用户名: 密码: 验证码:
新型钼碲酸盐晶体的生长、性能及非线性光学频率转换研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于高单色性、高定向性、高相干性和高能量密度等特点,激光被广泛应用于军事和民用领域。激光可以通过固体激光器、液体激光器、气体激光器等直接产生,但这种方式产生的激光波长有限。目前获得新的激光波长的一种有效方法是采用光学晶体对现有激光进行非线性光学频率转换,这些晶体主要有二阶非线性光学晶体和拉曼激光晶体。二阶非线性光学晶体包括深紫外-紫外非线性光学晶体、可见-近红外非线性光学晶体和中远红外非线性光学晶体。紫外-可见-近红外非线性光学晶体已经很成熟,深紫外区域也已经有KBBF这样性能优异的材料,而中远红外波段的非线性光学晶体材料研究最不成熟,是目前二阶非线性光学晶体材料研究的热点和难点。
     二阶非线性光学晶体在结构上首先必须是非中心对称的,通过引入非中心对称的结构基元,更容易获得非中心对称结构的化合物。1998年以来,以Halasyamani课题组为代表的科学研究者采用易于发生二阶Jahn-Teller效应的离子(d0过渡金属如Mo6+、W6+、V5+和Nb5+,含有孤对电子的主族离子如I5+、Te4+、Se4+和pb2+)合成了一系列新型多元氧化物。这些多元氧化物大多具有非中心对称结构,具有强烈的粉末倍频效应,是潜在的非线性光学晶体。本课题组在国际上首次报道了大尺寸单斜相BaTeMo2O9(β-BTM)晶体的生长及性能,发现β-BTM晶体的透过范围为0.5-5μm、有效非线性光学系数是KTP晶体的3倍、电光效应为KDP晶体的3倍,表明其是一种性能优异的中红外非线性光学晶体和电光晶体。在此基础上,本论文对β-BTM晶体进行了更深入的研究,包括更大尺寸、更高质量晶体的生长,非线性光学频率转换器件的设计和制作。采用β3-BTM晶体对1064nm激光进行非线性光学频率转换,目前已经获得了1178nm、1320nm.1500nm和589nm的激光输出。在进行大尺寸β-BTM晶体生长的过程中,首次发现并生长了正交相的α-BTM晶体,解析了其结构,系统研究了其物理性能,对其组成-结构-性能的关系进行了较为深入的研究。此外,对α-BTM与β-BTM晶体之间的关系进行了研究,发现在常压下,只通过调节温度,不能发生相变,但在BaMoO4的作用下,β-BTM则能转变成α-BTM。
     另一方面,β-BTM晶体自身存在一些不足:(1)其结构中MoO6和TeO4多面体畸变方向不大一致,极轴方向的畸变不大,导致纵向压电应变常数和非线性光学系数不高;(2)比热和热导率不高,不能应用于中高功率激光输出。针对β-BTM晶体的以上两个缺点,本论文进行了以下工作:(1)以碱金属Cs替代Ba的四元化合物Cs2TeMo3O12(CTM),结构中TeO3多面体的畸变取向基本一致,总的结构畸变很大,具有和β-BTM同样优异的性能,且其对称性比β-BTM高,易于定向和加工,故本论文对Cs2O-TeO2-MoO3三元体系进行了探索,找到了适合CTM晶体生长的助熔剂,生长了厘米级的单晶;(2)以碱土金属Mg替代Ba,研究了MgO-TeO2-MoO3三元体系,首次获得了MgTeMoO6(MTM)单晶,并对其光学和热学性能进行了研究。
     本论文的主要研究工作和结果如下:
     I.α-BTM晶体的合成、生长、性能及α-/β-BTM两相关系
     采用固相反应法合成了纯相的α-BTM多晶,适宜的反应温度为580~590℃。粉末倍频测试表明,α-BTM能够实现Ⅰ类位相匹配,其倍频强度是KDP晶体的0.2倍,远小于β-BTM。采用助熔剂法获得了α-BTM单晶,并解析了其结构。
     测量了两相BTM在助熔剂(TeO2:MoO3=1.2:1)中的溶解度,发现两相BTM的饱和点非常接近,说明可以采用同一种配比生长出两相BTM晶体。采用顶部籽晶法生长了尺寸为50×42x30mm3的a-BTM晶体和57x43x35mm3的β-BTM晶体,且所获得的晶体透明,无包裹物和开裂等明显缺陷。研究了籽晶方向对晶体生长的影响,发现采用[010]和[001]方向的籽晶都能生长出高质量大尺寸的a-BTM晶体。采用高分辨X射线衍射仪对晶体质量进行了评估,晶体的摇摆曲线峰形尖锐且对称,半峰宽为16.55",说明晶体在所测区域内成分均匀,缺陷和杂质粒子很少,具有很好的结构完整性。
     系统研究了a-BTM晶体的热学性能、光学性能和压电性能。a-BTM晶体为非一致熔融化合物,其分解点为592.68℃;其沿a、b、c方向的热膨胀系数分别为9.10×10-6K-1、19.58×10-6K-1、11.94×10-6K-1;其热导率随温度的变化很小,60℃时其沿着a、b、c向的热导率分别为1.26、1.18和1.00W/(m-K)。a-BTM具有很宽的透光范围(380nm~5.53μm)、大的双折射(△n=0.30),可用于制作各种双折射器件。研究了a-BTM晶体的压电性能,发现其为非铁电压电晶体,纵向压电应变常数d33=0.3pC/N,远远小于β-BTM晶体的d22=-10.8pC/N和CTM晶体的d33=20.3pC/N,其弹性顺服常数s11=16.70pm2/N,522=12.10pm2/N,533=13.88pm2/N,故S11/S22=1.38,S33/S22=1.15,表明其各向异性较小。研究了a-BTM与β-BTM的关系,发现在常压下调节温度,没有观察到相变的发生,但在BaMoO4存在的情况下,β-BTM能转变成a-BTM,这为多形体的控制提供了一条新的思路。
     Ⅱ.CTM晶体的生长及性能
     系统探索了Cs2O-TeO2-MoO3三元相图,发现以Cs2O-TeO2和TeO2-MoO3为助熔剂均能结晶出单相的CTM晶体。采用c向籽晶生长出了尺寸为21×16x13mm3的透明晶体,并研究了籽晶方向、浓度、降温速率和降温区间对生长结果的影响,得到优化的CTM晶体生长条件:助熔剂体系TeO2-MoO3(TeO2:MoO3=3:2),浓度20~40mol%,a向籽晶,降温速率0.25-0.5℃/d。
     研究了CTM晶体的热学性能,其热膨胀系数αc=32.02×10-6K-1、αa=7.34x10-6K-1,α/αa=4.4;22℃时CTM的比热为0.400J/(g·K),随着温度的升高,其比热增大,当温度为440℃时,比热为0.506J/(g·K);22℃时a、c方向的热导率分别为1.86W/(m·K)和0.76W/(m·K),随温度的升高,其热导率降低。
     研究了CTM晶体的光学性能,其透光范围为430nm-5.38μm,其双折射达0.20(λ=480nm),随着波长的增加,双折射减小到0.13。计算了其倍频的位相匹配角度θ,当基频光波长为0.9μm时,0==54.8°,当基频光波长为1.064gm时,θ=42.7°,随着波长的增加,位相匹配角度逐渐减小,当基频光波长为2.0μm时,0=24°。采用马克条纹法测量了CTM晶体的二阶非线性光学系数,得到d32=6.8pmo/V,d33=6.5pm/V。对于1.064pm的基频光,其倍频(0=42.7°)的有效非线性光学系数为4.6pm/V,是同等条件下KTP晶体的1.5倍。考虑到透过范围和有效非线性光学系数,CTM晶体是一种潜在的二阶中红外非线性光学材料。
     研究了CTM晶体的压电性能,其纵向压电应变常数为20.3pC/N,是a-Si02的8.8倍和β-BTM的1.9倍,其机电耦合系数k33达到36.6%,其压电电压常数g33=0.18Vm/N,远大于钙钛矿材料的0.02-0.03Vm/N和LN的0.05Vm/N。CTM晶体的最小一阶温度系数为Ts44(1)=77×10-6/℃,远远小于β-BTM的Ts44(1)=180×10-6/℃和LN的Ts44(1)=205×10-6/℃。在0~150℃范围内,CTM晶体的压电电压常数d33和机电耦合系数k33随温度升高的增加值分别小于3.5%和1.0%。以上结果表明,CTM晶体可能是一种潜在的压电晶体。
     Ⅲ.MTM晶体的结构、生长及性能
     研究了MgO-TeO2-MoO3三元体系,获得了MTM单晶,解析了其结构。测试了其紫外-可见漫反射光谱,得到其紫外截止边约为360nm,中红外透过截止边为5.2μm。粉末倍频测试结果显示,MTM的倍频强度先随粒度的增大而增大,随后达到饱和,说明能够实现Ⅰ类位相匹配,且其倍频强度为KTP晶体的1.5倍。考虑到宽的透过范围和大的粉末倍频效应,MTM晶体是一种潜在的非线性光学晶体。
     Ⅳ.晶体的组成、结构与性能的关系
     分析了α-BTM、β-BTM、CTM和MTM的组成、结构与热学性能的关系;采用单晶数据,计算了α-BTM、β-BTM、CTM和MTM四种晶体结构中各阴离子基团的畸变、单胞的畸变,分析了其功能性能如非线性光学性能和压电性能与结构的关系。
     Ⅴ.非线性光学频率转换研究
     分析了α-BTM、β-BTM和CTM晶体的自发拉曼光谱,发现三种晶体主轴配置的最强拉曼峰均位于900cm-1左右,且其拉曼增益较大,线宽适中。采用α-BTM和β-BTM设计、制作了拉曼器件,获得了一阶(1178nm)、二阶(1320nm)、三阶(1500nm)拉曼激光输出,以及拉曼自倍频(589nm)激光输出。
     α-BTM晶体的一阶拉曼激光输出表明,其阈值为30.6MW/cm2,在输出镜透过率为35%的条件下,泵浦能量为48mJ时,达到最大输出能量为15.1mJ,转换效率为31.5%,斜效率为39%。当泵浦能量为32mJ时,最大光光转换效率为33.4%。采用类似的方式研究了β-BTM晶体的一阶拉曼产生,其阈值为28MW/cm2,最大输出能量为19.2mJ,光光转换效率为48%,斜效率为61.2%。与α-BTM晶体相比,β-BTM晶体的一阶拉曼激光输出性能更加优异。
     采用1064nm激光泵浦β-BTM晶体,获得了1320nm(二阶拉曼)和1500nm(三阶拉曼)双波长输出。当输出镜在1320nm处透过率为44%、泵浦能量为60mJ时,获得最大的二阶和三阶拉曼输出能量分别为10.86mJ和9.06mJ,对应的转换效率为18.1%和15.1%。
     研究了β-BTM晶体的三阶拉曼(1500nm)输出,当泵浦能量为60mJ时,输出的1500nm激光的最大能量为11.86mJ,光光转换效率达19.8%。实验中同时观察到了三阶和四阶拉曼(1740nm)激光的输出,两者的整体光光转换效率分别为22.4%(输出镜透过率为35%)和14%(输出镜透过率为20%)。要得到更高效的三阶拉曼激光输出,就要提高输出镜在1500nm处的透光率,并且对1740nm进行高反镀膜以抑制四阶输出。
     研究了β-BTM晶体的拉曼自倍频激光输出。对于1178nm激光倍频,采用Ⅱ类非临界位相匹配,β-BTM晶体的有效非线性光学系数为8.44pm/V,接收角为124mrad-cm,接收带宽为0.65nm.。在符合Ⅱ类倍频配置的方向上,沿Z轴和垂直Z轴的两个偏振方向具有频移相同的拉曼峰(915.2cm-1),峰值和半峰宽几乎相等,周围均没有竞争的频移峰出现。激光实验结果表明,589nm激光输出能量随着泵浦能量的增加而增大,在泵浦能量为48mJ时,得到了最大5.6mJ的589nm黄橙色激光输出,光光转换效率为11.7%。
Laser is widely used in military and civil fields owing to its high spatial and temporal coherence. Laser can be generated via solid-state lasers, dye lasers, gas lasers, etc.; however, the wavelengths of laser produced through this way are limited. One efficient way to obtain new laser is frequency conversion via second-order nonlinear optical (SONLO) crystals and stimulated Raman scattering (SRS) crystals. SONLO crystals can be divided into three categories:(ⅰ) Deep Ultraviolet and Ultraviolet crystals, which are used for frequency conversion below400nanometers;(ⅱ) Visible and near Infrared crystals, which are used between400nm and3μm;(iii) Mid infrared and far infrared NLO crystals, which are used in the range of3μm to20μm. Among the three types of SONLO crystals, the mid infrared crystals are less developed and are of current interest.
     For a SONLO crystal, the prerequisite is noncentrosymmetric (NCS) structure. How to design such compounds? One general strategy is to incorporate NCS building blocks into a compound. These building units include d0transition metal cations, and cations with stereochemically active lone pairs, both of which are in acentric coordination environments due to second-order Jahn-Teller (SOJT) effect. Since1998, a large amount of NCS compounds have been synthesized by P. S. Halasyamani, J. G. Mao and S. L. Pan et al. Many NCS compounds exhibit strong second-harmonic generation (SHG), suggesting that they are potential SONLO crystals. Our group (Tao group) reported bulk crystal growth and physical properties investigation of the monoclinic BaTeMo2O9(β-BTM) in2008. It has been demonstrated that β-BTM has broad transparency range (0.5-5μm), high effective NLO coefficient (3×KTP), and large electro-optic effect (3xKDP), indicating that β-BTM is a potential IR SONLO crystal and electro-optic crystal. Based on these achievements, we carried out further research on β-BTM, including crystal growth of higher quality and larger size single crystals, design and test of NLO frequency conversion devices. In the course of growing large dimensions of β-BTM single crystals, a new polymorph (α-BTM) with orthorhombic space group Pea21was discovered. The crystal structure, crystal growth, physical properties including thermal properties, optical properties and piezoelectric properties, and the composition-structure-property relationship were investigated in details.
     On the other hand, there are some shortcomings in β-BTM:(i) The dipole moment of NCS building blocks (MoO6and TeO4polyhedra) is not along the same direction, resulting relatively small net dipole moment and thus small longitude piezoelectric (-10.8pC/N) and nonlinear optical coefficients (4.57pm/V);(ⅱ) The specific heat and the thermal conductivity are not large enough, resulting in relatively small laser induced damage threshold and limited applications in high-output laser. To overcome the above-mentioned two disadvantages, two aspects of research were performed:(ⅰ) The compound Cs2TeMo3O12(CTM), substituting Ba atoms with Cs, has very large structural distortion because the direction of the dipole momemts of TeO3polyhedra is basically the same. We deduce that CTM crystal possesses physical properties comparable to β-BTM. In addition, CTM has higher symmetry, so it can be easily orientated and fabricated. Thus, exploration of the Cs2O-TeO2-MoO3ternary phase diagram, top-seeded solution crystal growth and physical properties investigation of CTM were carried out.(ii) To improve the thermal conductivity, the Ba atoms were substituted with Mg atoms. The ternary system MgO-TeO2-MoO3was explored, and single crystals of MgTeMoO6(MTM) were obtained for the first time. The crystal structure and physical properties were investigated in details.
     In this thesis, investigations on crystal growth, structure, physical properties, and nonlinear optical frequency conversion of several alkali/alkaline-earth metal molybdenum tellurites were carried out. Main contents and conclusions are as follows:
     Ⅰ. Synthesis, bulk growth, characterization of a-BTM crystals and the relationship between a-BTM and β-BTM
     Polycrystalline a-BTM was synthesized via the traditional solid-state reaction techniques. The reaction temperature was optimized to be580-590℃. SHG measurements using1064nm radiation show that α-BTM is type I phase-matchable, and the SHG response is limited to be0.2×KDP, remarkably smaller than that of β-BTM.
     The solubility of a-BTM and β-BTM in the flux system TeO2-MoO3(TeO2: MoO3=1.2:1) was measured. Results show that the saturation temperatures of both polymorphs in the same solution are almost the same, indicating that both polymorphs can be grown from the same solution. Transparent single crystals of a-BTM with dimensions of50x42x30mm3and β-BTM with dimensions of57×43x35mm3were obtained using the top-seeded solution growth (TSSG) method. The as-grown a-BTM crystals using [010]-and [001]-orientated seeds have comparable quality, with full width at half-maximum of rocking curve being16.55".
     The physical properties, including thermal properties, optical properties and piezoelectric properties, were investigated. The thermal expansion coefficients of a-BTM was measured to be αα=9.10×10-6K-1, αb=19.58×10-6K-1, and αc=11.94×10-6K-1. The thermal conductivity has very limited change with the increasing of temperature, and the conductivity at60℃is1.26,1.18,1.00W/(m·K) along the a-, b-, c-axis, respectively. α-BTM has very broad transparency range (380nm~5.53μn), large refractive indice and big birefringence (0.30at404.7nm), indicating that α-BTM may have important application as a birefringence crystal. a-BTM belongs to non-ferroelectric piezoelectric material. The longitude piezoelectric strain constant d33was measured to be0.3pC/N, much smaller than that of β-BTM (d22=-10.8pC/N). The elastic constants s11, s22and s33are16.70pm2/N,12.10pm2/N,13.88pm2/N, respectively. Additionally, the relationship between a-BTM and β-BTM was explored, and it has been found that under normal pressure (101.325kPa), neither polymorphs can transform into each other via temperature variation; however,β-BTM undergoes a phase transition to a-BTM in the presence of BaMoO4, providing a new insight to control polymorphism.
     Ⅱ. Bulk growth and characterization of CTM crystals
     The Cs2O-TeO2-MoO3ternary phase diagram was explored in details. It has been found that single phase CTM can be crystallized from the Cs2O-TeO2and TeO2-MoO3flux system. Millimeter-sized CTM single crystals were grown using platinum rod as a seed. Then, centimeter-sized CTM crystals were obtained using TSSG method using a-and c-axis seeds. The effects of growth conditions such as concentration, seed orientation, and cooling rates on crystal morphology and quality were investigated. The optimized growth conditions are as follows:a-axis orientated seed, flux TeO2-MoO3(TeO2:Mo03=3:2), concentration20-40mol%, cooling rates0.25-0.5℃C/d.
     The thermal properties of CTM were studied. CTM melts incongruent at494.95℃. The thermal expansion coefficients are αc=32.02×10-6K-1and αu=7.34×10-6K-1, αc/αa=4.4, indicating CTM has a large anisotropy. The specific heat was measured to be0.400J/(g·K) at22℃, linearly increasing to0.506J/(g-K) at440℃. The thermal conductivity are ka=1.86W/(m-K) and kc=0.76W/(m·K) at22℃, kc/ka=2.44. The conductivity decreases with the increasing of temperature.
     Optical measurements show that CTM possesses a wide transparency range (430nm-5.38μm), large birefringence (0.20at480nm), and its birefringence decreases to0.13at480nm with the increasing of wavelength. According to the Sellmeier equation, the phase matching angles are calculated. When the fundamental wavelength is1.064μm, the phase matching angle is42.7°. The SONLO coefficients of CTM were measured to be d32=6.8pm/V and d33=6.5pm/V using the Maker fringe techniques. When the fundamental wavelength is1.064μm, the effect SONLO cofficient of frequency doubling is calculated to be4.6pm/V, which is1.5times that of KTP. Taking into account the wide transparency range and its large SONLO effect, CTM is a promising mid-IR SONLO crystal.
     The complete sets of dielectric, elastic, and piezoelectric constants of CTM at room temperature were determined by means of the resonant techniques and impedance analysis. The longitude piezoelectric strain constant d33is on the order of20.3pC/N, which is8.8times that of α-SiO2and1.9times that of β-BTM, with the electromechanical coupling coefficients being36.6%. The piezoelectric voltage constant g33is calculated to be on the order of0.18Vm/N, indicating that CTM may find valuable use in sensor application. Moreover, temperature dependence of the electro-elastic coefficients was measured in the range of0-150℃, where the elastic constant S44was found to possess relatively low temperature coefficient (Ts44(1))=77X10-6/℃), and the variations of d33and k33were less than3.5%and1.0%, respectively.
     Ⅲ. Structure, crystal growth and characterization of MTM crystals
     The MgO-TeO2-MoO3ternary system was investigated, and MTM single crystals were obtained. For the first time, the crystal structure of MTM was solved. The UV-vis diffuse reflectance spectrum indicates a UV absorption edge near360nm. Infrared spectrum measurements show that MTM has a transmission window up to5.2μm. SHG measurements using1064nm radiation show that MTM is type I phase-matchable, and the SHG response is1.5times that of KTP. Considering the wide transparency range and strong SHG, MTM is a good mid-IR nonlinear optical material.
     IV. The composition-structure-property relationships
     The distortion of NCS building blocks (MoO6, MoO4, TeO3, and TeO4) in α-BTM, β-BTM, CTM and MTM are calculated based on their structure parameters. The composition-structure-property relationships in α-BTM, β-BTM, CTM and MTM are analyzed.
     V. Nonlinear optical frequency conversion investigation
     The Raman spectra of β-BTM, a-BTM and CTM were measured and analysed. The strongest Raman shift are around921.3cm-1,905.7cm-1,887.5cm-1for β-BTM, a-BTM and CTM, respectively, with corresponding intensity values and line-widths (45000,5.6cm-1),(25000,9.3cm-1) and (30000,6.3cm-1). Laser light with wavelengths of1178nm,1320nm,1500nm and589nm were obtained using the lst-order Stokes,2nd-order Stokes,3rd-order Stokes, and self-frequency-doubled Raman lasers, respectively, based on the fundamental wavelength of1064nm. These results lay a solid foundation for the applications of metal molybdenum tellurites.
     A SRS laser operating at1178nm (lst-order Stokes) with the bulk a-BTM single crystal was realized. The maximum output pulse energy of15.1mJ was obtained at the pump pulse energy of48mJ, corresponding to an optical-to-optical conversion efficiency of31.5%and a slope efficiency of39.6%. For β-BTM, the Raman resonator possesses a threshold of28MW/cm2at1064nm and a maximum output pulse energy of19.2mJ for the lst-order Stokes with an optical-to-optical conversion efficiency of48%and a slope efficiency of61.2%. The largest optical-to-optical conversion efficiency can reach50.4%at a pump energy of28.8mJ. Compared with a-BTM, β-BTM exhibits better Raman laser properties.
     The2nd-and3rd-Stokes dual-wavelength laser operation at1320and1500nm based on β-BTM crystals was demonstrated. Using an external resonator with a plane-plane configuration, the laser possesses a threshold of40MW/cm2at1064nm. The maximum output power of10.86mJ (2nd-Stokes) and9.06mJ (3rd-Stokes) were obtained at a pump power of60mJ using an output mirror with transmittance of44%at1320nm. The corresponding optical conversion efficiency from pump laser to the second-and third-Stokes laser is about18.1%and15.1%.
     The SRS and and SHG properties of β-BTM were investigated. The β-BTM crystal was cut along the type-Ⅱ SHG phase-matching direction for the lst-order Raman shift at1178nm to realize the SRS and SHG simultaneously. Pumped by a nanosecond1064nm laser source, a self-frequency-doubled BTM Raman laser operating at589nm has been demonstrated for the first time. At the pump pulse energy of48mJ, the maximum yellow laser output pulse energy of5.6mJ was obtained with an optical-to-optical conversion efficiency of11.7%.
引文
[1]叶佩弦(著),非线性光学物理.北京大学出版社:北京(2007).
    [2]张克从,王希敏(著),非线性光学晶体材料科学.科学出版社:北京(2005).
    [3]陈长章,高冬寿,陈创天,新型非线性光学材料的探索-硼氧环化合物.第五次全国晶体生长与材料学术会议1979,B44.
    [4]Chen, C. T., On New NLO crystals of the borate series LBO vs BBO. NLO properties of Materials Topical Meeting 1988, we 4-1/285.
    [5]Chen, C. T.; Wang, G. L.; Wang, X. Y.; Xu, Z. Y., Deep-UV nonlinear optical crystal KBe2BO3F2-discovery, growth, optical properties and applications. Applied Physics B-Lasers and Optics 2009,97(1),9-25.
    [6]Zhang, X.; Wang, L. R.; Wang, X. Y.; Wang, G L.; Zhu, Y.; Chen, C. T., High-power sixth-harmonic generation of an Nd:YAG laser with KBe2BO3F2 prism-coupled devices. Optics Communications 2012, 255(21-22),4519-4522.
    [7]Chen, C.; Sasaki, T.; Li, R.; Wu, Y.; Lin, Z.; Mori, Y.; Hu. Z.; Wang, J.; Aka, G.; Yoshimura, M.; Kaneda, Y., Nonlinear Optical Borate Crystals:Principals and Applications. WILEY-VCH:Verlag GmbH (2012); p 406.
    [8]张国栋,王善朋,陶绪堂,红外非线性光学晶体研究进展.人工晶体学报2012,41,17-23.
    [9]Das, S., Tunable Middle Infrared Radiation with CdGeAs2 Crystal. Japanese Journal of Applied Physics 2012,51(10),102702.
    [10]Isaenko, L.; Vasilyeva, I.; Yelisseyev, A.; Lobanov, S.; Malakhov, V.; Dovlitova, L.; Zondy, J. J.; Kavun, I., Growth and characterization of LiInS2 single crystals. Journal of Crystal Growth 2000,218 (2-4),313-322.
    [11]Wang, S.; Ruan, H.; Liu, G.; Zhang, G.; Shi, Q.; Zhang, X.; Gao, Z.; Dong, C.; Tao, X., Growth, properties and first-principles study of mid-IR nonlinear optical crystal LiInS2. Journal of Crystal Growth 2013,362,271-275.
    [12]Zawilski, K. T.; Schunemann, P. G.; Pollak, T. C.; Zelmon, D. E.; Feraelius, N. C.; Kenneth Hopkins, F., Growth and characterization of large CdSiP2 single crystals. Journal of Crystal Growth 2010,312 (8), 1127-1132.
    [13]Lin, X.; Zhang, G.; Ye, N., Growth and Characterization of BaGa4S7:A New Crystal for Mid-IR Nonlinear Optics. Crystal Growth & Design 2009,9 (2),1186-1189.
    [14]Zhang, G.; Qin, J.; Liu, T.; Zhu, T.; Fu, P.; Wu, Y.; Chen, C., Synthesis, Characterization, and Crystal Growth of Cs2Hg3I8:A New Second-Order Nonlinear Optical Material. Crystal Growth & Design 2008,8 (8),2946-2949.
    [15]Liu, T.; Qin, J.; Zhang, G.; Zhu, T.; Niu, F.; Wu, Y.; Chen, C., Mercury Bromide (HgBr2):A promising nonlinear optical material in IR region with a high laser damage threshold. Applied Physics Letters 2008,93 (9),091102.
    [16]Zhang, G.; Qin, J.; Liu, T.; Li, Y.; Wu, Y.; Chen, C., NaSb3F10:A new second-order nonlinear optical crystal to be used in the IR region with very high laser damage threshod. Applied Physics Letters 2009, 95 (26),261104.
    [17]Sun, W. J.; Wang, Q. P.; Liu, Z. J.; Zhang, X. Y.; Bai, F.; Wan, X. B.; Jin, G. F.; Tao, X. T.; Sun, Y. X., High efficiency KTiOAsO4 optical parametric oscillator within a diode-side-pumped two-rod Nd:YAG laser. Applied Physics B-Lasers and Optics 2011,104 (1),87-91.
    [18]Woodbury, E. J.; Ng, W. K., Ruby laser operation in the near IR. Proceedings of the Institute of Radio Engineers 1962,50 (11),2367.
    [19]Eckhardt, G.; Hellwarth, R. W.; McClung, F. J.; Schwarz, S. E.; Weiner, D.; Woodbury, E. J., Stimulated Raman Scattering From Organic Liquids. Physical Review Letters 1962,9(11),455-457.
    [20]von der Linde, D.; Maier, M.; Kaiser, W., Quantitative Investigations of the Stimulated Raman Effect Using Subnanosecond Light Pulses. Physical Review 1969,178 (1),11-17.
    [21]赫光生(美),刘颂豪(著),强光光学.科学出版社:北京(2011).
    [22]季家镕,冯莹(编著),高等光学教程——非线性光学与导波光学.科学出版社:北京(2008).
    [23]Eremenko, A. S.; Karpukhin, S. N.; Stepanov, A. I., Stimulated Raman scattering of the second harmonic of a neodymium laser in nitrate crystals. Soviet Journal of Quantum Electronics 1980,10 (1), 113-115115.
    [24]Cerny, P.; Zverev, P. G.; Jelinkova, H.; Basiev, T. T., Efficient Raman shifting of picosecond pulses using BaWO4 crystal. Optics Communications 2000,177 (1-6),397-404.
    [25]Basiev, T. T.; Voitsekhovskii, V. N.; Zverev, P. G.; Karpushko, F. V.; Lyubimov, A. V.; Mirov, S. B.; Morozov, V. P.; Mochalov,1. V.; Pavlyuk, A. A.; Sinitsyn, G. V.; Yakobson, V. E., Conversion of tunable radiation from a laser utilizing an LiF crystal containing F2- color centres by stimulated Raman scattering in Ba(NO3)2 and KGd(WO4)2 crystals. Soviet Journal of Quantum Electronics 1987,17 (12), 1560-15611561.
    [26]Cerny, P.; Jelinkova, H.; Zverev, P. G.; Basiev, T. T., Solid state lasers with Raman frequency conversion. Progress in Quantum Electronics 2004,28 (2),113-143.
    [27]Pask, H. M., The design and operation of solid-state Raman lasers. Progress in Quantum Electronics 2003,27(1),3-56.
    [28]Pask, H. M.; Dekker, P.; Mildren, R. P.; Spence, D. J.; Piper, J. A., Wavelength-versatile visible and UV sources based on crystalline Raman lasers. Progress in Quantum Electronics 2008,32 (3-4),121-158.
    [29]Eckhardt, G.; Bortfeld, D. P.; Geller, M., STIMULATED EMISSION OF STOKES AND ANTI-STOKES RAMAN LINES FROM DIAMOND, CALCITE, AND alpha-SULFUR SINGLE CRYSTALS. Applied Physics Letters 1963,3 (8),137-138.
    [30]Basiev, T. T.; Sobol, A. A.; Zverev, P. G.; Osiko, V. V.; Powell, R. C., Comparative spontaneous Raman spectroscopy of crystals for Raman lasers. Applied Optics 1999,38 (3),594-598.
    [31]Findeisen, J.; Eichler, H. J.; Peuser, P., Self-stimulating, transversally diode pumped NdiT KGd(WO4)2 Raman laser. Optics Communications 2000,181 (1-3),129-133.
    [32]Omatsu, T.; Ojima, Y; Pask, H. M.; Piper, J. A.; Dekker, P., Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser. Optics Communications 2004, 232(1-6),327-331.
    [33]Lagatsky, A. A.; Abdolvand, A.; Kuleshov, N. V., Passive Q switching and self-frequency Raman conversion in a diode-pumped Yb:KGd(WO4)2 laser. Optics Letters 2000,25 (9),616-618.
    [34]Zverev, P. G.; Nekhoroshikh, A. V.; Alimov, O. K.; Skomyakov, V. V.; Basiev, T. T.; Cerny, P.; Jelinkova, H., Spectroscopic and laser investigations of Nd3+: SrWO4 Raman crystal. In Advanced Optoelectronics and Lasers, Sukhoivanov, I. A.; Svich, V. A.; Volyar, A. V.; Shmaliy, Y. S., Eds. Spie-Int Soc Optical Engineering: Bellingham,2003; Vol.5582, pp 88-97.
    [35]Chen, Y. F., Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser. Optics Letters 2004,29 (11),1251-1253.
    [36]McQuillan, A. K.; Clements, W. R. L.; Stoicheff, B. P., Stimulated Raman Emission in Diamond: Spectrum, Gain, and Angular Distribution of Intensity. Physical Review A 1970,1(3).628-635.
    [37]Basiev, T. T.; Sobol, A. A.; Voronko, Y. K.; Zverev, P. G., Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers. Optical Materials 2000,15 (3),205-216.
    [38]Marvel, M. R.:Lesage, J.; Back, J.; Halasyamani. P. S.; Stern, C. L.; Poeppelmeier, K. R., Cation-anion interactions and polar structures in the solid state. Journal of the American Chemical Society 2007,729,13963-13969.
    [39]Brammer, L., Developments in inorganic crystal engineering. Chemical Society Reviews 2004,33 (8),476-489.
    [40]Ok, K. M.; Halasyamani, P. S.; Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S., Distortions in octahedrally coordinated d0 transition metal oxides:A continuous symmetry measures approach. Chemistry of Materials 2006,18,3176-3183.
    [41]Bersuker,1. B., Pseudo-jahn-teller effect-a two-state paradigm in formation, deformation, and transformation of molecular systems and solids. Chemical Reviews 2013,113 (3),1351-1390.
    [42]Bersuker,1. B., The Jahn-Teller effect. Cambridge University Press: Cambridge (2006).
    [43]Halasyamani, P. S., Asymmetric cation coordination in oxide materials: Influence of lone-pair cations on the intra-octahedral distortion in d0 transition metals. Chemistry of Materials 2004,16,3586-3592.
    [44]Bersuker, I. B., Modern Aspects of the Jahn-Teller Effect Theory and Applications To Molecular Problems. Chemical Reviews 2001,101 (4),1067-1114.
    [45]Halasyamani, P. S.; Poeppelmeier, K. R., Noncentrosymmetric oxides. Chemistry of Materials 1998, 70(10).2753-2769.
    [46]Kunz, M.; Brown, I. D., Out-of-Center Distortions around Octahedrally Coordinated d0 Transition Metals. Journal of Solid State Chemistry 1995,115 (2),395-406.
    [47]Wheeler, R. A.; Whangbo, M. H.; Hughbanks, T.; Hoffmann, R.; Burdett, J. K.; Albright, T. A., Symmetrical vs asymmetric linear M-X-M linkages in molecules, polymers, and extended networks. Journal of the American Chemical Society 1986,108 (9),2222-2236.
    [48]Pearson, R. G., A symmetry rule for predicting molecular structures. Journal of the American Chemical Society 1969,91 (18),4947-4955.
    [49]U.Opik; M.H.L.Pryce, Studies of the Jahn-Teller Effect. I. A Survey of the Static Problem. Proc.R. Soc. Lond. A 1957,235,23.
    [50]Jahn, H. A.; Teller, E., Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 1937,767 (905),220-235.
    [51]Goodenough, J. B.; Longo, J. M., Crystallographic and magnetic properties of perovskite and perovskite-related compounds. In Landolt-Bornstein, Hellwege, K. H.; Hellwege, A. M., Eds. Springer-Verlag: Berlin,1970; pp 126-314.
    [52]Yeon, J.; Kim, S.-H.; Sau Doan, N.; Lee, H.; Halasyamani, P. S., Two New Noncentrosymmetric (NCS) Polar Oxides:Syntheses, Characterization, and Structure-Property Relationships in BaMTe2O7 (M =Mg2+ or Zn2+). Inorganic Chemistry 2012,51 (4),2662-2668.
    [53]Yeon, J.; Kim, S.-H.; Green, M. A.; Bhatti, K. P.; Leighton, C.; Halasyamani, P. S., Syntheses, crystal structures, and characterization of two new T1+-Cu2+-Te6+ oxides: Tl4CuTeO6 and Tl6CuTe2O10. Journal of Solid State Chemistry 2012,196,607-613.
    [54]Yeon, J.; Kim, S. H.; Nguyen, S. D.; Lee, H.; Halasyamani, P. S., New Vanadium Selenites: Centrosymmetric Ca2(VO2)2(SeO3)3(H2O)3, Sr2(VO2)2(SeO3)3, and Ba(V2O5)(SeO3), and Noncentrosymmetric and Polar A4(VO2)2(SeO3)4(Se2O5)(A=Sr2+ or Pb2+). Inorganic Chemistry 2012,51 (1),609-619.
    [55]Sau Doan, N.; Halasyamani, P. S., Synthesis, Structure, and Characterization of New Li+-d0-Lone-Pair-Oxides: Noncentrosymmetric Polar Li6(Mo2O5)3(SeO3)6 and Centrosymmetric Li2(MO3)(TeO3) (M=Mo6+ or W6+). Inorganic Chemistry 2012,51 (17),9529-9538.
    [56]Zhu, T.; Qin, J.; Halasyamani, P.S., Synthesis and structure of A4V6[Te24+Te6+]O24 (A= K, Rb)-two new quaternary mixed-valent tellurium oxides. Dalton Transactions 2011,40 (34),8527-8532.
    [57]Zhu, T.; Chang, H. Y.; Halasyamani, P. S., Crystal Growth and Structures of New Niobium and Tantalum Oxides: Sr3LiNb06 and Sr3LiTaO6. Journal of Chemical Crystallography 2011,41 (8), 1195-1197.
    [58]Yeon, J.; Kim, S.-H.; Hayward, M. A.; Halasyamani, P.S., "A" Cation Polarity Control in ACuTe2O7 (A=Sr2+, Ba2+, or Pb2+). Inorganic Chemistry 2011,50 (17),8663-8670.
    [59]Yeon, J.; Kim, S.-H.; Halasyamani, P. S., Crystal Structure of a New Quinternary Oxide: NaTl3Cu4Te2O12. Journal of Chemical Crystallography 2011,41 (3),328-331.
    [60]Nguyen, S. D.; Yeon, J.; Kim, S.-H.; Halasyamani, P. S., BiO(IO3):A New Polar lodate that Exhibits an Aurivillius-Type (Bi2O2)2+ Layer and a Large SHG Response. Journal of the American Chemical Society 2011,133 (32),12422-12425.
    [61]Nguyen, S. D.; Kim, S.-H.; Halasyamani, P. S., Synthesis, Characterization, and Structure-Property Relationships in Two New Polar Oxides:Zn2MoO4)(SeO3) and Zn2(MoO4)(TeO3). Inorganic Chemistry 2011,50,5215-5222.
    [62]Lee, D. W.; Oh, S.-J.; Halasyamani, P. S.; Ok, K. M., New Quaternary Tellurite and Selenite: Synthesis, Structure, and Characterization of Centrosymmetric InVTe2O8 and Noncentrosymmetric InVSe2O8. Inorganic Chemistry 2011,50 (10),4473-4480.
    [63]Yeon, J.; Kim, S.-H.; Halasyamani, P. S., A3V5O14(A=K+, Rb+, or Tl+), New Polar Oxides with a Tetragonal Tungsten Bronze Related Structural Topology:Synthesis, Structure, and Functional Properties. Inorganic Chemistry 2010,49 (15),6986-6993.
    [64]Yang, T.; Sun, J. L.; Yeon, J.; Halasyamani, P. S.; Huang, S. L.; Hemberger, J.; Greenblatt, M., Cd1-xBix(Cd1+xIn1-x)VO6 (0<=x<=0.14): A New Polar Oxide with Second-Harmonic Generation. Chemistry of Materials 2010,22 (16),4814-4820.
    [65]Kim, S.-H.; Halasyamani, P. S.; Melot, B. C.; Seshadri, R.; Green, M. A.; Sefat, A. S.; Mandrus, D., Experimental and Computational Investigation of the Polar Ferrimagnet VOSe2O5. Chemistry of Materials 2010,22 (17),5074-5083.
    [66]Kim, M. K.; Kim, S.-H.; Chang, H.-Y.; Halasyamani, P. S.; Ok, K. M., New Noncentrosymmetric Tellurite Phosphate Material:Synthesis, Characterization, and Calculations of Te2O(PO4)2. Inorganic Chemistry 2010,49 (15),7028-7034.
    [67]Chang, H. Y.; Kim, S. W.; Halasyamani, P. S., Polar Hexagonal Tungsten Oxide (HTO) Materials:(1) Synthesis, Characterization, Functional Properties, and Structure-Property Relationships in A2(MoO3)3(SeO3) (A=Rb+ and Tl+) and (2) Classification, Structural Distortions, and Second-Harmonic Generating Properties of Known Polar HTOs. Chemistry of Materials 2010,22 (10),3241-3250.
    [68]Kim, S. H.; Yeon, J.; Halasyamani, P. S., Noncentrosymmetric Polar Oxide Material, Pb3SeO5: Synthesis, Characterization, Electronic Structure Calculations, and Structure-Property Relationships. Chemistry of Materials 2009,21 (21),5335-5342.
    [69]Chang, H.-Y.; Kim, S.-H.; Ok, K. M.; Halasyamani. P. S., Polar or Nonpolar? A* Cation Polarity Control in A2Ti(IO3)6(A=Li, Na, K, Rb, Cs, Tl). Journal of the American Chemical Society 2009,131 (19),6865-6873.
    [70]Chang, H.-Y.; Kim, S.-H.; Halasyamani, P. S.; Ok, K. M., Alignment of Lone Pairs in a New Polar Material:Synthesis, Characterization, and Functional Properties of Li2Ti(IO3)6. Journal of the American Chemical Society 2009,131 (7),2426-2427.
    [71]Chang, H. Y.; Kim, S. H.; Ok, K. M.; Halasyamani, P. S., New Polar Oxides: Synthesis, Characterization, Calculations, and Structure-Property Relationships in RbSe2V3O12 and TlSe2V3O12. Chemistry of Materials 2009,21 (8),1654-1662.
    [72]Chang, H. Y.; Sivakumar, T.; Ok, K. M.; Halasyamani, P. S., Polar hexagonal tungsten bronze-type oxides: KNbW2O9, RbNbW2O9, and KTaW2O9. Inorganic Chemistry 2008,47 (19),8511-8517.
    [73]Sivakurnar, T.; Chang, H. Y.; Baek, J.:Halasyamani, P. S., Two new noncentrosymmetric polar oxides: Synthesis, characterization, second-harmonic generating, and pyroelectric measurements on TlSeVO5 and TlTeVO5. Chemistry of Materials 2007,19,4710-4715.
    [74]Sivakumar, T.; Chang, H. Y.; Halasyamani, P. S., Synthesis, structure, and characterization of a new two-dimensional lead(Ⅱ) vanadate, Ba3PbV4O14. Solid State Sciences 2007,9 (5),370-375.
    [75]Kim, J. H.; Baek, J.; Halasyamani, P. S., (NH4)2Te2WO8:A new polar oxide with second-harmonic generating, ferroelectric, and pyroelectric properties. Chemistry of Materials 2007,19,5637-5641.
    [76]Ok, K. M.; Halasyamani, P. S., Synthesis, structure, and characterization of a new one-dimensional tellurite phosphate, Ba2Te0(PO4)2. Journal of Solid State Chemistry 2006,179 (5),1345-1350.
    [77]Chi, E. O.; Ok, K. M.; Porter, Y.; Halasyamani, P. S., Na2Te3Mo30,6:A new molybdenum tellurite with second-harmonic generating and pyroelectric properties. Chemistry of Materials 2006,18 (8), 2070-2074.
    [78]Ok, K. M.; Halasyamani, P. S., Mixed-metal tellurites: Synthesis, structure, and characterization of Na14Nb,Te4.9O18 and NaNb3Te4O16. Inorganic Chemistry 2005,44 (11),3919-3925.
    [79]Ok, K. M.; Halasyamani, P. S., The lone-pair cation I5+ in a hexagonal tungsten oxide-like framework: Synthesis, structure, and second-harmonic generating properties of Cs2I4O11. Angewandte Chemie-International Edition 2004,43 (41),5489-5491.
    [80]Ra, H. S.; Ok, K. M.; Halasyamani, P. S., Combining second-order Jahn-Teller distorted cations to create highly efficient SHG materials: Synthesis, characterization, and NLO properties of BaTeM2O9 (M =Mo6+ or W6+). Journal of the American Chemical Society 2003,125 (26),7764-7765.
    [81]Porter, Y.; Halasyamani, P. S., New alkali-metal-molybdenum(Ⅵ)-selenium(Ⅳ) oxides:syntheses, structures, and characterization of A2SeMoO6 (A=Na+, K+, or Rb+). Journal of Solid State Chemistry 2003, 174(2),441-449.
    [82]Goodey, J.; Ok, K. M.; Broussard, J.; Hofmann, C.; Escobedo, F. V.; Halasyamani, P. S., Syntheses, structures, and second-harmonic generating properties in new quaternary tellurites:A2TeW3O12 (A=K, Rb, or Cs). Journal of Solid State Chemistry 2003,175 (1),3-12.
    [83]Sykora, R. E.; Ok, K. M.; Halasyamani, P. S.; Wells, D. M.; Albrecht-Schmitt, T. E., New one-dimensional vanadyl iodates: Hydrothermal preparation, structures, and NLO properties of A[V02(IO3)2] (A=K, Rb) and A[(VO)2(IO3)3O2] (A=NH4, Rb, Cs). Chemistry of Materials 2002,14 (6), 2741-2749.
    [84]Sykora, R. E.; Ok, K. M.; Halasyamani, P. S.; Albrecht-Schmitt, T. E., Structural modulation of molybdenyl iodate architectures by alkali metal cations in AMoO3(IO3) (A=K, Rb, Cs): A facile route to new polar materials with large SHG responses. Journal of the American Chemical Society 2002,124 (9), 1951-1957.
    [85]Goodey, J.; Broussard, J.; Halasyamani, P. S., Synthesis, structure, and characterization of a new second-harmonic-generating tellurite: Na2TeW2O9. Chemistry of Materials 2002,14 (7),3174-3180.
    [86]Porter, Y.; Ok, K. M.; Bhuvanesh, N. S. P.; Halasyamani, P. S., Synthesis and characterization of Te2SeO7: A powder second-harmonic-generating study of TeO2, Te2Se07, Te2O5, and TeSeO4. Chemistry of Materials 2001,13 (5),1910-1915.
    [87]Porter, Y.; Bhuvanesh, N. S. P.; Halasyamani, P. S., Synthesis and characterization of non-centrosymmetric TeSeO4. Inorganic Chemistry 2001,40 (6),1172-1175.
    [88]Ok, K. M.; Bhuvanesh, N. S. P.; Halasyamani, P. S., Bi2Te05: Synthesis, structure, and powder second harmonic generation properties. Inorganic Chemistry 2001,40 (8),1978-1980.
    [89]Nguyen, S. D.; Halasyamani, P. S., Synthesis, structure, and characterization of two new polar sodium tungsten selenites: Na2(WO3)3(SeO3)-2H2O and Na6(W6O19)(SeO3)2. Inorg Chem 2013,52 (5), 2637-2647.
    [90]Zhang, S. Y.; Hu, C. L.:Mao, J. G., New mixed metal selenites and tellurites containing Pd2+ ions in a square planar geometry. Dalton Transactions 2012,41 (7),2011-2017.
    [91]Sun, C.-F.; Hu, C.-L.; Mao, J.-G., PbPt(IO3)6(H,O):a new polar material with two types of stereoactive lone-pairs and a very large SHG response. Chemical Communications 2012,48 (35), 4220-4222.
    [92]Zhang, S.-Y.; Hu, C.-L.; Sun, C.-F.; Mao, J.-G., Syntheses and Crystal Structures of a Series of Alkaline Earth Vanadium Selenites and Tellurites. Inorganic Chemistry 2010,49 (24),11627-11636.
    [93]Yang, B.-F.; Hu, C.-L.; Xu, X.; Sun, C.-F.; Zhang, J.-H.; Mao, J.-G, NaVO2(IO3)2(H2O):A Unique Layered Material Produces A Very Strong SHG Response. Chemistry of Materials 2010,22 (4), 1545-1550.
    [94]Sun, C.-F.; Hu, C.-L.; Kong, F.; Yang, B.-P.; Mao, J.-G., Syntheses and crystal structures of four new silver(Ⅰ) iodates with d0-transition metal cations. Dalton Transactions 2010,39 (6),1473-1479.
    [95]Sun, C. F.; Hu, T.; Xu, X.; Mao, J. G., Syntheses, crystal structures, and properties of three new lanthanum(Ⅲ) vanadium iodates. Dalton Transactions 2010,39 (34),7960-7967.
    [96]Sun, C. F.; Hu, C. L.; Xu, X. A.; Mao, J. G., Polar or Non-Polar? Syntheses, Crystal Structures, and Optical Properties of Three New Palladium(II) Iodates. Inorganic Chemistry 2010,49 (20),9581-9589.
    [97]Li, P.-X.; Hu, C.-L.; Xu, X.; Wang, R.-Y; Sun, C.-F.; Mao, J.-G., Explorations of New Second-Order Nonlinear Optical Materials in the K1-M11-Iv-O Systems. Inorganic Chemistry 2010,49 (10),4599-4605.
    [98]Li, P. X.; Zhang, S. Y.; Mao, J. G., Explorations of new quaternary phases in the LnⅢ-V-V(d0)-SeⅣ-O (Ln=Nd, Eu, Gd, Tb) systems. Dalton Transactions 2010,39 (48),11560-11567.
    [99]Li, P. X.; Kong, F.; Hu, C. L.; Zhao, N.; Mao, J. G., A Series of New Phases Containing Three Different Asymmetric Building Units. Inorganic Chemistry 2010,49 (13),5943-5952.
    [100]Kong, F.; Xu, X.; Mao, J.-G., A Series of New Ternary and Quaternary Compounds in the LiⅠ-GaⅢ-TeⅣ-O System. Inorganic Chemistry 2010,49 (24),11573-11580.
    [101]Zhou, Y.; Hu, C. L.; Hu, T.; Kong, F.; Mao, J. G., Explorations of new second-order NLO materials in the AgⅠ-MoⅥ/WⅥ-TeⅣ-O systems. Dalton Transactions 2009,5747-5754.
    [102]Zhang, S.-Y.; Jiang, H.-L.; Sun, C.-F.; Mao, J.-G., Syntheses, Crystal Structures, and Properties of Five New Transition Metal Molybdenum(Ⅵ) Selenites and Tellurites. Inorganic Chemistry 2009,48 (24), 11809-11820.
    [103]Sun, C. F.; Hu, C. L.; Xu, X.; Ling, J. B.; Hu, T.; Kong, F.; Long, X. F.; Mao, J. G., BaNbO(IO3)5:A New Polar Material with a Very Large SHG Response. Journal of the American Chemical Society 2009, 131 (27),9486-9487.
    [104]Kong. F.; Lin, Q. P.; Yi, F. Y.; Mao, J. G., Explorations of New Phases in the GaⅢ/InⅢ-CuⅡ-SeⅣ-O System. Inorganic Chemistry 2009,48 (14),6794-6803.
    [105]Kong, F.; Hu, C. L.; Hu, T.; Zhou, Y.; Mao, J. G., Explorations of new phases in the GaⅢ/InⅢ-MoⅥ-SeⅣ/TeⅣ-O systems. Dalton Transactions 2009,4962-4970.
    [106]Hu, T.; Qin, L.; Kong, F.; Zhou, Y.; Mao, J.-G., Ln3Pb3(IO3)13(μ3-O) (Ln=La-Nd): New Types of Second-Order Nonlinear Optical Materials Containing Two Types of Lone Pair Cations. Inorganic Chemistry 2009,48 (5),2193-2199.
    [107]Mao, J. G.; Jiang, H. L.; Kong, F., Structures and properties of functional metal selenites and tellurites. Inorganic Chemistry 2008,47 (19),8498-8510.
    [108]Jiang, H. L.:Kong, F.; Fan, Y.; Mao, J. G., ZnVSe2O7 and Cd6V2Se502,:New d10 transition-metal selenites with VⅣ or VⅤ cations. Inorganic Chemistry 2008,47 (16),7430-7437.
    [109]Jiang, H. L.; Huang, S. P.; Fan, Y.; Mao, J. G.; Cheng, W. D., Explorations of new types of second-order nonlinear optical materials in Cd(Zn)-VⅤ-TeⅣ-O systems. Chemistry-a European Journal 2008,14(6),1972-1981.
    [110]Kong, R; Huang, S.-P.; Sun, Z.-M.; Mao, J.-G.; Cheng, W.-D., Se2(B2O7):A New Type of Second-Order NLO Material. Journal of the American Chemical Society 2006,128(24),7750-7751.
    [111]Sun, C.-F.; Hu, C.-L.; Xu, X.; Yang, B.-P.; Mao, J.-G, Explorations of New Second-Order Nonlinear Optical Materials in the Potassium Vanadyl Iodate System. Journal of the American Chemical Society 2011,133 (14),5561-5572.
    [112]Wang, Y.; Pan, S.; Yu, H.; Su, X.; Zhang, M.; Zhang, F.; Han, J., Cs4Mo5P2O22:a first Strandberg-type POM with ID straight chains of polymerized Mo5P2O236- units and moderate second harmonic generation response. Chemical Communications 2013,49 (3),306-308.
    [113]Chen, Z.; Pan, S.; Yang, Z.; Dong, X.; Su, X.; Yang, Y., Pb2B;O9Cl:a chloride borate with second harmonic generation effect. Journal of Materials Science 2013,48 (6),2590-2596.
    [114]Yu, H.; Pan, S.; Wu, H.; Zhao, W.; Zhang, F.; Li, H.; Yang, Z., A new congruent-melting oxyborate, Pb4O(BO3)2 with optimally aligned BO3 triangles adopting layered-type arrangement. Journal of Materials Chemistry 2012,22 (5),2105-2110.
    [115]Chen, S. J.; Pan, S. L.; Zhao, W. W.; Yu, H. W.; Wu, H. P.; Yang, Z. H.; Yang, Y., A new noncentrosymmetric vanadoborate: synthesis, crystal structure and characterization of K2SrVB5O12. Dalton Transactions 2012,41 (30),9202-9208.
    [116]Fan, X. Y.; Pan, S. L.; Hou, X. L.; Tian, X. L.; Han, J.; Haag, J.; Poeppelmeier, K. R., Growth and Properties of Single Crystals of Noncentrosymmetric Na3VO2B6O11. Crystal Growth & Design 2010,10 (1),252-256.
    [117]Li, F.; Hou, X.; Pan, S.; Wang, X., Growth, Structure, and Optical Properties of a Congruent Melting Oxyborate, Bi2ZnOB2O6. Chemistry of Materials 2009,21 (13),2846-2850.
    [118]Wang, Y.; Pan, S.; Su, X.; Yang, Z.; Dong, L.; Zhang, M., New Molybdenum(VI) Phosphates: Synthesis, Characterization, and Calculations of Centrosymmetric RbMoO2PO4 and Noncentrosymmetric Rb4Mo5P2O22. Inorganic Chemistry 2013,52 (3),1488-1495.
    [119]Zhang, W. L.; Wang, X. Q.; Shen, G. Q.; Shen, D. Z., Top-seeded growth, optical properties and theoretical studies of noncentrosymmetric Te2V2O9. Crystal Research and Technology 2012,47 (2). 163-168.
    [120]Lee, D. W.; Kim, S. B.; Ok, K. M., ZnIO3(OH):a new layered noncentrosymmetric polar iodate-hydrothermal synthesis, crystal structure, and second-harmonic generating (SHG) properties. Dalton Transactions 2012,41 (27),8348-8353.
    [121]Lee, D. W.; Bak, D. B.; Kim, S. B.; Kim, J.; Ok, K. M., Effect of the Framework Flexibility on the Centricities in Centrosymmetric In2Zn(SeO3)4 and Noncentrosymmetric Ga2Zn(Te03)4. Inorganic Chemistry 2012,57 (14),7844-7850.
    [122]Cao, Z.; Yue, Y.; Yao, J.; Lin, Z.; He, R.; Hu, Z., Bi2(IO4)(1O3)3:A New Potential Infrared Nonlinear Optical Material Containing [IO4]3- Anion. Inorganic Chemistry 2011,50 (24),12818-12822.
    [123]Zhang, W.-L.; Cheng, W.-D.; Zhang, H.; Geng, L.; Lin, C.-S.; He, Z.-Z., A Strong Second-Harmonic Generation Material Cd4BiO(BO3)3 Originating from 3-Chromophore Asymmetric Structures. Journal of the American Chemical Society 2010,132 (5),1508-1509.
    [124]Huang, Y.-Z.; Wu, L.-M.; Wu, X.-T.; Li, L.-H.; Chen, L.; Zhang, Y.-F., Pb2B5O9I: An Iodide Borate with Strong Second Harmonic Generation. Journal of the American Chemical Society 2010,132 (37), 12788-12789.
    [125]Inaguma. Y.; Yoshida, M.; Katsumata, T., A Polar Oxide ZnSnO3 with a LiNbO3-Type Structure. Journal of the American Chemical Society 2008,130 (21),6704-6705.
    [126]Phanon, D.; Gautier-Luneau, I., Promising material for infrared nonlinear optics: NaI3O8 salt containing an octaoxotriiodate(V) anion formed from condensation of 1O3- ions. Angewandte Chemie-International Edition 2007,46,8488-8491.
    [127]Chen, X. A.; Zhang, L.; Chang, X. N.; Xue, H. P.; Zang, H. G.; Xiao, W. Q.; Song, X. M.; Yan, H., LiMoO3(IO3):A new molybdenyl iodate based on WO3-type sheets with large SHG response. Journal of Alloys and Compounds 2007,428 (1-2),54-58.
    [128]Sykora, R. E.; Wells, D. M.; Albrecht-Schmitt, T. E., New molybdenyl iodates: Hydrothermal preparation and structures of molecular K2Mo02(I03)4 and two-dimensional β-KMoO3(IO3). Journal of Solid State Chemistry 2002,166 (2),442-448.
    [129]William T. A. Harrison, J. H. N. B., Synthesis and Crystal Structure of Cs(VO2)3(TeO3)2, a New Layered Cesium Vanadium(V) Tellurite. Zeitschrift fur anorganische und allgemeine Chemie 2000,626 (4),867870.
    [130]Marimuthu, K. N.; Varadaraju, U. V., Alkali metal insertion and dielectric studies on anion excess fluorite related mixed oxide Bi2Te2W3O16. Materials Chemistry and Physics 2000,63 (2),127-132.
    [131]Balraj, V.; Vidyasagar, K., Low-temperature syntheses and characterization of novel layered tellurites, A2Mo3TeO12 (A=NH4, Cs), and "zero-dimensional" tellurites, A4Mo6Te2O24 6H2O (A=Rb, K). Inorganic Chemistry 1998,57(19),4764-4774.
    [132]Harrison, W. T. A., Caesium vanadium selenite, Cs(VO2)3(SeO3)2. Acta Crystallographica Section C-Crystal Structure Communications 2000,56, E422-E422.
    [133]Jin, C. G.; Li, Z.; Huang, L. X.; He, M. Z., Top-seeded solution growth and characterization of a novel nonlinear optical crystal MnTeMoO6. Journal of Crystal Growth 2013,369 (0),43-46.
    [134]Zhao, S.; Jiang, X.; He, R.; Zhang, S.; Sun, Z.; Luo, J.; Lin, Z.; Hong, M., A combination of multiple chromophores enhances second-harmonic generation in a nonpolar noncentrosymmetric oxide: CdTeMoO6. Journal of Materials Chemistry C 2013,1,2906-2912.
    [135]Zhang, W.; Sun, J.; Wang, X.; Shen, G.; Shen, D., Crystal growth and optical properties of a noncentrosymmetric molybdenum tellurite, Na2Te3Mo3O16. CrystEngComm 2012,14 (10),3490-3494.
    [136]Zhang, W.; Tao, X.; Zhang, C.; Gao, Z.; Zhang, Y.; Yu, W.; Cheng, X.; Liu, X.; Jiang, M., Bulk Growth and Characterization of a Novel Nonlinear Optical Crystal BaTeMo2O9. Crystal Growth & Design 2008,8(1),304-307.
    [137]张卫国.新型非线性光学晶体BaTeMo2O9的生长及性能研究.山东大学博士学位论文,济南,2009.
    [138]Yu, Q.; Gao, Z.; Zhang. S.; Zhang, W.; Wang, S.; Tao, X., Second order nonlinear properties of monoclinic single crystal BaTeMo2O9. Journal of Applied Physics 2012,111 (1),013506.
    [139]Gao, Z.; Tao, X.:Yin, X.; Zhang, W.; Jiang, M., Elastic, dielectric, and piezoelectric properties of BaTeMo2O9 single crystal. Applied Physics Letters 2008,93 (25),252906.
    [140]Gao, Z.; Yin, X.; Zhang, W.; Wang, S.; Jiang, M.; Tao, X., Temperature dependence of elastic properties and piezoelectric applications of BaTeMo2O9 single crystal. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 2011,58 (12),2753-2757.
    [141]Gao, Z.; Yin, X.; Zhang, W.; Wang, S.; Jiang, M.; Tao, X., Electro-optic properties of BaTeMo2O9 single crystal. Applied Physics Letters 2009,95 (15),151107.
    [142]Zhang, W.; Tao, X.; Zhang, C.; Zhang, H.; Jiang, M., Structure and Thermal Properties of the Nonlinear Optical Crystal BaTeMo2O9. Crystal Growth & Design 2009,9 (6),2633-2636.
    [143]Gao, Z.; Liu, S.; Zhang, S.; Zhang, W.; He, J.; Tao, X., High efficient external resonator Raman laser based on the monoclinic single crystal BaTeMo2O9. Applied Physics Letters 2012,100 (26),261905.
    [144]Zhang, J.; Li, X. R.; Xu, B.; Yao, K. L., First-principles study of the ferroelectric and optical properties of BaTeMo2O9. Journal of Alloys and Compounds 2011,509 (15),4929-4934.
    [145]Maczka, M.; Majchrowski, A.; Kityk, I. V., Vibrational properties of the nonlinear optical crystal β-BaTeMo209. Vibrational Spectroscopy 2013,64 (0),158-163.
    [146]吕孟凯(著),固态化学.山东大学出版社:(1996).
    [147]张克从,张乐潓(主编),晶体生长科学与技术.科学出版社:北京(1997).
    [148]张玉龙,唐磊(主编),人工晶体——生长技术、性能与应用.化学工业出版社:北京(2005).
    [149]介万奇(编著),晶体生长原理与技术.科学出版社:北京(2010).
    [150]Bugaris, D. E.; zurLoye, H.-C., Materials Discovery by Flux Crystal Growth: Quaternary and Higher Order Oxides. Angewandte Chemie International Edition 2012,57 (16),3780-3811.
    [151]Kanatzidis, M. G.; Pottgen, R.; Jeitschko, W., The Metal Flux:A Preparative Tool for the Exploration of Intermetallic Compounds. Angewandte Chemie International Edition 2005,44 (43), 6996-7023.
    [152]Levin, E. M.; Robbins, C. R.; McMurdie, H. F., Phase diagrams for ceramists. American Ceramic Society:(1964).
    [153]姚建铨,徐德刚(著),全固态激光及非线性光学频率变换技术.科学出版社:北京(2007);p90-91.
    [154]陈小明,蔡继文(著),单晶结构分析的原理与实践(第二版).科学出版社:北京(2007).
    [155]Bruker APEX2, Bruker Analytical X-ray Instruments, Inc.:Madison, Wisconsin, USA., 2005.
    [156]Sheldrick, G. M. SHELXTL, version 6.12; Bruker Analytical X-ray Instruments, Inc.:Madison, WI, 2001.
    [157]Spek, A. L., Single-crystal structure validation with the program PLATON. Journal of Applied Crystallography 2003,36,7-13.
    [158]Kubelka,P.; Munk,F.,Ein Beitrag zur Optik der Farbanstriche.zeits.f. Techn.Physik 1931,12, 593-601.
    [159]Kurtz,S.K.; Perry,T.T.,A powder technique for the evaluation of nonlinear optical materials.J. Appl.Phys.1968,39(8),16.
    [160]Ok,K.M.; Chi, E.O,; Halasyamani,P.S., Bulk characterization methods for non-centrosymmetric materials:second-harmonic generation,piezoelectricity,pyroelectricity,alld ferroelectricity.Chemical Soeiety Reviews 2006,35(8),710-717.
    [161]Zolta,T.; Stout,J.H.;施倪承,马喆等(译),矿物学原理.地质出版社:北京(1992).
    [162]徐秀华(著),密度计量.中国计量出版社:北京(2010).
    [163]杨迪,李福欣(编著),显微硬度试验.中国计量出版社:北京(1988).
    [164]Yu,F.; zhang,S.; Zhao,X.; Yuan,D.; Wang,C.-M.; Shrout,T.R., Characterization of Neodymium Calcium Oxyborate Piezoelectric Crystal with Monoclinic Phase.Crystal Growth & Design 2010,10(4), 1871-1877.
    [165]肖定全,王民(编著),晶体物理学.四川大学出版社:四川(1989).
    [166]关振铎,张中太,焦金土,无机材料物理性能.清华大学出版社:北京(1992).
    [167]尹鑫,45°棱镜法测量晶体折射率.应用激光1995,15(3),127-128.
    [168]陈春荣,赵新乐(编著),晶体物理性质与检测.北京理工大学出版社:北京(1995).
    [169]邬铭新,李朝新,基础物理实验.北京航空航天大学出版社:北京(1998);p 322-323.
    [170]谢克诚,刘光耀,罗康俊,晶体折射率测试方法.压电与声光1996,18(1),62-66.
    [171]于庆霞.低对称晶体BaTeMo2O9的二阶非线性光学性能研究.山东大学硕士学位论文,济南,2010.
    [172]于法鹏.高温压电晶体的生长、性能表征和应用研究.山东大学博士学位论文,济南,2011.
    [173]Zhang,W.; Li,F.; Kim,S.-H.; Halasyamani,P.S., Top-Seeded Solution Crystal Growth and Functional Properies of a Polar Material—Na2TeW2O9.Crystal Growth&Design 2010,10(9), 4091-4095.
    [174]W.C., M., Physics and Chemistry of the Organic Solid State.Interscience: London,1965;Vol.2,p 725-767.
    [175]Desiraju,G. R., Crystal engineering:A brief overview.Journal of Chemical Sciences 2010,122(5), 667-675.
    [176]Ok,K.M.;Halasyamani,P.S., New metal iodates: Syntheses,structures,and characterizations of noncentrosymmetric La(IO3)3 and NaYl4O12 and centrosymmetric β-Cs2I4O11 and Rb2I6O15(OH)2 H2O. Inorganic Chemistry 2005,44(25),9353-9359.
    [177]Millet,P.; Enjalbert,R.; Galy, J., Cu(VO)(SeO3)2(A)and(B)forms:Synthesis and crystal structures of new copper(Ⅱ)-vanadyl(Ⅳ)diselenites.Journal of Solid State Chemistry 1999,147(1), 296-303.
    [178]Kimurat H.; Numazawa,T.; Sato,M., Solid state phase transformation of BaB2O4 during the isothermal annealing process. Journal of Materials Science 1996,31(9),2361-23652365.
    [179]郑庆新.超临界水体系在多元氧化物微纳米材料合成中的应用研究.山东大学博士学位论文,济南,2011.
    [180]黄存新,李建保,雷牧云,杜洪兵,中波红外光学材料的研究现状和发展趋势.人工晶体学报2003,32,277-281.
    [181]董春明,王善朋,陶绪堂,中红外非线性光学晶体的研究进展.人工晶体学报2006,35,785-789.
    [182]Smith, R. T., Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate. Journal of Applied Physics 1971,42 (6),2219.
    [183]Tichy, J.; Erhart, J.; Kittinger, E.; Privratska, J., Piezoelectric materials. In Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials, Springer-Verlag: NY,2010; pp 119-186.
    [184]Bohm, J.; Chilla, E.; Flannery, C.; Frohlich, H. J.; Hauke, T.; Hermann, R. B.; Hengst, M.; Straube, U., Czochralski growth and characterization of piezoelectric single crystals with langasite structure: La3Ga5SiOi4 (LGS), La3Ga5.5Nb0.5O14 (LGN) and La3Ga5.5Ta0.5O14 (LGT) Ⅱ. Piezoelectric and elastic properties. Journal of Crystal Growth 2000,216 (1-4),293-298.
    [185]Zhang, S.; Yu, F., Piezoelectric Materials for High Temperature Sensors. Journal of the American Ceramic Society 2011,94 (10),3153-3170.
    [186]Zhang, Y.; Yin, X.; Yu, H.; Cong, H.; Zhang, H.; Wang, J.; Boughton, R. I., Growth and Piezoelectric Properties of Melilite ABC3O7 Crystals. Crystal Growth & Design 2011,12 (2),622-628.
    [187]Forzatti, P.; Tittarelli, P., Metal telluromolybdates of the type MTeMoO6. Journal of Solid State Chemistry 1980,33 (3),421-427.
    [188]Butler, M. A., Photoelectrolysis and physical properties of the semiconducting electrode WO2. Journal of Applied Physics 1977,48 (5),1914-1920.
    [189]Zeng, J.; Wang, H.; Zhang, Y.; Zhu, M. K.; Yan, H., Hydrothermal Synthesis and Photocatalytic Properties of Pyrochlore La2Sb2O7 Nanocubes. The Journal of Physical Chemistry C 2007,111 (32), 11879-11887.
    [190]Accelrys MS Modeling Getting Started, Accelrys Software Inc.:San Diego,2006.
    [191]张帆,周伟敏(编著),材料性能学.上海交通大学出版社:上海(2009).
    [192]Miller, W.; Smith, C. W., Mackenzie, D. S.; Evans, K. E., Negative thermal expansion:a review. Journal of Materials Science 2009,44 (20),5441-5451.
    [193]陈创天,晶体电光和非线性光学效应的离子基团理论(Ⅰ)——利用氧八面体畸变模型计算BaTiO3晶体电光及倍频系数.物理学报1976,25(2),146-161.
    [194]陈创天,晶体电光及非线性光学效应的离子基团理论(Ⅱ)——利用(IO3)-1离子基团的分子轨道计算alpha-LiIO3晶体的倍频系数.物理学报1977,26(2),124-132.
    [195]陈创天,晶体电光及非线性光学效应的离子基团理论(Ⅲ)——利用畸变氧八面体的离子基团模型计算LiNbO3, LiTaO3, KNbO3, BNN晶体的电光和倍频系数.物理学报1977,26(6),486-499.
    [196]陈创天,晶体电光及非线性光学效应的离子基团理论(Ⅳ)——钙钛矿、钨青铜型、LiNbO3型晶体线性极化率计算.物理学报1978,27(1),41-46.
    [197]陈创天,氧化物型晶体电光和非线性光学效应的阴离子配位基团理论.中国科学1977,6,579-593.
    [198]Maggard, P. A.; Nault, T. S.; Stern, C. L.; Poeppelmeier, K. R., Alignment of acentric MoO3F3-anions in a polar material:(Ag3MoO3F3)(Ag3MoO4)Cl. Journal of Solid State Chemistry 2003,175 (1), 27-33.
    [199]Izumi, H. K.; Kirsch, J. E.; Stern, C. L.; Poeppehneier, K. R., Examining the out-of-center distortion in the [NbOF5]2'anion. Inorganic Chemistry 2005,44 (4),884-895.
    [200]Kim, J. H.; Halasyamani, P. S., A rare multi-coordinate tellurite, NH4ATe4O9 2H2O(A=Rb or Cs): The occurrence of TeO3, TeO4, and TeOs Polyhedra in the same material. Journal of Solid State Chemistry 2008,181 (8),2108-2112.
    [201]Galy, J.; Meunier, G.; Andersson, S.; Astron, A., Stereochemistry of elements possessing unbound pairs:Ge(Ⅱ), As(Ⅲ), Se(Ⅳ), Br(Ⅴ), Sn(Ⅱ), Sb(Ⅲ), Te(Ⅳ), I(Ⅴ), Xe(Ⅵ), T1(Ⅰ), Pb(Ⅱ), Bi(Ⅲ) (oxides, fluorides, oxyfluorides). Journal of Solid State Chemistry 1975,13 (1-2),142-159.
    [202]Maczka, M.; Paraguassu, W.; Freire, P. T. C.; Majchrowski, A.; Pizani, P. S., Lattice dynamics and pressure-induced phase transitions in a-BaTeMo2O9. Journal of Physics: Condensed Matter 2013,25 (12), 125404.
    [203]Piper, J. A.; Pask, H. M., Crystalline Raman lasers. Ieee Journal of Selected Topics in Quantum Electronics 2007,13 (3),692-704.
    [204]陈慧挺,楼祺洪,叶震寰,何兵,周军,固体拉曼激光器.激光与光电子学进展2005,42(7),55-60.
    [205]冯宇彤,孟俊清,陈卫标,人眼安全全固态激光器研究进展.激光与光电子学进展2007,44(10),33-38.
    [206]郭家锡,陆宝乐,张韧剑,向光华,白杨,任兆玉,白晋涛,固体黄光拉曼激光器的研究进展.激光与红外2011,41(7),713-717.
    [207]Yin, X.; Zhang, S. J.; Tian, Z. B., Refractive indices of biaxial crystals evaluated from the refractive indices ellipsoid equation. Optics and Laser Technology 2007,39 (3),510-513.
    [208]Liu, Z.; Wang, Q.; Zhang, X.; Zhang, S.; Chang, J.; Fan, S.; Sun, W.; Jin, G.; Tao, X.; Sun, Y.; Zhang, S.; Liu, Z., Self-frequency-doubled KTiOAsO4 Raman laser emitting at 573 nm. Optics Letters 2009,54 (14),2183-2185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700