用户名: 密码: 验证码:
几种常见氧化锰矿物的电化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤、海洋及其湖泊沉积物中含有大量锰结核,氧化锰矿物是其主要组成成分之一,其资源属性日益受到关注。深入开展研究氧化锰矿物的性质,促进氧化锰矿物资源的开发与利用具有重要的理论和实践意义。氧化锰矿物的种类多种多样,按空间结构大致可分为一维隧道、二维层状以及三维网状结构;因其资源丰富、价格低廉、环境友好,在锂离子二次电池正极材料、超级电容器、催化剂、吸附剂、磁性材料以及核废料固定材料等方面有着重要的应用前景。
     锂离子二次电池是以嵌入锂化合物作为正、负极材料的最新一代高比能蓄电池。它具有电池电压高、比能量大、循环寿命长、自放电小以及有利于环保等优点。近年来,锂离子蓄电池在各方面均在不断改进。负极与电解质进步较快,但作为锂离子电池的重要组成部分的正极材料性能已经成为制约其大规模推广应用的瓶颈,是进一步提高电池性能、降低成本的关键。另一方面,锂-锰正极材料的电池性能与合成方法有很大关系,例如采用传统高温固相法能耗大、周期长,合成的正极材料晶粒和颗粒的可调控性差,团聚现象比较严重,电池性能较差且不稳定。近年来,针对这些问题,虽然进行了广泛的研究,但一直没有得到很好的解决,所以寻找合适的合成技术及方法来制备性能优良、成本低廉的正极材料仍是目前研究的热点、难点之一。
     本论文主要从提高氧化锰正极材料的放电容量、循环稳定性以及降低锂离子电池的生产成本出发,研究了几种常见的氧化锰矿物(钙锰矿、锰钾矿和水钠锰矿)的制备方法以及通过掺杂对氧化锰矿物改性,并采用X-射线衍射(XRD)、Rietveld结构精修、热重分析(TGA)、成分分析、比表面测试、X-射线光电子能谱(XPS)、扫描电镜(SEM)以及透射电镜(TEM)等测试手段对合成材料进行物化表征以及电化学性能测试,考察其在锂离子电池中的应用。取得的主要结果如下:
     1.以掺钴水钠锰矿为前驱物,采用常压回流条件下的一步氧化法合成制备了—系列掺钴不同浓度的钙锰矿,对其晶胞参数、水分含量、Mn氧化度、以及晶体形貌(包括颗粒的尺寸)等性质表征表明,样品中钴离子均为+3价,Rietveld结构精修表明掺杂的钴离子替代了Mn2和Mn4两个等效位点,金属离子和氧离子的平均键长发生了系统改变;进一步的结合电化学分析表明,由于钻离子掺杂提高了钙锰矿晶体结构的稳定以及放电电压平台,掺钴钙锰矿的放电比容量和循环稳定性也得以改善。掺钴量在10-15%之间的钙锰矿电化学性能最好,其中Tod-Co10%电极的首次放电比容量为219mAh/g,经过100周充放电循环后放电比容量仍有102mAh/g;粉末微电极结合循环伏安扫描进一步辅证了钴离子掺杂能显著提高钙锰矿的电化学性能。
     2.采用新兴的微波加热法制备了不同掺钴浓度的钙锰矿。与回流法不同的是:1)微波加热制备的样品衍射峰峰强较大,半峰宽较窄,其结晶度均较好;2)Mn氧化度随钴掺杂量的增加而略有增加;3)Tod-Co20%片状颗粒最小,钴掺杂量最高,首次放电容量最低,其循环稳定性最好,充放电的库仑效率也高。与回流法相同的是:1)钙锰矿水分含量和晶胞体积随掺钴量的增加而增加;2)钙锰矿主要由互成1200的片状三连晶组成,片状颗粒有减小的趋势,并且团聚成近似球状的二次颗粒;3)掺钴钙锰矿的放电比容量和循环稳定性均比未掺杂的好。
     3.采用3种不同合成方法(回流法、溶胶-凝胶法和高温煅烧法)均能制备出纯的锰钾矿。由于制备方法不同,3个样品的物理化学性质也相差较大。Cry-60和Cry-sol-gel两者的颗粒形貌差别较大,但电池性能较接近,前者的循环容量更好;Cry-calcine由煅烧合成,由于其水分含量低,晶胞体积小,表面积小,晶体颗粒较大,且尺寸大小不一和形貌不规则,以致于其循环容量最低。回流法合成的锰钾矿电池性能相对较好,Cry-80样品因具有适中的预处理温度、比表面积、水分含量和晶粒尺寸,其电池性能最好。并且所有回流法合成的锰钾矿电极经过50周循环以后隧道结构依然保持完好。
     4.进一步通过钴离子掺杂在回流条件下制备了一系列掺钴不同浓度的锰钾矿,其晶胞体积随掺钴量的增加而减小,钴离子均为+3价,水分含量逐渐增加,其隧道水含量对电池的循环容量影响较大:300℃加热处理的锰钾矿隧道水脱出较多,充放电过程中隧道结构容易塌陷,其制备的电极整体放电性能较差;而140℃下隧道水大部分保留,起到支撑隧道的作用,Li+嵌入-脱出时隧道可以弹性地收缩,电极的循环稳定性较好;钴离子掺杂进一步提高了锰钾矿电极的循环稳定性,但掺杂量过大会降低嵌锂容量,所以,Cry-Co5%(140℃热处理)电极的放电性能最佳,其首次放电比容量高达254 mAh/g,50周循环后仍有138mAh/g。
     5.以02作氧化剂在强碱条件下一步氧化不同比例的MnCl2和CoCl2混合液合成了掺钴不同浓度的水钠锰矿,研究了掺钴含量的变化对水钠锰矿的晶胞参数、晶粒大小、水分含量、比表面积、Mn氧化度、Co的价态、各种氧的化学态及比例以及晶体形貌(包括颗粒的尺寸)等性质的影响。结合热重和成分分析,通过改变水钠锰矿的热处理温度,得到了不同层间水含量的电极。恒流充放电方法分析这些电极的循环容量表明:未掺钴水钠锰矿放电容量衰减迅速,掺钻后水钠锰矿的循环稳定性都得到提高,其中掺钴10%的水钠锰矿循环稳定性最好,在适当热处理(130℃热处理4小时)后,脱去部分层间水,增加了Li+嵌入-脱出位点,剩余层间水又起到支撑层结构的作用,加之钴离子掺杂使Mn06八面体骨架更牢固。样品在20 mA/g电流密度下,充放电截止电压为2.0-3.8 V (vs. Li/Li+),其首次放电比容量高达224mAh/g,经过100周循环后还有115mAh/g。不同倍率的放电测试表明,由于其较大的比表面积,在高电流密度下也展示了较好的放电容量。
     6.首次使用高锰酸钾、蔗糖和乙酸钴为原材料,采用溶胶-凝胶法通过控制乙酸钴的添加量合成了不同掺钴浓度的水钠锰矿,XRD结果表明所有样品主要成分为单斜结构的水钠锰矿,并含有极少量黑锰矿杂质,且随掺钻浓度的增加,黑锰矿的含量有所增加。溶胶-凝胶法合成的掺钴水钠锰矿表面有一层钝化膜,其电极的开路电压较低,电池内阻较大,所有供试样品首次放电比容量均较低,经过一周充电活化后,电极的放电比容量在第2周达到最大。随着掺钴浓度加大,水钠锰矿中杂质相黑锰矿的含量也逐渐增加,,导致电池性能恶化。脱去适量层间水的未掺杂水钠锰矿(130℃热处理4小时)中黑锰矿含量最低,其循环稳定性最好;循环伏安扫描表明,经过60周充放电循环后Bir-CoO%电极依然保持良好的电化学活性,其氧化还原峰对称性较好,峰电位相差小,峰电流几乎没有衰减。
Soils, the bottom of ocean and lake sediments contain large amounts of manganese nodules, of which manganese oxide minerals are the main component. The applications of manganese oxide in many fields are growing concerned. There is an important theoretical and practical significance for further investigating manganese oxide properties and promoting the development and resource use of manganese oxides. There are many types of manganese oxides, which can be divided into one-dimensional tunneled, two-dimensional layered and three-dimensional network structures according to spatial structure. Manganese oxides are resource-rich, low cost, environmentally friendly materials, which have important applications, such as in the field of lithium-ion secondary battery cathode materials, super capacitors, catalysts, adsorbents, magnetic materials and nuclear waste fixed materials.
     Up to now, people have realized that the Li-ion battery is a new generation of high specific capacity battery for high voltage, long-cycle life, low self-discharge and environment-friendly etc. Recently, more and more research has been focused on improving the performance of Li secondary battery. The investigation of negative and electrolytes have great progress, while the development of the Li-ion battery has been limited by its positive materials, which is one of the key components of the Li-ion battery system. On the other hand, it is known that the performance of manganese oxide cathode materials is greatly influenced by the synthesis methods. For example, solid state method, which is used in industry widely, wastes more power and time. At the same time, the materials synthesized using this method seriously agglomerate and its crystals and particles can not be well controlled, which leads to the degradation of materials' performance. Therefore, more and more researchers focus on looking for new methods to prepare the cathode materials with excellent performance.
     Based on enhancing the discharge capacity and cyclic stability of manganese oxide materials and decreasing the production cost of Li-ion battery, this work study the synthetic methods of common manganese oxides (todorokite, cryptomelane and birnessite) and the modifiedmanganese oxides by doping, characterize the physical and chemical properties, and investigated the electrochemical performances of as-prepared materials for cathode of lithium ion battery using X-ray diffraction (XRD), Rietveld structure refinement, thermal gravimetric analysis (TGA), component analysis, specific surface area tests, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic charge/discharge and cyclic voltammetry, etc. The main results obtained are as follows:
     1. A series of cobalt-doped todorokites were synthesized by refluxing process at atmospheric pressure from the transformation of birnessites. Their unit cell parameters, water content, the average oxidation state of Mn (AOS), and crystal morphology (including grain size) were characterized, and the valence state of cobalt ions in all cobalt-doped samples was +3. Rietveld structure refinement showed that doped cobalt ions replaced the equivalent sites of Mn2 and Mn4, and the average bond lengths between metal ions and oxygen anions changed systematically. It was further shown that the cobalt doping improved the stability of the crystal structure and the voltage platform of discharge for todorokites with the combination of electrochemical analysis, and so the discharge capacity and cyclic stability of cobalt-doped todorokites were improved. Among them, doped todorokites with Co content of 10%-15% displayed better discharge performance. Tod-Co10% showed a high initial discharge capacity of 219 mAh/g and cycling capacity of 102 mAh/g after 100 cycles. The effect of doping cobalt on electrochemical performance of todorokite was further proved with cyclic voltammetry by using powder microelectrode.
     2. A newly arisen method——microwave heating method was used to prepare todorokite with different concentrations of cobalt doping. The differences with refluxing method were that,1) The intensity of diffraction peaks in all samples prepared by microwave heating was strong, and the peak width at half height was narrow, exhibiting that they all had high crystallinity; 2) The AOS of Mn increased slightly with increasing dopant amount; 3) Tod-Co20% had a minimum flake particles, a highest cobalt doping and a lowest initial discharge capacity, but a best cyclic stability and a high coulombic efficiency of charge/discharge. The same as refluxing method were that,1) The water content and the cell volume in todorokites increased by elevating cobalt amount; 2) Todorokite samples primarily consisted of trilling at 120°to each other with flake crystal particles, and with the increase of doped-cobalt content, the particle size decreased and aggregated into spherical secondary particles with high content of cobalt; 3) The specific discharge capacity and the cyclic stability of cobalt-doped todorokites were all better than those of undoped todorokite.
     3. Three different methods (refluxing method, sol-gel method and high temperature calcination method) could be used to prepare pure cryptomelane. Because of different synthetic methods, the physical and chemical properties of the three samples were quite different. There were marked differences between Cry-60 and Cry-sol-gel in morphology, but the battery performance was similar with each other. The former had a better cyclic capacity. Because of its low water content, small cell volume and surface area, the larger crystal particles, and the irregular sizes and morphology, Cry-calcine synthesized by the calcination method showed the minimum cycle capacity. Cryptomelane synthesized by reflux method had a better battery performance. Owing to a moderate pretreatment temperature, specific surface area, water content and grain size, Cry-80 sample exhibited the best battery performance, and the tunneled structure of all cryptomelane electrodes synthesized by reflux method is still stable after 50 cycles of charge/discharge.
     4. By further doping cobalt ions, a series of cryptomelanes with different cobalt concentrations were prepared at reflux condition. The unit cell volume decreased with the increase of doped cobalt content, the valence state of cobalt ions are +3, but the water content increased gradually. The tunnel water content of cryptomelanes influenced the cycle capacity of the battery:more tunnel water were extracted for cryptomelane heat treated at 300℃, leading to the easy collapse of tunnel structure during charge/discharge, and all electrodes showed the poor discharge performance; Most of the tunnel water was not removed after sinter at 140℃, and played the role of supporting the tunnel which could elastically expand or shrink during the insertion/extraction of Li+, increase the cycle stability of electrodes materials. Doping cobalt ions further improved the cycle stability of the cryptomelane, but the excessive doped-content will reduce the capacity of inserting lithium. Therefore, Cry-Co5% electrode heat treated at 140℃displayed the best discharge performance, its initial discharge capacity was up to 254 mAh/g, and maintained at 138mAh/g after 50 cycles.
     5. A series of birnessites with different cobalt concentration were prepared by a one-step oxidation of the mixture of MnCl2 and CoCl2 using O2 at strong alkaline condition. The influences of the doped cobalt content on the unit cell parameters, crystal size, water content, surface area, AOS of Mn, valence state of Co, proportion of O with different chemical state and crystal morphology (including the particles size) were investigated. Combining TG and component analysis, the birnessite with different layered water content could be prepared by changing the temperature of heat treatment. The galvanostatic charge/discharge results were that the discharge capacity of undoped birnessite decreased rapidly, and the cycle stability of birnessites were all promoted by doping cobalt. Because a part of layered water was extracted by fit heat treatment (at 130℃for 4 h) to increase the insertion/extraction sites of Li+, the residual layered water supported the layer structure, and doping cobalt made the skeleton of MnO6 octahedra more firm, birnessite with doping cobalt 10% showed the best cycle stability, whose initial discharge capacity was as high as 224 mAh/g, and kept at 115 mAh/g after 100 cycles at 20 mA/g between 2.0 and 3.8 V (vs. Li/Li+). The discharge test with different rate showed that Bir-Co10% electrode had a better discharge capacity at high current density, because of its large surface area.
     6. A series of birnessites with different doped cobalt contents were firstly synthesized by controlling the added amount of Co(CH3COO)2 using sol-gel method with the raw materials of KMnO4, sucrose and Co(CH3COO)2. The XRD results showed that the main compositions of all samples were monoclinic structural birnessites, containing a few impurity of hausmannite, whose content increased a little with increasing dopant amount. Owing to the passive film at the surface of cobalt-doped birnessites synthesized by sol-gel method, their open circuit voltages were low, and the internal resistances of the batteries were large. The discharge capacity for all samples were small at first cycle, and up to the largest discharge capacity by the activation of charge at first cycle. The content of hausmannite in birnessites increased gradually with increasing dopant amount, resulting in the deterioration of the battery performance. Undoped birnessite heat-treated at 130℃for 4 h with fit layered water extracted and the lowest content of hausmannite showed the best cycle stability; the cyclic voltammogram exhibited that Bir-Co0% electrode still retained high electrochemical activation after 60 cycles of charge/discharge. The redox peaks of Bir-Co0% electrode had fine symmetry, lesser voltage difference, and few decay of current.
引文
1. 毕磊,宋春华,文慧,杨丹,邱国红,冯雄汉,刘名茗,谭文峰,刘凡.电化学可控合成纳米二氧化锰的初步研究.材料开发与应用,2008,23:35-39
    2. 蔡砚,王要武,何向明,姜长印,应皆荣,万春荣.尖晶石LiMn2O4容量衰减原因及对策.功能材料,2004,21-24
    3. 陈英旭,朱祖祥,何增耀.环境中氧化锰对Cr(Ⅲ)氧化机理的研究.环境科学学报,1993,13:45-50
    4. 储炜,刘德尧,尤金跨,杨勇,林祖赓.钡镁锰矿/水羟锰矿型锂离子电池阴极材料的结构和电化学性能研究电化学,1999,5:74-79
    5. 崔浩杰,冯雄汉,刘凡,谭文峰,邱国红,陈秀华.钙锰矿的研究进展.地球科学进展,2009,1084-1093
    6. 崔涛,华宁,韩英,康雪雅LiAl0.03Mn1.97O4的流变相辅助微波合成以及电化学性能.第二届中国储能与动力电池及其关键材料学术研讨与技术交流会论文集.成都,2007,70-78
    7. 崔妍.微波合成锂离子电池正极材料LiFePO4的研究.[硕士学位论文].天津:天津大学图书馆,2007
    8. 戴长松,葛昊,王殿龙,王福平.层状正极材料LiNi0.5Co0.25Mn0.25O2的结构及电化学行为.无机化学学报,2007,23:432-438
    9. 邓意达.液相法制备锂离子电池正极材料LiMn2O4及其掺杂研究.[硕士学位论文].长沙:中南大学图书馆,2003
    10. 樊耀亭,吕秉玲,徐杰,蒋永贵,张琳萍.水溶液中二氧化锰对铀的吸附环境.科学学报,1999,19:42-46
    11. 冯雄汉.几种常见氧化锰矿物的合成、转化及表面化学性质.[博士学位论文].武汉:华中农业大学图书馆,2003
    12. 郭丙煜,徐徽,王先友,肖立新.锂离子电池.长沙:中南大学出版社,2002,417
    13. 洪新华,李保国.溶胶-凝胶(Sol-Gel)方法的原理与应用.天津师范大学学报(自然科学版),2001,21:5-8
    14. 黄昌勇.土壤学.北京:中国农业出版社,2000,15
    15. 黄可龙,刘素琴,潘春跃,吕正中,熊奇,陈晓红.锂锰掺杂复合氧化物正极材料的制备方法.中国专利,CN1421944.2001-11-26
    16. 雷永泉.新能源材料.天津:天津大学出版社,2000,459
    17. 李瑞琦,宋春华,徐超,涂丽杏,邱国红,刘凡.常压回流掺钴钙锰矿锂离子电池正极材料.电化学,2010,16:90-95
    18. 梁敬魁.粉末衍射法测定晶体结构.北京:科学出版社,2003,557-562
    19. 刘斌,夏熙.含钙、含钡和含镍钡镁锰矿的合成及在水溶液中电化学性能.应用科学学报,2001,19:185-188
    20. 刘德尧,尤金跨,储炜,杨勇,林祖赓.锂离子电池锂锰氧化物高压嵌锂材料的结构和电化学性能研究电化学,1999,5:276-280
    21. 刘铮.土壤与植物中锰的研究进展.土壤学进展,1991,19:1-10
    22. 鲁安怀,卢晓英,任子平,韩丽荣,方勤方,韩勇.天然铁锰氧化物及氢氧化物环境矿物学研究.地学前缘,2000,7:473-483
    23. 吕东生,罗穗莲,李伟善,刘煦,邱仕洲.掺钴锂锰氧化物的性能研究.电源 技术,2001,25:346-349
    24. 吕鸣祥,黄长保,宋玉瑾.化学电源.天津大学出版社,1992,464
    25. 马礼敦.X射线粉末衍射的新起点—Rietveld全谱拟合.物理学进展,1996,16:251-265
    26. 马礼敦.近代X射线多晶体衍射—实验技术与数据分析.北京:化学工业出版社,2004,399-400
    27. 潘根兴.淮北土壤铁锰结核中过渡金属元素的富集及其环境地球化学意义.科学通报,1989,34:1505-1507
    28. 钱江初.1nm锰矿相结构稳定性的研究.海洋学报,1998,20:56-63
    29. 冉勇,刘铮.土壤和氧化物对稀土元素的专性吸附及其机理.科学通报,1992,18:1705-1709
    30. 宋春华,李瑞琦,徐超,涂丽杏,邱国红,刘凡.掺钴水钠锰矿锂离子电池阴极特性.第十五届全国电化学会议.长春,2009,B-P08-1526
    31. 谭文峰,刘凡,李永华,贺纪正,李学垣.土壤铁锰结核中锰矿物类型鉴定的探讨.矿物学报,2000,20:63-67
    32. 涂健.掺杂和表面改性尖晶石LiMn2O4用作锂离子电池正极材料的研究.[博士学位论文].杭州:浙江大学图书馆,2006
    33. 万传云,吴强,王涛,努丽燕娜,江志裕.锂离子电池锂锰氧化物的性能改进.电池,2002,32:23-26
    34. 王磊,贾殿赠,黄玉代.一种微波合成磷酸亚铁锂电池正极材料的方法.中国专利,CN101121508.2008-02-13
    35. 吴宇平,戴晓兵,马军旗,程预江.锂离子电池—应用与实践.北京:化学工业出版社,2004,400
    36. 吴宇平,李阳兴,万春荣,姜长印.锂离子二次电池正极材料氧化锰锂的研究进展.功能材料,2000,31:18-22
    37. 吴宇平,万春荣,姜长印.锂离子二次电池.北京:化学工业出版社,2002,352
    38. 夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(1).电池,2004,34:411-414
    39. 谢正苗,朱祖祥,袁可能,黄昌勇.土壤中二氧化锰对As(Ⅲ)的氧化及其意义.环境化学,1989,8:1-6
    40. 熊毅等编著.土壤胶体(第一册).北京:科学出版社,1983,
    41. 秀珍栾,少军房,红金.微波技术.北京:北京邮电大学出版社,2009,306
    42. 许东禹.多金属结核的特征及成因.北京:地质出版社,1993,
    43. 许东禹.太平洋中部多金属结核及其形成环境.北京:地质出版社,1994,
    44. 杨刚,刘海东,季红梅.微波高温固相法合成正极材料Li3V2(PO4)3/C及其电化学性能.第28届全国化学与物理电源学术年会论文集.广州,2009,A63-A65
    45. 杨顺毅,王先友,魏建良,李秀琴,唐安平. Na-Mn-O正极材料的合成及电化学性能.物理化学学报,2008,24:1669-1674
    46. 杨文辉.微波合成LiFePO4材料的工艺与机理研究.[硕士学位论文].武汉:武汉理工大学图书馆,2007
    47. 杨勇,舒东,余海,夏熙,林祖赓.大隧道结构锂锰氧化物电极材料研究.电源技术,1997,21:190-199
    48. 杨玉娟.纳米二氧化锰的制备及其电容性能研究.[硕士学位论文].天津:天 津大学图书馆,2007
    49. 翟秀静,高虹.新型二次电池材料.沈阳:东北大学出版社,2003,339
    50. 赵其国.21世纪土壤科学展望.地球科学进展,2001,16:704-709
    51. 赵其国.发展与创新现代土壤科学.土壤学报,2003,40:321-327
    52. 赵其国,周健民.为21世纪土壤科学的创新发展作出新的贡献--参加第17届国际土壤学术大会综述.土壤,2002,237-256
    53. 朱伟.锂离子电池正极材料LiMn2O4与LiFePO4的制备与性能研究.[博士学位论文].重庆:重庆大学图书馆,2004
    54. Aitchison P, Ammundsen B, Jones D, Burns G, Roziere J. Cobalt substitution in lithium manganate spinels:examination of local structure and lithium extraction by XAFS. Journal of Materials Chemistry,1999,9:3125-3130
    55. Al-Attar L, Dyer A. Sorption behaviour of uranium on birnessite, a layered manganese oxide. Journal of Materials Chemistry,2002,12:1381-1386
    56. Ali A A, Al-Sagheer F A, Zaki M I. Surface texture morphology and chemical composition of hydrothermally synthesized tunnel-structure manganese(IV) oxide. International Journal of Inorganic Materials,2001,3:427-435
    57. Almeida E, Abbate M, Rosolen J. Improvement in the electrochemical performance of LixV2O5 induced by Tb doping. Journal of Power Sources,2002, 112:290-293
    58. Amatucci G G, Pereira N, Zheng T, Tarascon J M. Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4_zFz solid solution. Journal of The Electrochemical Society,2001,148:A171-A182
    59. Amine K, Liu J, Belharouak I, Kang S H, Bloom I, Vissers D, Henriksen G. Advanced cathode materials for high-power applications. Journal of Power Sources,2005,146:111-115
    60. Amine K, Liu J, Kang S, Belharouak I, Hyung Y, Vissers D, Henriksen G. Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications. Journal of Power Sources,2004,129:14-19
    61. Apostolova R D, Shembel E M, Nagirnyi V M, Aurbach D, Markovsky B. Synthesis and investigation of electrolytic sodium-vanadium oxide compounds for lithium battery cathodes:Electrolytic bronze β-Na0.33V2O5. Russian Journal of Electrochemistry,2000,36:616-623
    62. Arai H, Okada S, Sakurai Y, Yamaki J. Reversibility of LiNiO2 cathode. Solid State Ionics,1997,95:275-282
    63. Arora P, Popov B N, White R E. Electrochemical investigations of cobalt-doped LiMn2O4 as cathode material for lithium-ion batteries. Journal of The Electrochemical Society,1998,145:807-815
    64. Arumugam D, Kalaignan G P, Manisankar P. Development of structural stability and the electrochemical performances of 'La' substituted spinel LiMn2O4 cathode materials for rechargeable lithium-ion batteries. Solid State Ionics,2008,179: 580-586
    65. Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B, Kovacheva D. Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries. Journal of Power Sources,2007,165:491-499
    66. Bach S, Pereira-Ramos J P, Baffler N, Messina R. Birnessite manganese dioxide synthesized via a sol--gel process:a new rechargeable cathodic material for lithium batteries. Electrochimica Acta,1991,36:1595-1603
    67. Barbato S, Gautier J. Hollandite cathodes for lithium ion batteries.2. Thermodynamic and kinetics studies of lithium insertion into BaMMn7O16 (M= Mg, Mn, Fe, Ni). Electrochimica Acta,2001,46:2161-2116
    68. Barkhouse D a R, Dahn J R. A novel fabrication technique for producing dense Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2,0≤x≤1/2. Journal of The Electrochemical Society, 2005,152:A746-A751
    69. Batchelor-Mcauley C, Shao L, Wildgoose G, Green M, Compton R. An electrochemical comparison of manganese dioxide microparticles versus α and β manganese dioxide nanorods:mechanistic and electrocatalytic behaviour. New Journal of Chemistry,2008,32:1195-1203
    70. Baudrin E, Laruelle S, Denis S, Touboul M, Tarascon J M. Synthesis and electrochemical properties of cobalt vanadates vs. lithium. Solid State Ionics,1999, 123:139-153
    71. Beaudrouet E, Le Gal La Salle A, Guyomard D. Nanostructured manganese dioxides:Synthesis and properties as supercapacitor electrode materials. Electrochimica Acta,2009,54:1240-1248
    72. Belharouak I, Sun Y K, Liu'J, Amine K. Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications. Journal of Power Sources,2003,123: 247-252
    73. Botkovitz P, Brec R, Deniard P, Tournoux M, Burr G. Electrochemical and neutron diffraction study of a prelithiated hollandite-type LixMnO2 phase. Molecular Crystals and Liquid Crystals,1994,244:233-238
    74. Botkovitz P, Deniard P, Tournoux M, Brec R. Structural and electrochemical characteristics of a hollandite-type 'LixMnO2'. Journal of Power Sources,1993,44: 657-665
    75. Braun A, Wang H, Funk T, Seifert S, Cairns E. Depth profile analysis of a cycled lithium ion manganese oxide battery electrode via the valence state of manganese, with soft x-ray emission spectroscopy. Journal of Power Sources,2010,
    76. Burns R G, Burns V M, Stockman H W. The todorokite-buserite problem:further considerations. American Mineralogist,1985,70:205-208
    77. Bystrom A, Bystrom A M. The crystal structure of hollandite, the related manganese oxide minerals, and α-MnO2. Acta Crystallographica,1950,3: 146-154
    78. Bystrom A, Bystrom A M. The position of the barium atoms in hollandite. Acta Crystallographica,1951,4:469
    79. Cai J, Liu J, Suib S L. Preparative parameters and framework dopant effects in the synthesis of layer-structure birnessite by air oxidation. Chemistry of Materials, 2002,14:2071-2077
    80. Cai J, Liu J, Willis W S, Suib S L. Framework doping of iron in tunnel structure cryptomelane. Chemistry of Materials,2001,13:2413-2422
    81. Cao Q, Zhang H, Wang G, Xia Q, Wu Y, Wu H. A novel carbon-coated LiCoO2 as cathode material for lithium ion battery. Electrochemistry Communications,2007, 9:1228-1232
    82. Chen J, Tang X, Liu J, Zhan E, Li J, Huang X, Shen W. Synthesis and Characterization of Ag-Hollandite Nanofibers and Its Catalytic Application in Ethanol Oxidation. Chemistry of Materials,2007,19:4292-4299
    83. Chen R, Whittingham M S. Cathodic Behavior of Alkali Manganese Oxides from Permanganate. Journal of The Electrochemical Society,1997,144:L64-L67
    84. Chen X, Li X, Jiang Y, Shi C, Li X. Rational synthesis of α-MnO2 and γ-Mn2O3 nanowires with the electrochemical characterization of α-MnO2 nanowires for supercapacitor. Solid State Communications,2005,136:94-96
    85. Chen X, Shen Y-F, Suib S L, O'young C L. Characterization of Manganese Oxide Octahedral Molecular Sieve (M-OMS-2) Materials with Different Metal Cation Dopants. Chemistry of Materials,2002,14:940-948
    86. Cheng F, Su Y, Liang J, Tao Z, Chen J. MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media. Chemistry of Materials, 2010,22:898-905
    87. Cheng F, Zhao J, Song W, Li C, Ma H, Chen J, Shen P. Facile Controlled Synthesis of MnO2 Nano structures of Novel Shapes and Their Application in Batteries. Inorganic Chemistry,2006,45:2038-2044
    88. Ching S, Krukowska K S, Suib S L. A new synthetic route to todorokite-type manganese oxides. Inorganica Chimica Acta,1999,294:123-132
    89. Ching S, Roark J L, Duan N, Suib S L. Sol-Gel Route to the Tunneled Manganese Oxide Cryptomelane. Chemistry of Materials,1997,9:750-754
    90. Cho J, Kim G, Lim H S. Effect of Preparation Methods of LiNi1-xCoxO2 Cathode Materials on Their Chemical Structure and Electrode Performance. Journal of The Electrochemical Society,1999,146:3571-3576
    91. Cho J, Kim G B, Lim H S, Kim C S. Improvement of structural stability of LiMn2O4 cathode material on 55℃ cycling by sol-gel coating of LiCoO2. Electrochemical and Solid-State Letters,1999,2:607-609
    92. Choi Y-M, Pyun S-I, Moon S-I, Hyung Y-E. A study of the electrochemical lithium intercalation behavior of porous LiNiO2 electrodes prepared by solid-state reaction and sol-gel methods. Journal of Power Sources,1998,72:83-90
    93. Chukhrov F V, Sakharov B V, Gorshkov A I. The structure of birnessite from the Pacific Ocean. Akademiya Nauk SSSR Izvestiya, Seriya Geologicheskaya,1985, 8:66-73
    94. Cocciantelli J M, Doumerc J P, Pouchard M, Broussely M, Labat J. Crystal chemistry of electrochemically inserted LixV2O5. Journal of Power Sources,1991, 34:103-111
    95. Cocciantelli J M, Menetrier M, Delmas C, Doumerc J P, Pouchard M, Hagenmuller P. Electrochemical and structural characterization of lithium intercalation and deintercalation in the γ-LiV2O5 bronze. Solid State Ionics,1992, 50:99-105
    96. Coustier F, Passerini S, Smyrl W H. Dip-coated silver-doped V2O5 xerogels as host materials for lithium intercalation. Solid State Ionics,1997,100:247-258
    97. Croce F, Epifanio A D, Hassoun J, Deptula A, Olczac T, Scrosati B. A Novel Concept for the Synthesis of an Improved LiFePO4 Lithium Battery Cathode. Electrochemical and Solid-State Letters,2002,5:A47-A50
    98. Dai J, Li S F Y, Siow K S, Gao Z. Synthesis and characterization of the hollandite-type MnO2 as a cathode material in lithium batteries. Electrochimica Acta,2000,45:2211-2217
    99. Dasgupta S, Jacobs J K. Lithium-Manganese oxide electrode for a rechargeable lithium battery. USA patent,5601952.1995-5-24
    100. De Picciotto L A, Thackeray M M. Transformation of delithiated LiVO2 to the spinel structure. Materials Research Bulletin,1985,20:187-195
    101. De Picciotto L A, Thackeray M M, David W I F, Bruce P G, Goodenough J B. Structural characterization of delithiated LiVO2. Materials Research Bulletin, 1984,19:1497-1506
    102. De Picciotto L A, Thackeray M M, Pistoia G. An electrochemical study of the systems Li1±xV2O4 and Li1-xVO2 (0≤x≤1). Solid State Ionics,1988,28-30: 1364-1370
    103. Deguzman R N, Shen Y-F, Neth E J, Suib S L, O'young C-L, Levine S, Newsam J M. Synthesis and Characterization of Octahedral Molecular Sieves (OMS-2) Having the Hollandite Structure. Chemistry of Materials,1994,6:815-821
    104. Delmas C, Brethes S, Menetrier M.ω-LixV2O5—a new electrode material for rechargeable lithium batteries. Journal of Power Sources,1991,34:113-118
    105. Delmas C, Cognac-Auradou H, Cocciantelli J, Menetrier M, Doumerc J. The LixV2O5 system:An overview of the structure modifications induced by the lithium intercalation. Solid State Ionics,1994,69:257-264
    106. Delmas C, Cognac-Auradou H, Cocciantelli J M, Menetrier M, Doumerc J P. The LixV2O5 system:An overview of the structure modifications induced by the lithium intercalation. Solid State Ionics,1994,69:257-264
    107. Deng B, Nakamura H, Yoshio M. Capacity fading with oxygen loss for manganese spinels upon cycling at elevated temperatures. Journal of Power Sources,2008, 180:864-868
    108. Ding Y-S, Shen X-F, Sithambaram S, Gomez S, Kumar R, Crisostomo V M B, Suib S L, Aindow M. Synthesis and Catalytic Activity of Cryptomelane-Type Manganese Dioxide Nanomaterials Produced by a Novel Solvent-Free Method. Chemistry of Materials,2005,17:5382-5389
    109. Duncan M, Leroux F, Corbett J, Nazar L. Todorokite as a Li insertion cathode: Comparison of a large tunnel framework "MnO2" structure with its related layered structures. Journal of The Electrochemical Society,1998,145:3746-3757
    110. Dyer A, Pillinger M, Newton J, Harjula R, Moller T, Amin S. Sorption Behavior of Radionuclides on Crystalline Synthetic Tunnel Manganese Oxides. Chemistry of Materials,2000 12:3798-3804
    111. Eriksson T A, Doeff M M. A study of layered lithium manganese oxide cathode materials. Journal of Power Sources,2003,119-121:145-149
    112. Fendorf S E, Zasoski R J. Chromium(Ⅲ) oxidation by δ-MnO2:Characterization. Environmental Science and Technology,1992,26:79-85
    113. Feng Q, Kanoh H, Miyai Y, Ooi K. Alkali Metal Ions Insertion/Extraction Reactions with Hollandite-Type Manganese Oxide in the Aqueous Phase. Chemistry of Materials,1995,7:148-153
    114. Feng Q, Kanoh H, Ooi K. Manganese oxide porous crystals. Journal of Materials Chemistry,1999,9:319-333
    115. Feng Q, Kanoh H, Ooi K, Tani M, Nakacho Y. Synthesis of Hollandite-Type Manganese Dioxide with H+ Form for Lithium Rechargeable Battery. Journal of The Electrochemical Society,1994,141:L135-L136
    116. Feng Q, Yanagisawa K, Nakamichi Y. Hydrothermal soft chemical process for synthesis of manganese oxides with tunnel structures. Journal of Porous Materials, 1998,5:153-161
    117. Feng X H, Liu F, Tan W F, Liu X W. Synthesis of Birnessite from the Oxidation of
    Mn2+ by O2 in Alkali Medium:Effects of Synthesis Conditions. Clays and Clay Minerals,2004,52:240-250
    118. Feng X H, Tan W F, Liu F, Ruan H D, He J Z. Oxidation of As(Ⅲ) by Several Manganese Oxide Minerals in Absence and Presence of Goethite. Acta Geologica Sinica-English Edition,2006a,80:249-256
    119. Feng X H, Tan W F, Liu F, Wang J B, Ruans H D. Synthesis of todorokite at atmospheric pressure. Chemistry of Materials,2004,16:4330-4336
    120. Feng X H, Zu Y Q, Tan W F, Liu F. Arsenite Oxidation by three types of manganese oxides. Journal of Environmental Sciences,2006b,18:292-298
    121. Fey G T K, Weng Z X, Chen J G,Lu C Z, Kumar T P, Naik S P, Chiang A S T, Lee D C, Lin J R. Preformed Boehmite Nanoparticles As Coating Materials for Long-Cycling LiCoO2. Journal of Applied Electrochemistry,2004,34:715-722
    122. Frondel C, Marvis U B, Ito J. New occurrence of todorokite. American Mineralogist,1960,45:1167-1173
    123. Fu R, Ma Z, Zheng J, Au G, Plichta E, Ye C. High-Resolution'Li Solid-State NMR Study of LixV2O5 Cathode Electrodes for Li-Rechargeable Batteries. Journal of Physical Chemistry B,2003,107:9730-9735
    124. Gao T, Fjellv G H, Norby P. A comparison study on Raman scattering properties of α- and β-MnO2. Analytica Chimica Acta,2009,648:235-239
    125. Ghosh P, Mahanty S, Basu R. Lanthanum-doped LiCoO2 cathode with high rate capability. Electrochimica Acta,2009,54:1654-1661
    126. Ghosh R, Shen X, Villegas J C, Ding Y, Malinger K, Suib S L. Role of Manganese Oxide Octahedral Molecular Sieves in Styrene Epoxidation. The Journal of Physical Chemistry B,2006,110:7592-7599
    127. Giovanoli R, Stahli E, Feitknecht W. Uber Oxidehydroxide des vierwertigen Mangans mit Schichtengitter.1. Natriummangan(Ⅱ, Ⅲ)- manganat(Ⅳ). Helvetica Chimica Acta,1970a,53:209-220
    128. Giovanoli R, Stahli E, Feitknecht W. Uber. Oxidehydroxide des vierwertigen Mangans mit Schichtengitter.2. Mangan(Ⅲ)-manganat(Ⅳ). Helvetica Chimica Acta,1970b,53:453-464
    129. Goff P L, Baffier N, Bach S, Pereira-Ramos J-P. Structural and electrochemical properties of layered manganese dioxides in relation to their synthesis:classical and sol-gel routes. Journal of Materials Chemistry,1994,4:875-881
    130. Golden D C, Chen C C, Dixon J B. Synthesis of Todorokite. Science,1986,231: 717-719
    131. Golden D C, Chen C C, Dixon J B. Transformation of birnessite to buserite, todorokite, and manganite under mild hydrothermal treatment. Clays and Clay Minerals,1987,35:271-280
    132. Guyomard D, Tarascon J M. The carbon/Li1+xMn2O4 system. Solid State Ionics, 1994,69:222-237
    133. Ha H, Jeong K, Kim K. Effect of titanium substitution in layered LiNiO2 cathode material prepared by molten-salt synthesis. Journal of Power Sources,2006,161: 606-611
    134. Hashem A M A, Mohamed H A, Bahloul A, Eid A E, Julien C M. Thermal stabilization of tin- and cobalt-doped manganese dioxide. Ionics,2008,14:7-14
    135. He X M, Li J J, Cai Y, Wang Y, Ying J, Jiang C, Wan C. Preparation of spherical spinel LiMn2O4 cathode material for lithium ion batteries. Journal of Solid State Electrochemistry,2005,9:438-444
    136. Hill L I, Verbaere A, Guyomard D. MnO2 (α-,β-,γ-) compounds prepared by hydrothermal-electrochemical synthesis:characterization, morphology, and lithium insertion behavior. Journal of Power Sources,2003,119-121:226-231
    137. Huang S, Wen Z, Yang X, Gu Z, Xu X. Improvement of the high-rate discharge properties of LiCoO2 with the Ag additives. Journal of Power Sources,2005,148: 72-77
    138. Humbert M, Biensan P, Broussely M, Lecerf A, Dolle A, Ladhily H. A high performance LixMnOy cathode material for rechargeable lithium cells. Journal of Power Sources,1993,44:681-687
    139. Islam M, Driscoll D, Fisher C, Slater P. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem. Mater,2005,17:5085-5092
    140. Jiang J, Buhrmester T, Eberman K W, Krause L J, Dahn J R. Electrochemical and thermal comparisons of Li[Ni0.1Co0.8Mn0.1]O2 synthesized at different temperatures (900,1000, and 1100℃). Journal of The Electrochemical Society, 2005a,152:A19-A22
    141. Jiang J, Dahn J R. Electrochemical and thermal studies of Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 (x=1/12,1/4,5/12, and 1/2). Electrochimica Acta, 2005,50:4778-4783
    142. Jiang J, Eberman K W, Krause L J, Dahn J R. Structure, electrochemical properties, and thermal stability studies of Li[Ni0.2Co0.6Mn0.2]O2 effect of synthesis route. Journal of The Electrochemical Society,2005b,152: A1874-A1878
    143. Jiang J, Eberman K W, Krause L J, Dahn J R. Reactivity of Liy[NixCo1-2xMnx]O2 (x=0.1,0.2,0.35,0.45, and 0.5; y= 0.3,0.5) with nonaqueous solvents and electrolytes studied by ARC. Journal of The Electrochemical Society,2005c,152: A566-A569
    144. Jin L, Reutenauer J, Opembe N, Lai M, Martenak Daniel j, Han S, Suib Steven 1. Studies on Dehydrogenation of Ethane in the Presence of CO2 over Octahedral Molecular Sieve (OMS-2) Catalysts. ChemCatChem,2009,1:441-444
    145. Johnson A E, Jeffrey E P. Water in the interlayer region of birnessite:Importance in canon exchange and structural stabillity. American Mineralogist,2006,91: 609-618
    146. Johnson C, Dees D, Mansuetto M, Thackeray M, Vissers D, Argyriou D, Loong C, Christensen L. Structural and electrochemical studies of alpha manganese dioxide (α-MnO2).1996,
    147. Johnson C S. Development and utility of manganese oxides as cathodes in lithium batteries. Journal of Power Sources,2007,165:559-565
    148. Johnson C S, Dees D W, Mansuetto M F, Thackeray M M, Vissers D R, Argyriou D, Loong C K, Christensen L. Structural and electrochemical studies of a-manganese dioxide (α-MnO2). Journal of Power Sources,1997a,68:570-577
    149. Johnson C S, Mansuetto M F, Thackeray M M, Shao-Horn Y, Hackney S A. Stabilized Alpha-MnO2 Electrodes for Rechargeable 3 V Lithium Batteries. Journal of The Electrochemical Society,1997b,144:2279-2283
    150. Johnson C S, Thackeray M M. Ammonia- and lithia-doped manganese dioxide for 3 V lithium batteries. Journal of Power Sources,2001,97-98:437-442
    151. Jothiramalingam R, Viswanathan B, Varadarajan T K. Synthesis, characterization and catalytic oxidation activity of zirconium doped K-OMS-2 type manganese oxide materials. Journal of Molecular Catalysis A:Chemical,2006,252:49-55
    152. Jouanneau S, Bahmet W, Eberman K W, Krause L J, Dahn J R. Effect of the sintering agent, B2O3, on Li[NixCo1-2XMnx]O2 materials:Density, structure, and electrochemical properties. Journal of The Electrochemical Society,2004,151: A1789-A1796
    153. Jouanneau S, Dahn J R. Influence of LiF additions on Li[NixCo1-2xMnx]O2 materials sintering, structure, and lithium insertion properties. Journal of The Electrochemical Society,2004,151:A1749-A1754
    154. Julien C M, Massot M, Poinsignon C. Lattice vibrations of manganese oxides: Part Ⅰ. Periodic structures. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2004,60:689-700
    155. Kadoma Y, Oshitari S, Ui K, Kumagai N. Synthesis of hollandite-type LixMnO2 by Li+ ion-exchange in molten salt and lithium insertion characteristics. Electrochimica Acta,2007,53:1697-1702
    156. Kang K, Meng Y S, Breger J, Grey C P, Ceder G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science,2006,311:977
    157. Kannan A M, Manthiram A. Surface/Chemically modified LiMn2O4 cathodes for lithium-ion batteries. Electrochemical and Solid-State Letters,2002,5: A167-A169
    158. Katikaneni S, Patel P, Suib S. OMS-2 catalysts in PEM fuel cell applications. In Google Patents:2004.
    159. Kawakita J, Miura T, Kishi T. Comparison of Na1+xV3O8 with Li1+xV3O8 as lithium insertion host. Solid State Ionics,1999a,124:21-28
    160. Kawakita J, Shimizu R, Katayama Y, Miura T, Kishi T. Preparation and lithium insertion behaviour of SrⅡ substituted δ-SryAg0.75-2yV2O5. Solid State Ionics, 1999b,123:181-188
    161. Kawaoka H, Hibino M, Zhou H, Honma I. Sonochemical synthesis of amorphous manganese oxide coated on carbon and application to high power battery. Journal of Power Sources,2004,125:85-89
    162. Kijima N, Sakata Y, Takahashi Y, Akimoto J, Kumagai T, Igarashi K, Shimizu T. Synthesis and lithium ion insertion/extraction properties of hollandite-type MnO2 prepared by acid digestion of Mn2O3. Solid State Ionics,2009,180:616-620
    163. Kijima N, Takahashi Y, Akimoto J, Awaka J. Lithium ion insertion and extraction reactions with Hollandite-type manganese dioxide free from any stabilizing cations in its tunnel cavity. Journal of Solid State Chemistry,2005,178: 2741-2750
    164. Kijima N, Yasuda H, Sato T, Yoshimura Y. Preparation and Characterization of Open Tunnel Oxide α-MnO2 Precipitated by Ozone Oxidation. Journal of Solid State Chemistry,2001,159:94-102
    165. Kim H-S, Cho B-W, Cho W-I. Cycling performance of LiFePO4 cathode material for lithium secondary batteries. Journal of Power Sources,2004,132:235-239
    166. Kim J B, Dixon J B, Chusuei C C, Deng Y J. Oxidation of Chromium(Ⅲ) to (Ⅵ) by Manganese Oxides. Soil Science Society of America Journal,2002,66: 306-315
    167. Kim S H, Kim C-S. Improving the rate performance of LiCoO2 by Zr doping. Journal of Electroceramics,2009,23:254-257
    168. Kim S H, Kim S J, Oh S M. Preparation of layered MnO2 via thermal decomposition of KMnO4 and its electrochemical characterizations. Chem. Mater, 1999,11:557-563
    169. Kloprogge J T, Duong L V, Wood B J, Frost R L. XPS study of the major minerals in bauxite:Gibbsite, bayerite and (pseudo-)boehmite. Journal of Colloid and Interface Science,2006,296:572-576
    170. Kubo K, Arai S, Yamada S, Kanda M. Synthesis and charge-discharge properties of Li1+xNi1-x-yCoyO2-zFz. Journal of Power Sources,1999,81-82:599-603
    171. Kumagai N, Kitamoto H, Baba M, Durand-Vidal S, Devilliers D, Groult H. Intercalation of lithium in rf-sputtered vanadium oxide film as an electrode material for lithium-ion batteries. Journal of Applied Electrochemistry,1997,28: 41-48
    172. Kumagai N, Komaba S, Abe K, Yashiro H. Synthesis of metal-doped todorokite-type MnO2 and its cathode characteristics for rechargeable lithium batteries. Journal of Power Sources,2005,146:310-314
    173. Kumagai N, Komaba S, Sakai H. Preparation of todorokite-type manganese-based oxide and its application as lithium and magnesium rechargeable battery cathode. Journal of Power Sources,2001,97:515-517
    174. Kumagai N, Oshitari S, Komaba S, Kadoma Y. Synthesis of hollandite-type LiyMn1-xCoxO2 (x=0-0.15) by Li+ ion-exchange in molten salt and the electrochemical property for rechargeable lithium battery electrodes. Journal of Power Sources,2007,174:932-937
    175. Kumagai N, Sasaki T, Oshitari S, Komaba S. Characterization and Lithium Insertion Characteristics of Hollandite-type Ky(Mn1-xMx)O2 for Rechargeable Lithium Battery Electrodes. Journal of New Materials for Electrochemical Systems,2006,9:175-180
    176. Kwon D-K, Akiyoshi T, Lee H, Lanagan M T. Synthesis and Electrical Properties of Stabilized Manganese Dioxide (α-MnO2) Thin-Film Electrodes. Journal of the American Ceramic Society,2008,91:906-909
    177. Le Goff P, Baffier N, Bach S, Pereira-Ramos J P, Messina R. Structural and electrochemical characteristics of a lamellar sodium manganese oxide synthesized via a sol-gel process. Solid State Ionics,1993,61:309-315
    178. Lecerf A, Lubin F, Broussely M. Rechargeable electrochemical battery including a lithium anode.4975346.1990
    179. Lee J, Lee J, Yoon S, Kim S, Sohn J, Rhee K, Sohn H. Electrochemical characteristics of manganese oxide/carbon composite as a cathode material for Li/MnO2 secondary batteries. Journal of Power Sources,2008,183:325-329
    180. Lee Y, Sun Y, Nahm K. Synthesis and characterization of LiNiO2 cathode material prepared by an adiphic acid-assisted sol-gel method for lithium secondary batteries. Solid State Ionics,1999,118:159-168
    181. Lee Y-S, Kumada N, Yoshio M. Synthesis and characterization of lithium aluminum-doped spinel (LiAlxMn2-xO4) for lithium secondary battery. Journal of Power Sources,2001,96:376-384
    182. Leising R A, Takeuchi E S. Synthesis and characterization of a new trimetallic cathode material for lithium batteries. Journal of Power Sources,1997,68: 730-734
    183. Li B, Rong G, Xie Y, Huang L, Feng C. Low-Temperature Synthesis of α-MnO2 Hollow Urchins and Their Application in Rechargeable Li+ Batteries. Inorganic Chemistry,2006,45:6404-6410
    184. Li G H, Ikuta H, Uchida T, Wakihara M. The spinel phases LiMyMn(2-y)O4 (M=Co, Cr, Ni) as the cathode for rechargeable lithium batteries. Journal of The Electrochemical Society,1996,143:178-182
    185. Li L, King D L. Synthesis and Characterization of Silver Hollandite and Its Application in Emission Control. Chemistry of Materials,2005a,17:4335-4343
    186. Li L, King D L. High-Capacity Sulfur Dioxide Absorbents for Diesel Emissions Control. Industrial & Engineering Chemistry Research,2005b,44:168-177
    187. Li R, Gong F, Lin H, Wang W. Co-precipitation synthesis and characterization of multiple substituted lithium manganese oxides in lithium ion batteries. Ionics, 2005,11:343-351
    188. Li W, Currie J C. Morphology Effects on the Electrochemical Performance of LiNi1-xCoxO2. Journal of The Electrochemical Society,1997,144:2773-2779
    189. Li W-N, Yuan J, Gomez-Mower S, Sithambaram S, Suib S L. Synthesis of Single Crystal Manganese Oxide Octahedral Molecular Sieve (OMS) Nanostructures with Tunable Tunnels and Shapes. The Journal of Physical Chemistry B,2006, 110:3066-3070
    190. Li W-N, Yuan J, Shen X-F, Gomez-Mower S, Xu L-P, Sithambaram S, Aindow M, Suib S L. Hydrothermal Synthesis of Structure- and Shape-Controlled Manganese Oxide Octahedral Molecular Sieve Nanomaterials. Advanced Functional Materials, 2006,16:1247-1253
    191. Li X, Kang F, Bai X, Shen W. A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries. Electrochemistry Communications,2007,9:663-666
    192. Liu H, Cao Q, Fu L, Li C, Wu Y, Wu H. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochemistry Communications, 2006,8:1553-1557
    193. Liu J, Qiu W, Yu L, Zhao H, Li T. Synthesis and electrochemical characterization of layered Li(Ni1/3Co1/3Mn1/3)O2 cathode materials by low-temperature solid-state reaction. Journal of Alloys and Compounds,2008,449:326-330
    194. Liu L, Feng Q, Yanagisawa K, Wang Y. Characterization of birnessite-type sodium manganese oxides prepared by hydrothennal reaction process. Journal of Materials Science Letters,2000,19:2047-2050
    195. Lu Z H, Macneil D D, Dahn J R. Layered Li[NixCo1-2XMnx]O2 cathode materials for lithium-ion batteries. Electrochemical and Solid State Letters,2001,4: A200-A203
    196. Luo J, Suib S L. Preparative parameters, magnesium effects, and anion effects in the crystallization of birnessites. Journal of Physical Chemistry B,1997,101: 10403-10413
    197. Luo J, Zhang Q H, Suib S L. Mechanistic and kinetic studies of crystallization of birnessite. Inorganic Chemistry,2000,39:741-747
    198. Luo J, Zhu H T, Fan H M, Liang J K, Shi H L, Rao G H, Li J B, Du Z M, Shen Z X. Synthesis of Single-Crystal Tetragonal α-MnO2 Nanotubes. The Journal of Physical Chemistry C,2008,112:12594-12598
    199. Ma S, Nam K, Yoon W, Bak S, Yang X, Cho B, Kim K. Nano-sized lithium manganese oxide dispersed on carbon nanotubes for energy storage applications. Electrochemistry Communications,2009,11:1575-1578
    200. Macneil D D, Lu Z, Chen Z, Dahn J R. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. Journal of Power Sources,2002a,108:8-14
    201. Macneil D D, Lu Z, Dahn J R. Structure and Electrochemistry of Li[NixCo1-2xMnx]O2 (0≤x≤1/2). Journal of The Electrochemical Society,2002b, 149:A1332-A1336
    202. Massarotti V, Capsoni D, Bini M. Nanosized LiMn2O4 from mechanically activated solid-state synthesis. Journal of Solid State Chemistry,2006,179: 590-596
    203. Mckenzie R. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineralogical Magazine,1971,38:493-502
    204. Mckenzie R M. The adsorption of lead and other heavy metals on oxides of manganese and iron. Australian Journal of Soil Research,1980,19:41-50
    205. Mellin T A, Lei G. Stabilization of 10A-manganates by interlayer cations and hydrothennal treatment:implications for the mineralogy of marine manganese concretions. Marine Geology,1993,115:67-83
    206. Moss P, Fu R, Au G, Plichta E, Xin Y, Zheng J. Investigation of cycle life of Li-LixV2O5 rechargeable batteries. Journal of Power Sources,2003,124:261-265
    207. Mukherjee B. X-ray study of psilomelane and cryptomelane. Mineralogical Magazine,1959,32:166-171
    208. Myung S, Kumagai N, Komaba S, Chung H. Effects of Al doping on the microstructure of LiCoO2 cathode materials. Solid State Ionics,2001,139:47-56
    209. Nakayama M, Watanabe K, Ikuta H, Uchimoto Y, Wakihara M. Grain size control of LiMn2O4 cathode material using microwave synthesis method. Solid State Ionics,2003,164:35-42
    210. Nishida Y, Nakane K, Satoh T. Synthesis and properties of gallium-doped LiNiO2 as the cathode material for lithium secondary batteries. Journal of Power Sources, 1997,68:561-564
    211. Ogata A, Komaba S, Baddour-Hadjean R, Pereira-Ramos J, Kumagai N. Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery. Electrochimica Acta,2008,53: 3084-3093
    212. Oh S, Park S, Jung E, Bae Y, Sun Y. Improved High-rate Capability of Li[Ni0.5CoyMn1.5-y]O4-zFz Spinel Materials for 5 V Lithium Secondary Batteries. J. Ind. Eng. Chem,2007,13:1174-1179
    213. Ohzuku T, Brodd R. An overview of positive-electrode materials for advanced lithium-ion batteries. Journal of Power Sources,2007,174:449-456
    214. Ohzuku T, Kitagawa M, Hirai T. Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell. Journal of The Electrochemical Society,1990,137: 769-775
    215. Ohzuku T, Kitagawa M, Sawai K, Hirai T. Topotactic Reduction of Alpha-Manganese (Di)Oxide in Nonaqueous Lithium Cells. Journal of The Electrochemical Society,1991,138:360
    216. Ohzuku T, Yanagawa T, Kouguchi M, Ueda A. Innovative insertion material of LiAl1/4Ni3/4O2 (R-m) for lithium-ion (shuttlecock) batteries. Journal of Power Sources,1997,68:131-134
    217. Omomo Y, Sasaki T, Watanabe M. Preparation of protonic layered manganates and their intercalation behavior. Solid State Ionics,2002,151:243-250
    218. Ostwald J. Some observations on the chemical composition of todorokite. Mineralogical Magazine,1986,50:336-340
    219. Ouyang C Y, Shi S Q, Wang Z X, Li H, Huang X J, Chen L Q. The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations. Journal of Physics:Condensed Matter,2004,16:2265
    220. Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. Journal of The Electrochemical Society,1997a,144:1188-1194
    221. Padhi A K, Nanjundaswamy K S, Masquelier C, Okada S, Goodenough J B. Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates. Journal of The Electrochemical Society,1997b,144:1609-1613
    222. Pomerantseva E, Goodilin E, Kulova T, Skundin A, Tretyakov Y. Growth and Modification of Ba6Mn24O48 Whiskers and Their Electrochemical Performance. 2007, ECS:
    223. Post J. Manganese oxide minerals:Crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences of the United States of America,1999,96:3447
    224. Post J, Bish D. Rietveld refinement of the todorokite structure. American Mineralogist,1988,73:861
    225. Post J, Heaney P, Hanson J. Rietveld refinement of a triclinic structure for synthetic Na-birnessite using synchrotron powder diffraction data. Powder Diffraction,2002,17:218
    226. Post J, Heaney P, Hanson J. Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite. American Mineralogist,2003,88:142
    227. Post J E, Veblen D R. Crystal structure determination of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method. American Mineralogist,1990,75:477-489
    228. Post J E, Von Dreele R B, Buseck P R. Symmetry and cation displacements in hollandites:structure refinements of hollandite, cryptomelane, and priderite. Acta Crystallographica Section B,1982,38:1056-1065
    229. Prosini P P, Zane D, Pasquali M. Improved electrochemical performance of a LiFePO4-based composite cathode. Electrochimica Acta,2001,46:3517-3523
    230. Randall S R, Sherman D M, Ragnarsdottir K V. An extended X-ray absorption fine structure spectroscopy investigation of cadmium sorption on cryptomelane (KMn8O16). Chemical Geology,1998,151:95-106
    231. Raveau B. Colossal magnetoresistance, charge ordering and related properties of manganese oxides. World Scientific Pub Co Inc,1998,345
    232. Ravet N, Chouinard Y, Magnan J F, Besner S, Gauthier M, Armand M. Electroactivity of natural and synthetic triphylite. Journal of Power Sources,2001, 97-98:503-507
    233. Renuka R, Ramamurthy S. An investigation on layered birnessite type manganese oxides for battery applications. Journal of Power Sources,2000,87:144-152 Robertson A D, Lu S H, Howard W F J. M3+-modified LiMn2O4 spinel intercalation cathodes.2:Electrochemical stabilization by Cr3+. Journal of The Electrochemical Society,1997,144:3505-3512
    235. Rossouw M H, Liles D C, Thackeray M M, David W I F, Hull S. Alpha manganese dioxide for lithium batteries:A structural and electrochemical study. Materials Research Bulletin,1992,27:221-230
    236. Sasaki T, Komaba S, Kumagai N, Nakai I. Synthesis of Hollandite-Type Ky(Mn1-xMx)O2 (M=Co, Fe) by Oxidation of Mn(Ⅱ) Precursor and Preliminary Results on Electrode Characteristics in Rechargeable Lithium Batteries. Electrochemical and Solid-State Letters,2005,8:A471-A475
    237. Sathiyamoorthi R, Chandrasekaran R, Santhosh P, Saminathan K, Gangadharan R, Vasudevan T. Electrochemical Characterization of Nanocrystalline LiMxCo1-xO2 (M= Mg, Ca) Prepared by a Solid-State Thermal Method. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry,2006,36: 71-81
    238. Shaju K M, Subba Rao G V, Chowdari B V R. Layered manganese oxide with 02 structure, Li(2/3)+x(Ni1/3Mn2/3)O2 as cathode for Li-ion batteries. Electrochemistry Communications,2002a,4:633-638
    239. Shaju K M, Subba Rao G V, Chowdari B V R. Lithiated O2 phase, Li(2/3)+x(Co0.i5Mn0.85)O2 as cathode for Li-ion batteries. Solid State Ionics,2002b, 152-153:69-81
    240. Shaju K M, Subba Rao G V, Chowdari B V R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochimica Acta,2002c, 48:145-151
    241. Shao-Horn Y, Hackney S, Johnson C, Thackeray M. Microstructural features of α-MnO2 electrodes for lithium batteries. J. Electrochem. Soc,1998,145:
    242. Shaughnessy D A, Nitsche H, Booth C H, Shuh D K, Waychunas G A, Wilson R E, Gill H, Cantrell K J, Serne R J. Molecular interfacial reactions between Pu(Ⅵ) and manganese oxide minerals manganite and hausmannite. Environmental Science and Technology,2003,37:3367-3374
    243. Shen Y F, Suib S L, O'Yang C L. Effects of inoganic cation templates on octahedral molecular sieves of manganese oxide. Journal of the American Chemical Society,1994,116:11020-11029
    244. Shen Y F, Zerger R P, Deguzman R N, Suib S L, Mccurdy L, Potter D I, O'young C L. Manganese Oxide Octahedral Molecular Sieves:Preparation, Characterization, and Applications. Science,1993,260:511-515
    245. Shi S, Liu L, Ouyang C, Wang D, Wang Z, Chen L, Huang X. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Physical Review B,2003,68:195108
    246. Shi S, Ouyang C, Lei M, Tang W. Effect of Mg-doping on the structural and electronic properties of LiCoO2: A first-principles investigation. Journal of Power Sources,2007,171:908-912
    247. Shin H, Cho W, Jang H. Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black. Electrochimica Acta, 2006,52:1472-1476
    248. Shin Y, Manthiram A. High rate, superior capacity retention LiMn2-2yLiyNiyO4 spinel cathodes for lithium-ion batteries. Electrochemical and Solid-State Letters, 2003,6:A34-A36
    249. Shindo H, Huang P M. Comparison of the influence of manganese(Ⅳ) and typrosinase on the formation of humic substances in the environment. Science of the Total Environment,1992,117/118:103-110
    250. Snyder R, Fiala J, Bunge H. Defect and microstructure analysis by diffraction. Oxford University Press, USA,1999,
    251. Son Y-C, Makwana V D, Howell A R, Suib S L. Efficient, Catalytic, Aerobic Oxidation of Alcohols with Octahedral Molecular Sieves. Angewandte Chemie, 2001,113:4410-4413
    252. Song C H, Li R Q, Liu F, Feng X H, Tan W F, Qiu G H. Cobalt-doped todorokites prepared by refluxing at atmospheric pressure as cathode materials for Li batteries. Electrochimica Acta,2010,55:9157-9165
    253. Song M Y, Lee R. Synthesis by sol-gel method and electrochemical properties of LiNiO2 cathode material for lithium secondary battery. Journal of Power Sources, 2002,111:97-103
    254. Su Z, Lu Z W, Gao X P, Shen P W, Liu X J, Wang J Q. Preparation and electrochemical properties of indium-and sulfur-doped LiMnO2 with orthorhombic structure as cathode materials. Journal of Power Sources,2009,189: 411-415
    255. Su Z, Ye S H, Wang Y L. Synthesis and Electrochemical Properties of S-M (M=Cu, Co, Ti) Co-doped Layered LiMnO2 Cathode Materials. Huaxue xuebao, 2009,67:2413-2420
    256. Subramania A, Angayarkanni N, Vasudevan T. Effect of PVA with various combustion fuels in sol-gel thermolysis process for the synthesis of LiMn2O4 nanoparticles for Li-ion batteries. Materials Chemistry and Physics,2007,102: 19-23
    257. Subramanian V, Zhu H, Vajtai R, Ajayan P M, Wei B. Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 Nanostructures. The Journal of Physical Chemistry B,2005,109:20207-20214
    258. Subramanian V, Zhu H, Wei B. Nanostructured MnO2:Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material. Journal of Power Sources,2006,159:361-364
    259. Sugantha M, Ramakrishnan P A, Hermann A M, Warmsingh C P, Ginley D S. Nanostructured MnO2 for Li batteries. International Journal of Hydrogen Energy, 2003,28:597-600
    260. Suib S L. Sorption,catalysis, and separation by design. Chemical Innovation,2000, 30:27-33
    261. Sun Y, Han J, Myung S, Lee S, Amine K. Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode. Electrochemistry Communications, 2006,8:821-826
    262. Sun Y-K. Structural degradation mechanism of oxysulfide spinel LiAl0.24Mn1.76O3.98S0.02 cathode materials on high temperature cycling. Electrochemistry Communications,2001,3:199-202
    263. Sun Y K, Jeon Y S, Lee H J. Overcoming Jahn-Teller distortion for spinel Mn phase. Electrochemical and Solid State Letters,2000,3:7-9
    264. Sun Y-K, Oh B, Lee J H. Synthesis and electrochemical characterization of oxysulfide spinel LiAl0.15Mn1.85O3.97S0.03 cathode materials for rechargeable batteries. Electrochimica Acta,2000,46:541-546
    265. Takahashi M, Tobishima S, Takei K, Sakurai Y. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries. Journal of Power Sources, 2001,97-98:508-511
    266. Tan B, Klabunde K, Sherwood P. XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. Journal of the American Chemical Society,1991,113:855-861
    267. Tanaka Y, Tsuji M. New synthetic method of producing a-manganese oxide for potassium selective adsorbent. Materials Research Bulletin,1994,29:1183-1191
    268. Tang X, Li J, Hao J. Significant enhancement of catalytic activities of manganese oxide octahedral molecular sieve by marginal amount of doping vanadium. Catalysis Communications,2010,11:871-875
    269. Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature,2001,414:359-367
    270. Tate R L. Physical management of soils of the tropics:Priorities for the 21st Century. Soil Science,2000,165:191-207
    271. Tian Z R, Tong W, Wang J Y, Duan N G, Krishnan V V, Suib S L. Manganese oxide mesoporous structures:mixed valent semiconducting catalysts. Science, 1997,276:926-930
    272. Tsuda M, Arai H, Sakurai Y. Improved cyclability of Na-birnessite partially substituted by cobalt. Journal of Power Sources,2002,110:52-56
    273. Tu J, Zhao X B, Xie J, Cao G S, Zhuang D G, Zhu T J, Tu J P. Enhanced low voltage cycling stability of LiMn2O4 cathode by ZnO coating for lithium ion batteries. Journal of Alloys and Compounds,2007,432:313-317
    274. Turner S, Buseck P R. Todorokites:A New Family of Naturally Occurring Manganese Oxides. Science,1981,212:1024-1027
    275. Turner S, Siegel M D, Buseck P R. Structure features of tordorkite intergrowths in manganese nodules. Nature,1982,296:841-842
    276. Umek P, Gloter A, Pregelj M, Dominko R, Jagodic M, Jagliclc Z, Zimina A, Brzhezinskaya M, PotocNik A, Filipic C, Levstik A, ArcOn D. Synthesis of 3D Hierarchical Self-Assembled Microstructures Formed from α-MnO2 Nanotubes and Their Conducting and Magnetic Properties. The Journal of Physical Chemistry C,2009,113:14798-14803
    277. Vadivel Murugan A, Kale B, Kunde L, Kulkarni A. Comparison of different soft chemical routes synthesis of nanocrystalline LiMn2O4 and their influence on its physicochemical properties. Journal of Solid State Electrochemistry,2006,10: 104-109
    278. Valanarasu S, Chandramohan R. Effect of Pb doping on structural and electrochemical properties of combustion synthesised LiCoO2 powder. Journal of materials science,2010,45:2317-2323
    279. Vicat J, Fanchon E, Strobel P, Qui T. The structure of K1.33Mn8O16 and cation ordering in hollandite-type structures. Acta Crystallographica Section B: Structural Science,1986,42:162-167
    280. Vileno E, Ma Y, Zhou H, Suib S L. Facile synthesis of synthetic tordorkite(OMS-1), co-precipitation reactions in the presence of a microwave field. Microporous and Mesoporous Materials,1998,20:3-15
    281. Vileno E, Zhou H, Zhang Q, Suib S L, Corbin D R, Koch T A. Synthetic todorkite produce by microwave heating:An active oxidation catalyst. Journal of Catalysis, 1999,187:285-297
    282. Villegas J C, Garces L J, Gomez S, Durand J P, Suib S L. Particle Size Control of Cryptomelane Nanomaterials by Use of H2O2 in Acidic Conditions. Chemistry of Materials,2005,17:1910-1918
    283. Wang D, Li H, Shi S, Huang X, Chen L. Improving the rate performance of LiFePO4 by Fe-site doping. Electrochimica Acta,2005a,50:2955-2958
    284. Wang D, Wu X, Wang Z, Chen L. Cracking causing cyclic instability of LiFePO4 cathode material. Journal of Power Sources,2005b,140:125-128
    285. Wang G, Needham S, Yao J, Wang J, Liu R, Liu H. A study on LiFePO4 and its doped derivatives as cathode materials for lithium-ion batteries. Journal of Power Sources,2006,159:282-286
    286. Wang G, Yang L, Chen Y, Wang J, Bewlay S, Liu H. An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries. Electrochimica Acta,2005,50:4649-4654
    287. Wang H-E, Lu Z, Qian D, Fang S, Zhang J. Facile synthesis and electrochemical characterization of hierarchica α-MnO2 spheres. Journal of Alloys and Compounds,2008,466:250-257
    288. Wang W-L, Jiang H, Liu Z, Liu X. Effects of base concentration and cation on hydrothermal processes of cetyltrimethylammonium permanganate in various aqueous media. Journal of Materials Chemistry,2005,15:1002-1010
    289. Wang X, Li Y. Selected-Control Hydrothermal Synthesis of α- and β-MnO2 Single Crystal Nanowires. Journal of the American Chemical Society,2002,124: 2880-2881
    290. Wang Z-M, Tezuka S, Kanoh H. NH3 desorption and decomposition behavior on microporous hollandite-type hydrous manganese oxide. Catalysis Today,2001,68: 111-118
    291. Wei M, Konishi Y, Zhou H, Sugihara H, Arakawa H. Synthesis of single-crystal manganese dioxide nanowires by a soft chemical process. Nanotechnology,2005, 16:245-249
    292. Whitfield P S, Davidson I J, Cranswick L M D, Swainson I P, Stephens P W. Investigation of possible superstructure and cation disorder in the lithium battery cathode material LiMn1/3Ni1/3Co1/3O2 using neutron and anomalous dispersion powder diffraction. Solid State Ionics,2005,176:463-471
    293. Whittingham M. Lithium batteries and cathode materials. Chemical Reviews, 2004,104:4271-4302
    294. Whittingham M, Zavalij P. Manganese dioxides as cathodes for lithium rechargeable cells:the stability challenge. Solid State Ionics,2000,131:109-115
    295. Wortham E, Bonnet B, Jones D J, Roziere J, Burns G R. Birnessite-type manganese oxide-alkylamine mesophases obtained by intercalation and their thermal behaviour. Journal of Materials Chemistry,2004,14:121-126
    296. Wu S, Chen M, Chien C, Fu Y. Preparation and characterization of Ti4+-doped LiFePO4 cathode materials for lithium-ion batteries. Journal of Power Sources, 2009,189:440-444
    297. Wu X, Li R, Chen S, He Z, Xu M. Comparative study of Co, Cr and Al-doped LiMnO2 prepared by ion exchange. Bulletin of Materials Science,2008,31: 109-113
    298. Xiao T D, Bokhimi, Benaissa M, Perez R, Strutt P R, Yacaman M J. Microstructural characteristics of chemically processed manganese oxide nanofibres. Acta Materialia,1997,45:1685-1693
    299. Yabuuchi N, Ohzuku T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. Journal of Power Sources,2003,119-121: 171-174
    300. Yamada S, Fujiwara M, Kanda M. Synthesis and properties of LiNiO2 as cathode material for secondary batteries. Journal of Power Sources,1995,54:209-213
    301. Yamaki J, Makidera M, Kawamura T, Egashira M, Okada S. Voltage prediction of nano-sized LiNiO2 cathode for use in Li-ion cells. Journal of Power Sources,2006, 153:245-250
    302. Yan H, Huang X, Zhonghua L, Huang H, Xue R, Chen L. Microwave synthesis of LiCoO2 cathode materials. Journal of Power Sources,1997,68:530-532
    303. Yang D S, Wang M K. Characterization and a fast method for synthesis of sub-micron lithiophorite. Clays and Clay Minerals,2003,51:96-101
    304. Yang H, Dong Q, Hu X, Ai X, Li S. Preparation and characterization of LiNiO2 synthesized from Ni(OH)2 and LiOH·H2O. Journal of Power Sources,1999,79: 256-261
    305. Yang L, Takahashi M, Wang B. A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling. Electrochimica Acta, 2006,51:3228-3234
    306. Yang L-X, Zhu Y-J, Wang W-W, Tong H, Ruan M-L. Synthesis and Formation Mechanism of Nanoneedles and Nanorods of Manganese Oxide Octahedral Molecular Sieve Using an Ionic Liquid. The Journal of Physical Chemistry B, 2006,110:6609-6614
    307. Yang S, Zhao N, Dong H, Yang J, Yue H. Synthesis and characterization of LiFePO4 cathode material dispersed with nano-structured carbon. Electrochimica Acta,2005,51:166-171
    308. Yang Y, Shu D, Yu H, Xia X, Lin Z G. Investigations of lithium manganese oxide materials for lithium-ion batteries. Journal of Power Sources,1997,65:227-230
    309. Yin Y G, Xu W Q, Deguzman R N, Suib S L. Studies of stability and reactivity of synthetic cryptomelane-like mangandese oxide octahedral molecular sieves. Inorganic Chemistry,1994,33:4384-4389
    310. Yuan J, Li W-N, Gomez S, Suib S L. Shape-Controlled Synthesis of Manganese Oxide Octahedral Molecular Sieve Three-Dimensional Nanostructures. Journal of the American Chemical Society,2005,127:14184-14185
    311. Yue G H, Yan P X, Yan D, Qu D M, Fan X Y, Wang M X, Shang H T. Solvothermal route synthesis of single-crystalline α-MnO2 nanowires. Journal of Crystal Growth,2006,294:385-388
    312. Zhang Q, Luo J, Vileno E, Suib S L. Synthesis of Cryptomelane-Type Manganese Oxides by Microwave Heating. Chemistry of Materials,1997,9:2090-2095
    313. Zhao H L, Gao L, Qiu W H, Zhang X H. Improvement of electrochemical stability of LiCoO2 cathode by a nano-crystalline coating. Journal of Power Sources,2004, 132:195-200
    314. Zhao W, Cui H J, Liu F, Tan W F, Feng X H. Relationship between Pb2+ adsorption and average Mn oxidation state in synthetic bimessites. Clays and Clay Minerals,2009,57:513-520
    315. Zhao W, Wang Q Q, Liu F, Qiu G H, Tan W F, Feng X H. Pb2+ adsorption on birnessite affected by Zn2+ and Mn2+ pre-treatments. Journal of Soils and Sediments,2010,10:870-878
    316. Zhu S, Marschilok A C, Lee C-Y, Takeuchi E S, Takeuchi K J. Synthesis and Electrochemistry of Silver Hollandite. Electrochemical and Solid-State Letters, 2010,13:A98-A100
    317. Zong H, Cong C, Wang L, Guo G, Liu Q, Zhang K. Synthesis and electrochemical properties of yttrium-doped LiMn0.98Y0.02O2 for lithium secondary batteries. Journal of Solid State Electrochemistry,2007,11:195-200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700