-Butene-Ethylene Copolymers from Ethylene via Tandem Action of Well-DefinedHomogeneous Catalysts. J. Am. Chem. Soc. 2000,122,1830-1831. (b)Komon, Z. J. A.; Bu,X. H.; Bazan, G C. Synthesis, Characterization, and Ethylene Oligomerization Action of[(C6H5)2PC6H4C(O-B(C6F5)3)O-K2P,O]Ni(?/3-CH2C6Hs). J. Am. Chem. Soc. .2000, 122,12379-12380.
    [150] Lee, B. Y.; Bazan, G. C; Vela, J.; Komon, Z. J. A.; Bu, X. H. a-Imino-carboxamidato-Nickel(ll) ethylene polymerization catalysts. J. Am. Chem. Soc. 2001,123,5352-5353.
    [151] Lee, B. Y.; Bu, X. H.; Bazan, G C. Pyridmecarboxamidato-Nickel(II) Complexes.Organometallics 2001,20,5425-5431.
    [152] Wang, L:; Johnson, L. K.; tonkin, A. S. WO0192348, 2001(Chem. Abstr., 2002, 136:20366).
    [153] Kim, Y. H.; Kim, T. H.; Lee, B. Y.; Woodmansee, D.; Bu, X.; Bazan, G C. a-IminoenamidoLigands: A Novel Structure for Transition-Metal Activation. Organometallics 2002, 21,3082-3084.
    [154] Wang, C. M.; Friedrich, S.; Younkin, T. R.; Li, R. T.; Grubbs, R. HL; Bansleben, D. A.; Day,M. W. Neutral nickel(II)-based catalysts for ethylene polymerization. Organometallics,1998, 17,3149-3151.
    [155] Younkin, T. R.; Conner, E. R; Henderson, J. I.; Friedrich, S. K.; Grubbs, R. H.; Bansleben,D. A. Neutral, single-component nickel (II) polyolefin catalysts that tolerate heteroatoms.Science 2000,287,460-461
    [156] (a) Bauers, F. M.; Mecking, S. High molecular mass polyethylene aqueous latexes bycatalytic polymerizatioa Angew. Chem. Int. Edit. 2001, 40, 3020-3022. (b) Bauers, F. M.;Mecking, S. Aqueous homo- and copolymerization of ethylene by neutral nickel(II)complexes. Macromolectdes 2001,34,1165-1171.
    [157] Novak, B.-M; Tian, G; Nodono, M.; Boyle, P. PMSE-Preprints, 223rd ACS NationalMeeting, Orlando, FL, April 7-11, 2002; American Chemical Society: Washington, DC,2002; Vol. 86, pp 326-327.
    [158] Zhang, D.; Jin, G X. Novel, Highly Active Binuclear 2^-DisubstitutedAmino-p-benzoquinone-Nickel(II) Ethylene Polymerization Catalysts. Organometallics2003,22,2851-2854.
    [159] (a) Domski, G J.; Rose, J. M.; Coates, G W.; Bolig, A. D.; Brookhart, M. Prog. Polym. Sci.2007,32,30-92. (b) McCord, E. F.; McUin, S. J.; Nelson, L. T. J.; Ittel, S. D.; Tempel. D.;Killian, C. M.; Johnson, L. K.; Brookhart, M. Macromoiecules 2007, 40, 410-420. (c)Zhang, L.; Brookhart, M.; White, P. S. Organometallics 2006,25,1868-1874. (d) Jenkins, J.C; Brookhart, M. J. J. Am. Chem. Soc. 2004, 126, 5827-5842. (e) Gibson, V. C;Spitzmesser, S. K. Chem. Rev. 2003, 103, 283-316. (f) Ittel, S. D.; Johnson, L. K.;Brookhart, M. Chem. Rev. 2000,100, 1169-1203. (h) Huang, Y; Tang, G; Jin, G; Jin, GOrganometallics 2008, 27, 259-269. (g) Chandran, D.; Bae, C; Ahn, I.; Ha, C. S.; Kim, 1.Neutral Ni(II) complexes based on keto-enamine salicylideneanilines active for selectivedimerization of ethylene. J. Organomet. Chem. 2009, 694, 1254-1258.
    [160] Rachita, M. J.; Huff, R. L.; Bennett, J. L.; Brookhart, M. Oligomerization of ethylene tobranched alkenes using neutral phosphinosulfonamide nickel(II) complexes. J. Polym. Sci.Pol. Chem. 2000,38, 4627-4640.
    [161] Dubois, M. A.; Wang, R. P.; Zargarian, D.; Tian, J.; Vollmerhaus, R.; Li, Z. M.; Collins, S.Nickel indenyl complexes as catalysts for the dimerization and polymerization of ethylene.Organometallics 2001, 20, 663-666.
    [1] (a) Reddy, K. P.; Petersen, J. L. Synthesis and characterization of binuclear zirconocene complexes linked by a bridge bis(cyclopentadienyl) ligand. Organometallics 1989, 8. 2107-2113. (b) Buzinkai, J. F.; Schrock, R. R. Bimetallic complexes containing the bis(tetramethylcyclopentadienyl)ethane ligand. Inorg. Chem. 1989, 28, 2837-2846, and references cited therein, (c) Nifant'ev, I. E.; Borzov, M. V.; Churakov, A. V.; Mkoyan, S. GL; Atovmyan, L. O. Synthesis of bimetallic complexes via 4-stannatetrahydro-s-indacenes. Organometallics 1992,11, 3942-3947. (d) Jungling, S.; Miilhaupt, R. Cooperative effects in binuclear zirconocenes: Their synthesis and use as catalyst in propene polymerization. J. Organomet. Chem. 1993, 460, 191-195. (e) Qian, Y.; Huang, J.; Bala, M. D.; Lian, B.; Zhang, H.; Zhang, H. Synthesis, Structures, and Catalytic Reactions of Ring-Substituted Titanium(IV) Complexes. Chem. Rev. 2003, 103, 2633-2690. (f) Gurubasavaraj, P. M.; Roesky, H. W.; Oswald, R. B.; Dolle, V.; Pal, A. Oxygen Effect in Heterobimetallic Catalysis: The Zr-O-Ti System as an Excellent Example for Olefin Polymerization. Organometallics 2007,26, 3346-3351.
    [2] (a) Li, H.; Stern, C. L.; Marks, T. J. Significant Proximity and Cocatalyst Effects in Binuclear Catalysis for Olefin Polymerization. Macromolecules 2005, 38, 9015-9027. (b) Li, H.; Li, L.; Schwartz, D. J.; Stern, C. L.; Marks, T. J. Coordination Copolymerization of Severely Encumbered Isoalkenes with Ethylene: Enhanced Enchainment Mediated by Binuclear Catalysts and Cocatalysts. J. Am. Chem. Soc. 2005,127,14756-14768. (c) Li, H.; Li, L.; Marks, T. J. Polynuclear Olefin Polymerization Catalysis: Proximity and Cocatalyst Effects Lead to Significantly Increased Polyethylene Molecular Weight and Comonomer Enchainment Levels. Angew. Chem., Int. Ed. 2004, 43, 4937-4940. (d) Guo, N.; Li, L.; Marks, T. J. Bimetallic Catalysis for Styrene Homopolymerization and Ethylene-Styrene Copolymerization. Exceptional Comonomer Selectivity and Insertion Regiochemistry. J. Am. Chem. Soc. 2004, 126, 6542-6543. (e) Salata, M. R.; Marks, T. J. Synthesis, Characterization, and Marked Polymerization Selectivity Characteristics of Binuclear Phenoxyiminato Organozirconium Catalysts. J. Am. Chem. Soc. 2008,130,12-13.
    [3] Broussard, M. E.; Juma, B.; Train, S. Q; Peng, W. -J.; Laneman, S. A.; Stanley, G G A Bimetallic Hydroformylation Catalyst: High Regioselectivity and Reactivity Through Homobimetallic Cooperativity. Science. 1993,260. 1784-1788.
    [4] Tian, G L.; Wang. B. Q.; Xu, S. S. et al. Ethylene polymerization with sila-bridged dinuclear zirconocene catalysts. Macromol. Chem. Plrys. 2002,203.31-36.
    [5] Siemeling, U.; Jutzi. P.; Neumann, B.; Stammler, H. G; Hursthouse, M. B. MetalComplexes of a Doubly Bridged Cyclopentadienyl Ligand. Organometcdlics 1992, 11, 1328-1333.
    [6] Herrmann, W. A.; Morawietz, M J. A.; Kuber, H. F. H. Tin-bridged ansa-metallocenes of zirconium: synthesis and catalytic performance in olefin polymerization. J. Organomet. Chem. 1996,509, 115-117.
    [7] (a) Cano, A.; Cuenca, T.; Gomez-sal, P.; Royo, B.; Royo, P. Double-Dimethylsilyl-Bridged Dicyclopentadienyl Group 4 Metal Complexes. X-ray Molecular Structures of M[(Me2Si)2(^-C5H3)2]Cl2 (M = Ti, Zr) and (TiCUMMCMeoSiW-CsHjfc]}. Organometcdlics 1994, 13, 1688-1689. (b) Corey, J. Y.; Huhmann, J. L; Rath, N. P. Isolation and Structural Characterization of cis- and trans-Forms of [775-C5Me5)TiCl2]2[W:775-(C5H3)2(SiMe2)2]. Inorg. Chem. 1995, 34, 3203-3209. (c) Lang, H.; Blau, S.; Much, A.; Weiss, K.; Neugebauer, U. Untersuchungen von polymerisations-und metathesereaktionen, XXII. Darstellung und katalytische reaktionen von substituierten titanocendichloriden. J. Organomet. Chem. 1995, 490, C32-C36. (d) Herzog, T. A.; Zubris, D. L.; Bercaw, J. E. A New Class of Zirconocene Catalysts for the Syndiospecific Polymerization of Propylene and Its Modification for Varying Polypropylene from Isotactic to Syndiotactic. J. Am. Chem. Soc. 1996, 118, 11988-11989. (e) Cano, A.; Cuenca, T.; Gomez-sal, P.; Manzanero, A.; Royo, P. Dicyclopentadienyl titanium and zirconium complexes with the double bridged bis(dimethylsilanodiyl) dicyclopentadienyl [(Me2Si)2(775-C5H3)2]2- ligand: X-ray molecular structure of [Ti{(SiMe2)2(/75-C5H3)2}Me2]. J. Organomet. Chem. 1996, 526, 227-235. (f) Huhmann, J. L.; Corey, J. Y.; Rath, N. P. Synthesis of New Silyl-Bridged Bis(cyclopentadienyl) Ligands and Complexes. Organometallics 1996, 15, 4063-4074. (g) Veghini, D.; Henling, L. M.; Burkhardt, T. J.: Bercaw, J. E. Mechanisms of Stereocontrol for Doubly Silylene-Bridged Cs- and Cl-Symmetric Zirconocene Catalysts for Propylene Polymerization. Synthesis and Molecular Structure of Li2[(l,2-Me2Si)2{C5H2-4-(l?,25,5JR-menthyl)}{C5H-3.5-(CHMe2)2)}] ' 3THF and [(l,2-Me2Si)2{/75-C5H2-4-(lJR,25.5i?-menthyl)}{75-C5H-3.5-(CHMe2)2}] ZrCl2. J. Am. Chem. Soc. 1999, 121, 564-573. (h) Cano, A. M., Cano, J.: Cuenca. T.; Gomez-sal, P.; Manzanero, A.; Royo, P. Cis- and frara-titanium complexes with doubly silyl-bridged dicyclopentadienyl ligands: molecular structure of [(TiCl)2(A-O){(SiMe2)2(775-C5H3)2}]2(-O)2. Inorg. Chim. Ada. 1998, 280, 1-7. (i) Xu, S.; Dai. X.; Wu, T.; Wang, B.; Zhou, X.; Weng, L. Synthesis, structure and polymerization catalytic properties of doubly bridged bis(cyclopentadienyl) dinuclear titanium and zirconium complexes. J. Organomet. Chem. 2002, 645, 212-217. (j) Xu, S.; Feng, Z.; Huang, J. Synthesis of double silylene-bridged binuclear titanium complexes and their use as catalysts for ethylene polymerization. J. Mol. Catal. A Chem. 2006, 250, 35-39. (k) Xu.S.; Jia, J.; Huang, J. Synthesis of Double Silylene-Bridged Binuclear Zirconium Complexes and their Use as Catalysts for Olefin Polymerization. J. Polym. Sci. A Polym. Chem. 2007, 45,4901-4913.
    [8] (a) Corradini, P.; Allegra, G Colinear bonds at the oxygen atom. J. Am. Chem. Soc. 1959, 81, 5510-5511. (b) Thewalt, U.; Schomburg, D. Neubestimmung der molekul-und kristallstruktur von jU-oxo-bis^-cyclopentadienyltitandichlorid). J. Organomet. Chem. 1977, 127, 169-174.
    [9] Clearfield, A.; Warner, D. K.; Saldarriaga-Molina, C. H.; Ropal, R.; Bernal, I. Structural Studies of (fr-CjHs^lvD^ Complexes and their Derivatives. The Structure of Bis(jr-cyclopentadienyl)titanium Dichloride. Can. J. Chem. 1975,55,1622-1629.
    [10] (a) Sharma, R. K.; Bhat, A. N. Aqueous chemistry of Bis(cyclopentadienyl)dihalotitanium(IV). Inorg. Chim. Ada. 1976, 20, 109-111. (b) Cannizzo, L. F., Grubbs, R. H. Reactions of "Cp2Ti:CH2" sources with acid anhydrides and imides. J. Org. Chem., 1985, 50, 2316-2323. (c) Alvaro, L. M.; Cuenca, T.; Flores, J. C; Royo, P.; Tiripicchio, A. Fulvalene derivatives of titanium: x-ray structures of [(TiChMu-COGu-T/V-QoHs)] and [{TiCC^CfiHsfeh^V-CioHs)]. Organometallics 1992,11,3301-3306. (d) Mark, H.; Joseph, P. PCTInt. Appl, 2000024748. (e) Ciruelos, S.; Cuenca, T.; Flores, J. C; Gomez, R.; Gomez-Sal, P.; Royo, P. Monocyclopentadienyl-type titanium complexes with the [^-^-(CjH^SiN^h- ligand. X-ray crystal structure of [(TiCl)2Cu2-O){//-775-775-(C5H4)2SiMe2}]20/2-O)2. The first example of a nonplanar titanium oxide ["Ti4O4"] core. Organometallics 1993,12,944-948.
    [11] (a) Flores, J. C; Chien, J. C. W.; Rausch, M. D. {[2-(Dimethylamino)ethyf] -cyclopentadienyl} titanium Complexes. Influence of the Dimethylamino Group in Ziegler-Natta Polymerization Catalysis. Macwmolecules 1996, 29, 8030-8035. (b) Hanaoka, H.; Hino, T.; Nabika, M.; Kohno, T.; Yanagi, K.; Oda, Y.; Imai, A.; Mashima, K. Synthesis and characterization of titanium alkyl, oxo, and diene complexes bearing a SiMe2-bridged phenoxy-cyclopentadienyl ligand and their catalytic performance for copolymerization of ethylene and 1-hexene. J. Organomet. Chem. 2007,692,4717-4724.
    [12] (a) Ishihara, N.; Seimiga, X; Kuramoto, M.; Uoi, M. Crystalline syndiotactic polystyrene. Macwmolecules 1986, 19, 2464-2465. (b) Ishihara, N.; Kuramata M.; Uoi, M. Stereospecific polymerization of styrene giving the syndiotactic polymer. Macwmolecules 1988,27,3356-3360.
    [13] Tomotsu. R; Ishihara, N.; Newman, T. H. Syndiospecific Polymerization of Styrene. J. Mol. Catal. A: Chem. 1998,128. 167-169.
    [14] Ziegler, K.; Montecatini, H. Catalysts of a-olefms' polymerization, Belg. Pat.,543259, 1955.
    [15]史丰田,韩丙勇,杨万泰。阴离子聚合体系聚苯乙烯立构规整性控制研究 中国化工学分(IESC)2006年年会,2006,65-68。
    [16] Wang, L. H.; Roger, S. Ultradrawing and crystallization of isotactic polystyrene and blendswith atactic polystyrene. J. Appl. Polym. Sci. 1981,26,2373-2379.
    [17] Nifant'ev, 1. E.;Yarnykh, V. L.; Borzov, M. V.; Mazurchik, B. A.; Mstyslavsky, V. I.;Roznyatovsky, V. A.; Ustynyuk, Y. A. Synthesis, Structure, and Fluxional Behavior of4-Sila-, 4-Germa-, and 4-Stanna-3a,4,4a,8-tetrahydro-4,4,8,8-tetra -methyl-s-indacenes.Orgmometallics, 1991,10, 3739-3745.
    [18] (a) Kraihanzel, C. S.; Losee, M. L. Ethynylsilanes. IV. The Effect of Temperature on theDiels-Alder Addition of Acetylenic Dienophiles to 1 -Trimethyl -silylcyclopentadiene. J. Am.Chem. Soc. 1968, 90. 4701-4705. (b) Cardoso, A. M.; Clark, R. J. H.; Moorhouse S.Reactions of trimethylsilylcyclopentadiene derivatives with titanium, niobium, andtantalum halides. J. Chem. Soc, Dalton Trans. 1980,1156-1160.
    [19] Gorsich, R. D. Preparation and Properties of Cyclopentadienyltitanium Trichloride. J. Am.Chem. Soc. 1960, 82,4211.
    [1] (a) Kealy, T. J.; Pauson, P. L. Nature (London) 1951, 168, 1039. (b) Wilkinson, G; Rosenblum, M.; Whiting, M. C; Woodward, R. B. The structure of iron bis-cyclopentadienyl. J. Am. Chem. Soc. 1952, 74, 2125-2126.
    [2] (a) Atkinson, R. C. J.; Gibson, V. C; Long, N. J. The syntheses and catalytic applications of unsymmetrical ferrocene ligands.. Chem. Soc. Rev. 2004, 33, 313-328. (b) Ferrocenes: Homogeneous Catalysis-Organic Synthesis-Materials science, Ed. Togni, A. and Hayashi, T., VCH, Weinheim, Germany, 1995. (c) Metallocenes, Ed. Togni, A. and Halterman, R. L., Wiley-VCH, Weinheim, Germany, 1998.
    [3] (a) Abd-EI-Aziz, A. S.; Todd, E. K. Organoiron polymers. Coord. Chem. Rev. 2002, 246, 3-52. (b) Hudson, R. D. A. Ferrocene polymers: current architectures, syntheses and utility. J. Organomet. Chem. 2001, 637-639,47-69. (c) Manner, 1. Polymers and the Periodic Table: Recent Developments in Inorganic Polymer Science. Angew. Chem. Int. Ed. Engl. 1996,35. 1602-1621. (d) Abd-EI-Aziz, A. S. Organometallic Polymers of the Transition Metals. Macromol. Rapid Commun. 2002, 23, 995-1031. (e) Heo, R. W; Somoza, F. B.; Lee, T. R. Soluble Conjugated Polymers That Contain Ferrocenylene Units in the Backbone. J. Am. Chem. Soc. 1998,120, 1621-1622. (f) Watson, K. J.; Zhu. J.; Nguyen. S. T.; Mirkin, C. A. Hybrid Nanoparticles with Block Copolymer Shell Structures. J. Am. Chem. Soc. 1999,121, 462-462. (g) Buretea, M. A.; Tilley, T. D. Poly(ferrocenylenevinylene) from Ring-Opening Metathesis Polymerization of a?sa-(Vinylene)ferrocene. Organometallics 1997, 16, 1507-1510. (h) Stanton, C. E.; Lee, T. R.; Grubbs, R. H.; Lewis, N. S. Routes to Conjugated Polymers with Ferrocenes in Their Backbones: Synthesis and Characterization of Poly(ferrocenylenedivinylene) and Poly(ferrocenylenebutenylene). Macromolecules 1995, 28, 8713-8721. (i) Ferrocenes: Ligands, Materials and Biomolecules; Stepnicka, P., Ed.; John Wiley & Sons Ltd: West Sussex, England, 2008.
    [4] Fisher, E. O.; Seus, D.; Z. Naturforsch. 1953,8b, 694.
    [5] Osiecki, J. H.; Hoffmann, C. J.; Hollis, D. P. Organometallic compounds ruthenium and iron derivatives of indene. J. Organomet. Chem. 1956, 3,107-112.
    [6] (a) Caddy, P.; Green, M.; Smart. L. E.; White, N. Evidence for the ready insertion of rhodium into a carbon-hydrogen bond of ethylene; crystal and molecular structure of /?-but-2-ene-//-ethylene-bis-(77"-]-methylindenyl)dirhodium. J. Chem. Soc. Chem. Commun. 1978. 839-841. (b) Borrini, A.; Diversi, P.; Ingrosso, G: Lucherini. A.; Serra, G. Highly active rhodium catalysts for the [2+2+2] cycloaddition of acetylenes. J. Mol. Catal. 1985,30, 181-195. (c) Cioni, P.; Diversi, P.; Ingrosso, G; Lucherini, A.; Ronca, P. Rhodium-catalyzed synthesis of pyridines from alkynes and nitriles. J. Mol. Catal. 1987, 40, 337-357. (d) Marder, T. B.; Roe, C. D.; Milstein, D. Transition-metal-catalyzed carbon-carbon bond formation via carbon-hydrogen activation. Intermolecular hydroacylation: the addition of aldehydes to alkenes. Organometallics 1988, 7, 1451-1453. (e) Tanke, R. S.; Crabtree, R. H. Unusual activity and selectivity in alkyne hydrosilylation with an iridium catalyst stabilized by an oxygen-donor ligand. J. Am. Chem. Soc. 1990,112, 7984-7989. (f) Bmnner, H.; Fisch, K. Catalytic Hydrosilylation or Hydrogenation at One Coordination Site of [Cp'Fe(CO)(X)] Fragments. Angew. Chem., Int. Ed. Engl. 1990, 29, 1131-1132. (g) Halterman, R. L. Synthesis and applications of chiral cyclopentadienylmetal complexes. Chem. Rev. 1992, 92, 965-994. (h) Lee, B. Y.; Chung, Y. K. (Indenyl)cobalt(I)-Catalyzed Cocyclization of Alkyne, Alkene, and Carbon Monoxide to Cyclopentenones. J. Am. Chem. Soc. 1994,116, 8793-8798794.
    [7] (a) Gamasa, M. P.; Gimeno, J.; Gonzalez-bernardo, C; Martin-Vaca, B. M.; Monti, D.; Bassetti, M. Phosphine Substitution in Indenyl- and Cyclopentadienylruthenium Complexes. Effect of the j;5 Ligand in a Dissociative Pathway. Organometallics 19%, 15,302-308. (b) Frankcom, T. M.; Green, J. C; Nagy, A.; Kakkar, A. K.; Marder, T. B. Electronic structure and photoelectron spectroscopy of d8 rhodium indenyl complexes. Organometallics 1993, 12,3688-3697.
    [8] (a) Foo, T.; Bergman, R. G Synthesis and carbon-hydrogen activation reactions of 75-indenyl(trimethylphosphine)iridium alkyl and hydride complexes. Organometallics 1992, 11, 1801-1810. (b) Foo, T.; Bergman, R. G Migratory insertion reactions of indenyliridium dialkyls and alkyl and aryl hydrides. Organometallics 1992,11, 1811-1819. (c) Caddy, P.; Green, M.; Howard, J. A. K.; Squire, J. M.; White, N. J. J. Chem. Soc. Dalton Trans. 1981,400-406.
    [9] (a) Rerek, M. E.; Basolo, F. Kinetics and mechanism of substitution reactions of ^S-cyclopentadienyldicarbonylrhodium(I) derivatives. Rate enhancement of associative substitution in cyclopentadienylmetal compounds. J. Am. Chem. Soc. 1984,106, 5908-5912. (b) Bonifaci, C; Ceccon, A.; Santi, S.; Mealli, C; Zoellner, R. Cofacial and antarafacial indenyl bimetallic isomers: a descriptive MO picture and implications for the indenyl effect on ligand substitution reactions. Inorg. Chim. Ada 1995,240, 541-549.
    [10] (a) Fischer. E. O.; Seus, D. Z. Naturforsch 1954, 9b. 386. (b) King, R. B.; Bisnette. M. B. Organometallic Chemistry of the Transition Metals. VIII. 7r-Cyclopentadienyl-7r-pyrrolyliron and 7r-Cyclopentadienyl-;r-indenyliron. Inorg. Chem. 1964, J. 796-800. (c) Hallam, B. F.; Pauson. P. L. J. Chem. Soc. 1958, 646. (d) Wild. F.; Wasiucionek, M.; Huttner, G; Brintzinger, H. -H. aroa-Metallocene derivatives: VII.Synthesis and crystal structure of a chiral ansa-zirconocene derivative with ethylene-bridged tetrahydroindenyl ligands. /. Organomet. Chem. 1985, 288, 63-67. (e) Wang, B.; Zhang, Y.; Xu, S.; Zhou, X. Novel Rearrangement Reactions. 2. Thermal Rearrangement Stereospecificity of Complex (Me2SiSiMe2)[(??5-IndH4)Fe(CO)]2(//-CO);>. Organometallics 1997, 16, 4620-4625. (f) Wang, B.; Xu, S.; Zhou, X. Synthesis and structure of sila-bridged bis(l-indenyl and tetrahydroindenyl) tetracarbonyl di-iron complex. Polyhedron 1997,16,2737-2740.
    [11] (a)Wild, F. R. W. P.; Zsolnai, L.; Huttner, G; Brintzinger, H. H. ansa-Metallocene Derivatives: IV. Synthesis and molecular structures of chiral ansa-titanocene derivatives with bridged tetrahydroindenyl ligands. J. Organomet. Chem. 1982,232,233-247. (b) Wild, F. R. W. P.; Huttner, G; Brintzinger, H. H. ansa-Metallocene derivatives: VII. Synthesis and crystal structure of a chiral ansa-zirconocene derivative with ethylene-bridged tetrahydroindenyl ligands. J. Organomet. Chem. 1985,288,63-67.
    [12] (a) Westcott, S. A.; Kakkar, A. K.; Stringer, G; Taylor, N. J.; Marder, T. B. Flexible coordination of indenyl ligands in sandwich complexes of transition metals. Molecular structures of [(^-C9R7)2M] (M = Fe, R = H, Me; M = Co, Ni, R = H): Direct measurement of the degree of slip-fold distortion as a function of d-electron count J. Organomet. Chem. 1990, 394, 111-194. (b) Wang, B.; Xu, S.; Zhou, X. Synthesis of tetramethyldisilane-bridged bis(l-indenyl) tetracarbonyl di-iron: A novel thermal rearrangement reaction between the Si-Si and Fe-Fe bonds. J. Organomet. Chem. 1997,540, 101-104.
    [13] Wang, B.; Mu, B.; Chen, D.; Xu, S.; Zhou, X. Diels-Alder Reactions of Benzyne with Indenyl Iron Complexes. Organometallics 2004,23,6225-6230.
    [14] (a) Alt, H. G; Samuel, E. Fluorenyl complexes of zirconium and hafnium as catalysts for olefin polymerization. Chem. Soc. Rev. 1998, 27, 323-329. (b) Kirillov, E.; Saillard, J.-Y.; Carpentier, J.-F. Groups 2 and 3 metal complexes incorporating fluorenyl ligands. Coord. Chem. Rev. 2005,249,1221-1248. (c) Kirillov, E.; Lehmann, C. W.; Razavi, A.; Carpentier, J.-F. [775:7/-(3,6-tBu2Flu)SiMe2NtBu]Y(/71-NC5H6Xpy)2: A 1,4-Hydride-Addition Product to Pyridine that Provides Evidence for the First Fluorenyl(hydrido)metal (Group 3) Complex. Eur. J. Inorg. Chem. 2004, 943-945. (d) Kirillov, E.; Lehmann, C.W.; Razavi, A.: Carpentier, J.-F. Synthesis, Structure, and Polymerization Activity of Neutral Halide, Alkyl, and Hydrido Yttrium Complexes of Isopropylidene-Bridged Cyclopentadienyl-Fluorenyl Ligands. Organometallics 2004,23,2768-2777. (e) Cai, Z. G; Ikeda, T.; Akita, M.; Shiono, T. Substituent Effects of tert-Butyl Groups on Fluorenyl Ligand in Syndiospecific Living Polymerization of Propylene with a?sa-Fluorenylamidodimethyltitanium Complex. Macromolecules 2005, 55, 8135-8139. (f) Freund, C; Barros, N.; Gomitzka, Martin-Vaca, B.; Maron, L.; Bourissou, D. Enforced ^'-Fluorenyl Coordination to Rhodium(I) with the [FluPPh2NPh]- Ligand. Organometallics 2006, 25, 4927-4930. (g) Oulie, P.; Freund, C; Saffon, N.; Martin-Vaca, B.; Maron, L.; Bourissou, D. Enforced 7/1-Fluorenyl and Indenyl Coordination to Zirconium: Geometrically Constrained and Sterically Expanded Complexes Derived from the Bifunctional (FluPPhiNAr)- and (IndPPh2NAr)- Ligands. Organometallics 2007,26,6793-6804. (h) Kirillov, E.; Kahlal, S.; Roisnel, T.; Georgelin, T.; Saillard, J.-Y.; Carpentier, J.-F. Haptotropic Rearrangements in Sandwich (Fluorenyl)(Cyclopentadienyl) Iron and Ruthenium Complexes. Organometallics 2008, 27, 387-393. (i) Bazinet, P.; TilleyJ. D. Octa- and Nonamethylfluorenyl Complexes of Zirconium(IV): Reactive Hydride Derivatives and Reversible Hydrogen Migration between the Metal and the Fluorenyl Ligand. Organometallics 2009,28,2285-2293.
    [15] Himeshima, Y.; Sonoda, T.; Kobayashi, H. Fluoride-induced 1 ^-elimination of o-trimethylsilylphenyl triflate to benzyne under mild conditions. Chem. Lett. 1983, 1211-1214.
    [16] Yoshida, H.; Kishida, T.; Watanabe, M.; Ohshita, J. Fluorenes as new molecular scaffolds for carbon-carbon r-bond cleavage reaction: acylfluorenylation of arynes. Chem. Commun. 2008,5963-5965.
    [17] Gassman, P. G; Winter, C. H. Preparation, Electrochemical Oxidation, and XPS Studies of Unsymmetrical Ruthenocenes Bearing the Pent amet hylcyclopent adienyl Ligand. /. Am. Chem. Soc. 1988,110,6130-6135.
    [18] (a) Trnka, T. M.; Grubbs, R. H. The Development of L2X2RuCHR Olefin Metathesis Catalysts: An Organometallic Success Story. Ace. Chem.. Res. 2001, 34, 18-29. (b) Grubbs, R. H.; Chang, S. Recent advances in olefin metathesis and its application in organic synthesis. Tetrahedron, 1998, 54,4413-4450. (c) Heo, R. W.; Park, J.-S.; Lee, T. R. ynthesis and Ring-Opening Metathesis Polymerization of Aryl-Substituted !,!'-(1.3-Butadienylene) ferrocenes. Macromolecules 2005, 55, 2564-2573. (d) Masson, G: Lough, A. J.; Manner, I. Soluble Poly(ferrocenylenevinylene) with t-Butyl Substituents on the Cyclopentadienyl Ligands via Ring-Opening Metathesis Polymerization. Macromolecules 2008.41, 539-547.
    [19] Speier. J. L. The preparation and properties of (hydroxyorgano)-silanes and related compounds. J. Am. Chem. Soc. 1952, 74, 1003-1010.
    [20] Kohl, F. X.: Jutzi. P. An improved synthesis of 1,2.3,4,5-pentamethylcyclopentadiene. J. Organomet. Chem. 1983, 243, 119-121.
    [21] Friedman. L.: Litle, R. L.; Reichle, W. R. p-Toluenesulfonylhydrazide. Org. Synth. Coll. Vol. 5.1973. 1055; 1960, 40.93.
    [22] Kabklka, G W.; Maddox, J. T.; Bogas, E.; Kelley, S. W. of aldehyde(arenesulfonyl)hudrazones with trialkylboranes. J. Org. Chem. 1997, 62,3688-3695.
    [23] Henderson, W. A.; Buckler, S. A. The Nucleophilicity of Phosphines. J. Am. Chem. Soc.1960,82, 5794-5800.
    [24] Stephenson, T. A.; Wilkinson, G New complexes of ruthenium (II) and (III) withtriphenylphosphine, triphenylarsine, trichlorostannate, pyridine and other ligands. J. Inorg.Nucl. Chem., 1966,28,945-956.
    [25] (a) Schwab, P.; Grubbs, R. H.; Ziller, J. W. Synthesis and applications ofRuCl2(=CHR')(PR.3)2: The influence of the alkylidene moiety on metathesis activity. J. Am.Chem. Soc. 1996, 118, 100-110. (b) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H.Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalystscoordinated with l,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org. Lett. 1999, 1,953-956.
    [26] (a) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. Efficient and RecyclableMonomeric and Dendritic Ru-Based Metathesis Catalysts. /. Am. Chem. Soc. 2000, 122,8168-8079. (b) Grasa, G A.; Viciu, M. S.; Huang, J. K.; Nolan, S. R Amination Reactionsof Aryl Halides with Nitrogen-Containing Reagents Mediated by Palladium/ImidazoliumSalt Systems. J. Org. Chem. 2001, 66,7729-7737.
    [27] Trnka, T. M.; Morgan, J. P.; Sanford, M. S.; Wilhelm, T. E.; Scholl, M.; Choi, T.-L.: Ding,S.; Day. M. W.; Grubbs, R. H. J. Am. Chem. Soc. 2003,125,2546-2558.
    [28] Crossley, N. S.; Green, J. C; Nagy, A.; Stringer, G Electronic structure of transition-metalindenyl compounds: a He I and He II photoelectron spectroscopic study of [Mn(^5-CQH7)-(CO)3], [Fe(75-C9H7)2], [Ru(^-C9H7)2], and [R^^-C^yJ-CsMes)]. J. Chem. Soc., DaltonTrans. 1989,2139-2147.
    [1]Keim, W.; Kowaldt, F. H.; Goddard, R.; Kruger, C. Novel Coordination of (Benzoylmethylene)triphenylphosphorane in a Nickel Oligomerization Catalyst. Angew. Chem. Int. Ed. Engl.,1978,17, 466-467.
    [2](a) Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. The search for new-generation olefin polymerization catalysts:Life beyond metallocenes. Angew. Chem., Int. Ed.1999,38, 428-447. (b) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Late-metal catalysts for ethylene homo-and copolymerization. Chem. Rev.2000,100,1169-1203. (c) Gibson, V. C.; Spitzmesser, S. K. Advances in non-metallocene olefin polymerization catalysis. Chem. Rev. 2003,103,283-315. (d) Boffa, L. S.; Novak, B. M. Copolymerization of polar monomers with olefins using transition-metal complexes. Chem. Rev.2000,100,1479-1493. (e) Speiser, F.; Braunstein, P.; Saussine, L. Catalytic ethylene dimerization and oligomerization: Recent developments with nickel complexes containing P,N-chelating ligands Acc. Chem. Res.2005,38,784-793. (f) Zhang, J.; Wang, X.; Jin, G.-X. Polymerized metallocene catalysts and late transition metal catalysts for ethylene polymerization. Coord. Chem. Rev. 2006,250,95-109. (g) Small, B. L.; Rios, R.; Fernandez, E. R.; Carney, M. J. Oligomerization of ethylene using new iron catalysts bearing pendant donor modified alpha-diimine ligands. Organometallics 2007,26,1744-1749.
    [3](a) Wang, C. M.; Friedrich, S.; Younkin, T. R.; Li, R. T.; Grubbs, R. H.; Bansleben, D. A.; Day, M. W. Neutral nickel(II)-based catalysts for ethylene polymerization. Organometallics, 1998,17,3149-3151. (b) Younkin, T. R.; Conner, E. F.; Henderson, J. I.; Friedrich, S. K.; Grubbs, R. H.; Bansleben, D. A. Neutral, single-component nickel (Ⅱ) polyolefin catalysts that tolerate heteroatoms. Science 2000,287,460-462.
    [4](a) Ihara, E.; Fujimura, T.; Yasuda, H.; Maruo, T.; Kanehisa, N; Kai, Y. High polymerization of methyl methacrylate with organonickel/MMAO system. J. Poly. Sci, Poly. Chem.2000,38,4764-4775. (b) Dubois, M. A.; Wang, R. P.; Zargarian, D.; Tian, J.; Vollmerhaus, R.; Li, Z. M.; Collins, S. Nickel indenyl complexes as catalysts for the dimerization and polymerization of ethylene. Organometallics 2001,20,663-666.
    [5]程彬,雒雄雄,徐善生,王佰全*二茚铁催化甲基丙烯酸甲酯的链转移聚合,第二十六届中国化学年会会议论文
    [6]Kovacic, P.; Brace, N. O. Chlorination of aromatic compounds with metal chlorides. J. Am. Chem. Soc.1954,76,5491-5494.
    [7]Curnow, O. J.; Fern, G.M. Synthesis, structures and spectroelectrochemistry of methyl-subsitituted bis(η5-indenyl)iron(II) complexes. J. Organomet. Chem.2005,690, 3018-3026.
    [8]Treichel, P. M.; Johnson, J. W. The stereospecific ring protonation of diindenyliron.J. Organomet. Chem.1975,88,207-214.
    [9]Ward, L. G. L. Anhydrous nickel(II) halides and their tetrakis(ethanol) and 1,2-dimethoxyethane complexes. Inorg. Synth.1972,13,154-164.
    [10]Kohler, F. H.13C-NMR-Spektren von π-Komplexen des Indens zur Bestimmung der Haptoeigenschaften von Liganden. Chem. Ber.1974,107,570-571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700