用户名: 密码: 验证码:
环境有害物质分离富集新材料的合成、表征及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
样品前处理技术作为环境有害物质富集、分离与分析的关键技术,备受研究者的广泛关注,其中固相萃取和固相微萃取是目前环境有害物质前处理中广泛应用的技术,而使用的萃取填料将直接决定其对样品中环境有害物质富集分离的效率。因此,开发新型、高效的富集分离材料成为目前该领域的研究热点,也是复杂体系分离分析科学中具有重要意义的研究课题。本文综述了磁性材料、介孔材料以及分子印迹聚合物材料的类型、合成及改性方法、结构特征和性能、及在环境有害物质分离富集等方面的研究进展和发展趋势;研究了均一单分散的磁性核壳碳纳米球的合成、表征及对水体中葸的吸附性能;制备了CeSiO4负载的CeSBA-15介孔材料,并考察了其对环己烷中苯并(a)芘的吸附性能,探讨了其吸附机理;合成了均一单分散的中空分子印迹聚合物纳米球,考察了其对双酚A的吸附以及选择性分离富集性能;合成了具有高比表面积、均一孔径的中空多空分子印迹聚合物纳米球,考察了其对双酚A的吸附以及选择性分离富集性能。
     采用改进的Stober法,在水溶液中以间苯二酚和甲醛为前体物制备了Fe3O4@polymer,后经高温碳化得到Fe3O4@C纳米球。使用SEM和TEM对其进行了表征,发现制得的Fe3O4@C具有较好的均一性和单分散度。对合成过程进行了优化,得出影响Fe3O4@polymer的成功合成的关键因素为氨水的浓度和Fe304纳米球表面的柠檬酸基团。通过简单调节反应前体物与Fe304纳米球的质量比例,可以很容地调控Fe3O4@C纳米球的碳壳厚度。以Fe3O4@C作为水体中蒽的分离富集材料,发现Fe3O4@C对蒽具有较快的吸附速率以及较大的平衡吸附容量,这将使其在环境污染物的快速分离富集方面展现较好的应用前景。
     采用pH调节原位一步水热法,以三乙胺为碱源,制备了CeSiO4负载的Ce-SBA-15介孔材料。采用粉末X射线衍射、TEM以及氮气吸附-脱附等手段对样品的结构特征进行了表征。结果表明,合成的Ce-SBA-15材料具有均一的大孔分布、高的比表面积、较好的结构有序性;同时发现在预合成的以及焙烧后的Ce-SBA-15样品中均观察到了活性的CeSiO4物相,并均匀地分散在介孔的孔道中。考察了不同铈掺杂量的Ce-SBA-15材料对环己烷溶液中苯并(a)芘的吸附性能,结果表明铈的掺杂量对吸附结果有很大的影响。通过对吸附现象的观察以及对材料吸附苯并(a)芘后的甲醇洗脱液的IR、UV-vis、FLD、EI和NMR等表征,提出了可能的吸附机理,即苯并(a)芘先被吸附到Ce-SBA-15介孔材料上,然后由CeSiO4物相通过自由基氧化机理将其氧化成苯并芘醌,提高了其极性,从而大大提高其对环己烷中苯并(a)芘的吸附性能。
     采用一步沉淀聚合技术,以未改性的SiO2球为硬模板,利用功能单体的羰基与SiO2球表面Si-OH的酯化反应来促进分子印迹聚合物包裹在SiO2球表面得到SiO2@MIPs,后经HF刻蚀同时去除SiO2和印迹分子,得到中空分子印迹聚合物纳米球(MHMIPs)。采用SEM和TEM等手段对样品的形貌特征进行了表征,结果表明所制得的SiO2@MIPs和MHMIPs具有较好的均一性和单分散度。优化了印迹前体物的功能单体比例,得出了具有较大吸附容量以及较好选择性的最佳功能单体比例,即BPA:MMA:EGDMA=1:6:20;通过简单调节印迹前体物与SiO2纳米球的质量比例,可以很容地调控印迹壳的厚度;比较了具有不同厚度的MHMIPs对双酚A(BPA)的吸附性能,发现壳厚度的增大对于MHMIPs对BPA的吸附容量的提高是不利的。考察了MHMIPs和MHNIPs对BPA及其结构类似物的吸附性能,结果表明MHMIPs对BPA具有较快的吸附速率以及高的吸附容量,对由BPA及其结构类似物组成的混合液中BPA的吸附具有较高的选择性富集性能。
     以介孔SiO2作“纳米反应器”及硬模板,双酚A为印迹分子、4-乙烯基吡啶为功能单体、乙二醇二甲基丙烯酸酯为交联剂,采用控制浸渍策略和刻蚀技术,制备了中空多空分子印迹聚合物纳米球。采用SEM、TEM和BET等手段对样品的形貌及物理结构性能进行了表征,结果表明所制得的印迹聚合物具有中空球形结构,比表面积高达607m2·g-1,孔径分布均一。考察了HPMIPs和HPNIPs对BPA及其结构类似物的吸附性能,结果表明HPMIPs对BPA具有教高的吸附容量以及快的吸附速率,对由BPA及其结构类似物组成的混合液中BPA的吸附具有较高的选择性富集性能。
Sample pretreatment techniques as the key technique of enrichment, separation and analysis of environmentally hazardous substances have caused wide concern, in which the solid phase extraction and solid phase microextraction is widely used, while the used extraction packing will directly determine the efficiency of preconcentration and separation of the sample. Therefore, the development of novel and efficient enrichment separation materials has become a research hotspot in this field, it also plays an important role of separation and analysis of complex system science.
     This thesis summarized the type, synthesis and modification methods, structural characteristics and properties of magnetic materials, mesoporous materials and molecular imprinted polymer materials, as well as the current progress and development trend of separation and enrichment of environmentally hazardous substances; studied the synthesis and characterization of uniform and monodisperse magnetic core-shell carbon nanospheres, and its adsorption performance for anthracene in water; prepared Ce-SBA-15, an mesoporous material loaded by CeSiO4, and investigated its adsorption properties for B(a)P in cyclohexane solution, also discussed the adsorption mechanism; synthesized uniform monodispersed hollow molecular imprinted polymer nanospheres and investigated the adsorption of bisphenol A and selective enrichment and separation performance; synthesized hollow porous molecular imprinted polymer nanospheres with high specific surface area and uniform pore size, and investigated the adsorption of bisphenol A and selective enrichment and separation performance.
     By adopting improved Stober method, using resorcinol and formaldehyde as precursor in aqueous solution to prepare Fe3O4@polymer, after high temperature carbonization, Fe3O4@C nanoparticles were obtained. The SEM and TEM were used to characterize the prepared Fe3O4@C, found that Fe3O4@C has fairly good uniformity and dispersion. By optimizing the synthesis process, found that the concentration of ammonia and group citric acid on the surface of Fe3O4nanoparticles were the key factors to influence the successful synthesis of Fe3O4@polymer. By simple adjusting the mass ratio of the reaction precursor and Fe3O4nanoparticles, carbon shell thickness of Fe3O4@C nanoparticles can be controlled easily. Taking Fe3O4@C as the separation and enrichment materials of anthracene in aqueous solution, found that Fe3O4@C has a fairly high adsorption rate and large equilibrium adsorption capacity for anthracene, which shows good application prospect in the rapid separation and enrichment of environmental pollutants.
     Using in situ one-step hydrothermal method, with three triethylamine as alkali source, Ce-SBA-15mesoporous materials were prepared loading by the CeSiO4. By using XRD, TEM and nitrogen adsorption/desorption to characterize the structures of the samples, the results showed that, the component material Ce-SBA-15possessed relatively large specific surface area and uniform pore diameter distribution, also the structures were highly ordered. At the same time the active CeSiO4phase were observed in the pre-synthesised and the calcined Ce-SBA-15samples, and uniformly dispersed in the mesoporous pore. Through the study of adsorbability of the Ce-SBA-15material with different doping amount of cerium for B(a)P in cyclohexane solution, the results show that the amount of doped cerium has great influence on the adsorption results. Through the observation of the adsorption phenomena and characterization of IR, UV-vis, FLD, El and NMR of methanol eluent of materials after adsorption B(a)P, the possible adsorption mechanism is proposed, that is B(a)P was first adsorbed onto the Ce-SBA-15mesoporous materials, and then the CeSiO4phase oxidizing B(a)P into benzo(a)pyrene-6,12-quinone with high polarity by a free radical oxidation mechanism, which greatly improves the adsorption performance of Ce-SBA-15mesoporous materials for B(a)P in cyclohexane.
     Through one-step precipitation polymerization technique, using unmodified SiO2ball as hard template, taking advantage of esterification of the carbonyl of functional monomers and Si-OH on the surface of SiO2sphere to promote the molecularly imprinted polymer coating on the surface of SiO2sphere to obtain SiO2@MIPs, and then by HF etching to simultaneous remove SiO2and molecular imprinting to obtain the hollow molecularly imprinted polymer nanospheres (MHMIPs). SEM and TEM techniques were used to characterize the characteristics of the sample, the results show that the prepared SiO2@MIPs and MHMIPs have fairly uniformity and dispersion. By optimizing ratio of functional monomer of the imprinted precursor, the right ratio of functional monomer which has high adsorption amount and excellent selectivity was found, that is BPA:MMA:EGDMA=1:6:20; by adjusting the mass ratio of imprinted precursor and SiO2nanoparticles, thickness of imprinted shell can be easily adjusted; by comparing adsorption performance of MHMIPs with different thickness for bisphenol A (BPA), it shows that the increase of shell thickness is detrimental to improve the adsorption capacity of MHMIPs for BPA. The adsorption properties of BPA and other structural analogues on MHMIPs and MHNIPs were studied, the results show that the MHMIPs has higher adsorption rate and high adsorption capacity for BPA, and has high selectivity enrichment performance for BPA in mixed solution of BPA and its structural analogs.
     Using mesoporous SiO2as "nanoreactors" and hard template, bisphenol A as template molecule,4-vinylpyridine as functional monomer, EGDMA as crosslinking agent, through the control dipping strategy and the etching technology, hollow porous molecular imprinted polymer nanospheres were prepared. SEM, TEM and BET were employed to characterize the morphology and physical properties, the results show that the prepared molecularly imprinted polymers possess hollow spherical structure and high specific surface area up to607m2·g-1, the pore size distribution is uniform. The adsorption properties of HPMIPs and HPNIPs for BPA and other structural analogues were studied, the results show that the HPMIPs has higher adsorption rate and high adsorption capacity for BPA, and has high selectivity of enrichment performance on adsorption of BPA in mixed solution of BPA and its structural analogs.
引文
[I]Ali I, Gupta V K. Advances in water treatment by adsorption technology[J]. Nature Protocols, 2007,1(6):2661-2667.
    [2]黄菁.2010.环境污染与经济可持续发展的关系及影响机制研究[博士]湖南:湖南大学,1-8.
    [3]石敏俊,马国霞.中国经济增长的资源环境代价:关于绿色国民储蓄的实证分析[M].科学出版社,2009,2-4.
    [4]Hill M K. Understanding environmental pollution[M]. Cambridge University Press,2010.
    [5]Arthur C L, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers[J]. Analytical chemistry,1990,62(19):2145-2148.
    [6]Eisert R, Pawliszyn J. Automated in-tube solid-phase microextraction coupled to high-performance liquid chromatography[J]. Analytical Chemistry,1997,69(16):3140-3147.
    [7]Baltussen E, Sandra P, David F, et al. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples:theory and principles[J]. Journal of Microcolumn Separations, 1999,11(10):737-747.
    [8]Chen H, Deng C, Li Y, et al. A Facile Synthesis Approach to C8-Functionalized Magnetic Carbonaceous Polysaccharide Microspheres for the Highly Efficient and Rapid Enrichment of Peptides and Direct MALDI-TOF-MS Analysis[J]. Advanced Materials,2009,21(21): 2200-2205.
    [9]Rebbin V, Schmidt R, Froba M. Spherical Particles of Phenylene-Bridged Periodic Mesoporous Organosilica for High-Performance Liquid Chromatography[J]. Angewandte Chemie International Edition,2006,45(31):5210-5214.
    [10]Chen L, Xu S, Li J. Recent advances in molecular imprinting technology:current status, challenges and highlighted applications[J]. Chemical Society Reviews,2011,40(5): 2922-2942.
    [11]Reiss G, Hutten A. Magnetic nanoparticles:applications beyond data storage[J]. Nature materials,2005,4(10):725-726.
    [12]Liu J, Qiao S Z, Hu Q H. Magnetic nanocomposites with mesoporous structures:synthesis and applications[J]. Small,2011,7(4):425-443.
    [13]Fihri A, Bouhrara M, Nekoueishahraki B, et al. Nanocatalysts for Suzuki cross-coupling reactions[J]. Chemical Society Reviews,2011,40(10):5181-5203.
    [14]Liu Y, Li H, Lin J M. Magnetic solid-phase extraction based on octadecyl functionalization of monodisperse magnetic ferrite microspheres for the determination of polycyclic aromatic hydrocarbons in aqueous samples coupled with gas chromatography-mass spectrometry[J]. Talanta,2009,77(3):1037-1042.
    [15]Zhang X, Niu H, Pan Y, et al. Chitosan-coated octadecyl-functionalized magnetite nanoparticles:preparation and application in extraction of trace pollutants from environmental water samples[J]. Analytical chemistry,2010,82(6):2363-2371.
    [16]Deng Y H, Wang C C, Hu J H, et al. Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,262(1):87-93.
    [17]Ballesteros-Gomez A, Rubio S. Hemimicelles of alkyl carboxylates chemisorbed onto magnetic nanoparticles:Study and application to the extraction of carcinogenic polycyclic aromatic hydrocarbons in environmental water samples[J]. Analytical chemistry,2009, 81(21):9012-9020.
    [18]Fauconnier N, Bee A, Roger J, et al. Adsorption of gluconic and citric acids on maghemite particles in aqueous medium[M]//Trends in Colloid and Interface Science X. Steinkopff, 1996:212-216.
    [19]Fauconnier N, Pons J N, Roger J, et al. Thiolation of maghemite nanoparticles by dimercaptosuccinic acid[J]. Journal of colloid and interface science,1997,194(2):427-433.
    [20]Sun L, Chen L, Sun X, et al. Analysis of sulfonamides in environmental water samples based on magnetic mixed hemimicelles solid-phase extraction coupled with HPLC-UV detection[J]. Chemosphere,2009,77(10):1306-1312.
    [21]Zhao X, Shi Y, Cai Y, et al. Cetyltrimethylammonium bromide-coated magnetic nanoparticles for the preconcentration of phenolic compounds from environmental water samples[J]. Environmental science & technology,2008,42(4):1201-1206.
    [22]Zhao X, Shi Y, Wang T, et al. Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples[J]. Journal of Chromatography A,2008,1188(2):140-147.
    [23]Zargar B, Parham H, Hatamie A. Modified iron oxide nanoparticles as solid phase extractor for spectrophotometeric determination and separation of basic fuchsin[J]. Talanta,2009, 77(4):1328-1331.
    [24]Polshettiwar V, Luque R, Fihri A, et al. Magnetically recoverable nanocatalysts[J]. Chemical reviews,2011,111(5):3036-3075.
    [25]Liu C H, Zhou Z D, Yu X, et al. Preparation and characterization of Fe3O4/Ag composite magnetic nanoparticles[J]. Inorganic Materials,2008,44(3):291-295.
    [26]Gatel C, Snoeck E. Comparative study of Pt, Au and Ag growth on Fe3O4 (001) surface[J]. Surface science,2006,600(13):2650-2662.
    [27]Zhao X, Cai Y, Wang T, et al. Preparation of alkanethiolate-functionalized core/shell Fe3O4@ Au nanoparticles and its interaction with several typical target molecules[J]. Analytical chemistry,2008,80(23):9091-9096.
    [28]Ding H L, Zhang Y X, Wang S, et al. Fe3O4@SiO2 Core/Shell Nanoparticles:The Silica Coating Regulations with a Single Core for Different Core Sizes and Shell Thicknesses[J]. Chemistry of Materials,2012,24(23):4572-4580.
    [29]Deng Y, Qi D, Deng C, et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins[J]. Journal of the American Chemical Society,2008,130(1):28-29.
    [30]Chen W Y, Chen Y C. MALDI MS analysis of oligonucleotides:desalting by functional magnetite beads using microwave-assisted extraction[J]. Analytical chemistry,2007,79(21): 8061-8066.
    [31]Shen H Y, Zhu Y, Wen X E, et al. Preparation of Fe3O4-C18 nano-magnetic composite materials and their cleanup properties for organophosphorous pesticides[J]. Analytical and bioanalytical chemistry,2007,387(6):2227-2237.
    [32]Bruce I J, Sen T. Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations[J]. Langmuir,2005,21(15):7029-7035.
    [33]Zhu L, Ma J, Jia N, et al. Chitosan-coated magnetic nanoparticles as carriers of 5-fluorouracil: preparation, characterization and cytotoxicity studies[J]. Colloids and Surfaces B: Biointerfaces,2009,68(1):1-6.
    [34]Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science,2007,318(5849):426-430.
    [35]Zhou W H, Lu C H, Guo X C, et al. Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition[J]. Journal of Materials Chemistry, 2010,20(5):880-883.
    [36]Nagao D, Yokoyama M, Yamauchi N, et al. Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell[J]. Langmuir,2008,24(17):9804-9808.
    [37]Vestal C R, Zhang Z J. Atom transfer radical polymerization synthesis and magnetic characterization of MnFe204/polystyrene core/shell nanoparticles[J]. Journal of the American Chemical Society,2002,124(48):14312-14313.
    [38]Zhu M, Diao G. Review on the progress in synthesis and application of magnetic carbon nanocomposites [J]. Nanoscale,2011,3(7):2748-2767.
    [39]Wang Z H, Choi C J, Kim B K, et al. Characterization and magnetic properties of carbon-coated cobalt nanocapsules synthesized by the chemical vapor-condensation process[J]. Carbon,2003,41(9):1751-1758.
    [40]Zhang W M, Wu X L, Hu J S, et al. Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries[J]. Advanced Functional Materials,2008,18(24): 3941-3946.
    [41]Zhu M, Diao G. Magnetically Recyclable Pd Nanoparticles Immobilized on Magnetic Fe3O4@ C Nanocomposites:Preparation, Characterization, and Their Catalytic Activity toward Suzuki and Heck Coupling Reactions[J]. The Journal of Physical Chemistry C,2011, 115(50):24743-24749.
    [42]Zhu M, Wang C, Meng D, et al. In situ synthesis of silver nanostructures on magnetic Fe3O4@C core-shell nanocomposites and their application in catalytic reduction reactions[J]. Journal of Materials Chemistry A,2013,1(6):2118-2125.
    [43]Zhang J, Du J, Qian Y, et al. Shape-controlled synthesis and their magnetic properties of hexapod-like, flake-like and chain-like carbon-encapsulated Fe3O4 core/shell composites[J]. Materials Science and Engineering:B,2010,170(1):51-57.
    [44]Ning L, Xiaojie L, Xiaohong W, et al. Preparation and magnetic behavior of carbon-encapsulated iron nanoparticles by detonation method[J]. Composites Science and Technology,2009,69(15):2554-2558.
    [45]Luo N, Li X, Wang X, et al. Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method[J]. Carbon,2010,48(13):3858-3863.
    [46]Lei C, Han F, Li D, et al. Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes[J]. Nanoscale,2013,5(3):1168-1175.
    [47]Li L, Wang T, Zhang L, et al. Selected-Control Synthesis of Monodisperse Fe3O4@ C Core-Shell Spheres, Chains, and Rings as High-Performance Anode Materials for Lithium-Ion Batteries[J]. Chemistry-A European Journal,2012,18(36):11417-11422.
    [48]Yao T, Cui T, Wu J, et al. Preparation of acid-resistant core/shell Fe3O4@C materials and their use as catalyst supports[J]. Carbon,2012,50(6):2287-2295.
    [49]Lin J H, Wu Z H, Tseng W L. Extraction of environmental pollutants using magnetic nanomaterials[J]. Analytical Methods,2010,2(12):1874-1879.
    [50]Yantasee W, Warner C L, Sangvanich T, et al. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles[J]. Environmental science & technology,2007,41 (14):5114-5119.
    [51]Liu J, Zhao Z, Jiang G. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water[J]. Environmental science & technology,2008, 42(18):6949-6954.
    [52]Lin Y, Chen H, Lin K, et al. Application of magnetic particles modified with amino groups to adsorb copper ions in aqueous solution[J]. Journal of Environmental Sciences,2011,23(1): 44-50.
    [53]Ozmen M, Can K, Arslan G, et al. Adsorption of Cu(Ⅱ) from aqueous solution by using modified Fe3O4 magnetic nanoparticles[J]. Desalination,2010,254(1):162-169.
    [54]Hao Y M, Man C, Hu Z B. Effective removal of Cu(Ⅱ) ions from aqueous solution by amino-functionalized magnetic nanoparticles[J]. Journal of Hazardous Materials,2010, 184(1):392-399.
    [55]Liu P L, Xu Y P, Zheng P, et al. Mesoporous Silica-coated Magnetic Nanoparticles for Mixed Hemimicelles Solid-phase Extraction of Phthalate Esters in Environmental Water Samples with Liquid Chromatographic Analysis[J]. Journal of the Chinese Chemical Society, 2013,60(1):53-62.
    [56]Chen L, Liu J, Zeng Q, et al. Preparation of magnetic molecularly imprinted polymer for the separation of tetracycline antibiotics from egg and tissue samples[J]. Journal of Chromatography A,2009,1216(18):3710-3719.
    [57]Chen L, Zhang X, Sun L, et al. Fast and selective extraction of sulfonamides from honey based on magnetic molecularly imprinted polymer[J]. Journal of agricultural and food chemistry,2009,57(21):10073-10080.
    [58]Ji Y, Yin J, Xu Z, et al. Preparation of magnetic molecularly imprinted polymer for rapid determination of bisphenol A in environmental water and milk samples[J]. Analytical and bioanalytical chemistry,2009,395(4):1125-1133.
    [59]Mehdinia A, Roohi F, Jabbari A. Rapid magnetic solid phase extraction with in situ derivatization of methylmercury in seawater by Fe3O4/polyaniline nanoparticle[J]. Journal of Chromatography A,2011,1218(28):4269-4274.
    [60]Liu Y, Li H, Lin J M. Magnetic solid-phase extraction based on octadecyl functionalization of monodisperse magnetic ferrite microspheres for the determination of polycyclic aromatic hydrocarbons in aqueous samples coupled with gas chromatography-mass spectrometry[J]. Talanta,2009,77(3):1037-1042.
    [61]Wang D W, Li F, Lu G Q, et al. Synthesis and dye separation performance of ferromagnetic hierarchical porous carbon[J]. Carbon,2008,46(12):1593-1599.
    [62]Zhang Z, Kong J. Novel magnetic Fe3O4@ C nanoparticles as adsorbents for removal of organic dyes from aqueous solution[J]. Journal of hazardous materials,2011,193:325-329.
    [63]Wang H, Yu Y F, Chen Q W, et al. Carboxyl-functionalized nanoparticles with magnetic core and mesopore carbon shell as adsorbents for the removal of heavy metal ions from aqueous solution[J]. Dalton Transactions,2011,40(3):559-563.
    [64]Zhang S, Niu H, Hu Z, et al. Preparation of carbon coated Fe3O4 nanoparticles and their application for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples[J]. Journal of Chromatography A,2010,1217(29):4757-4764.
    [65]Chen H, Deng C, Li Y, et al. A Facile Synthesis Approach to C8-Functionalized Magnetic Carbonaceous Polysaccharide Microspheres for the Highly Efficient and Rapid Enrichment of Peptides and Direct MALDI-TOF-MS Analysis[J]. Advanced Materials,2009,21(21): 2200-2205.
    [66]Xun R.R(徐如人),Pang W. Q(庞文琴),Yu J. H.(于吉红)et al.. Chemistry-Zeolites and Porous Materials(分子筛与多孔材料化学)[M],Beijing:SCI Press.2004
    [67]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. nature,1992,359(6397):710-712.
    [68]Vartuli J C, Schmitt K D, Kresge C T, et al. Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves:inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications[J]. Chemistry of Materials,1994,6(12):2317-2326.
    [69]Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. science,1998,279(5350):548-552.
    [70]Hatton B, Landskron K, Whitnall W, et al. Past, Present, and Future of Periodic Mesoporous Organosilicas The PMOs[J]. Accounts of chemical research,2005,38(4):305-312.
    [71]YeonaKim J, BonaYoon S. Synthesis of highly ordered mesoporous polymer networks[J]. Journal of Materials Chemistry,2001,11(12):2912-2914.
    [72]Choi D H, Ryoo R. Template synthesis of ordered mesoporous organic polymeric materials using hydrophobic silylated KIT-6 mesoporous silica[J]. Journal of Materials Chemistry, 2010,20(26):5544-5550.
    [73]Antonelli D M, Ying J Y. Synthesis of a Stable Hexagonally Packed Mesoporous Niobium Oxide Molecular Sieve Through a Novel Ligand-Assisted Templating Mechanism[J]. Angewandte Chemie International Edition in English,1996,35(4):426-430.
    [74]Zhang Z, Hicks R W, Pauly T R, et al. Mesostructured forms of y-Al2O3[J]. Journal of the American Chemical Society,2002,124(8):1592-1593.
    [75]Antonelli D M, Ying J Y. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method[J]. Angewandte Chemie International Edition in English,1995,34(18): 2014-2017.
    [76]Toberer E S, Lofvander J P, Seshadri R. Topochemical formation of mesoporous MnO crystals[J]. Chemistry of materials,2006,18(4):1047-1052.
    [77]Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure[J]. Journal of the American Chemical Society,2000,122(43):10712-10713.
    [78]Fang Y, Gu D, Zou Y, et al. A Low-Concentration Hydrothermal Synthesis of Biocompatible Ordered Mesoporous Carbon Nanospheres with Tunable and Uniform Size[J]. Angewandte Chemie International Edition,2010,49(43):7987-7991.
    [79]Liang C, Dai S. Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction[J]. Journal of the American Chemical Society,2006,128(16):5316-5317.
    [80]Stein A. Advances in microporous and mesoporous solids-highlights of recent progress[J]. Advanced Materials,2003,15(10):763-775.
    [81]Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis[J]. Chemical reviews,1997,97(6):2373-2420.
    [82]Davis M E. Ordered porous materials for emerging applications[J]. Nature,2002,417(6891): 813-821.
    [83]Zhao J, Gao F, Fu Y, et al. Biomolecule separation using large pore mesoporous SBA-15 as a substrate in high performance liquid chromatography[J]. Chemical Communications,2002 (7):752-753.
    [84]Hoffmann F, Cornelius M, Morell J, et al. Silica-Based Mesoporous Organic-Inorganic Hybrid Materials[J]. Angewandte Chemie International Edition,2006,45(20):3216-3251.
    [85]Yiping Z, Chunhui Z, Xuejie W, et al. Preparation and characterization of organo-functionalized mesoporous silica[J]. Progress in Chemistry,2008,20(01):33-41.
    [86]Hatton B, Landskron K, Whitnall W, et al. Past, Present, and Future of Periodic Mesoporous Organosilicas The PMOs[J]. Accounts of chemical research,2005,38(4):305-312.
    [87]Asefa T, Kruk M, MacLachlan M J, et al. Sequential Hydroboration-Alcoholysis and Epoxidation-Ring Opening Reactions of Vinyl Groups in Mesoporous Vinylsilica[J]. Advanced Functional Materials,2001,11 (6):447-456.
    [88]Macquarrie D J, Jackson D B, Tailland S, et al. Organically modified hexagonal mesoporous silicas (HMS)-remarkable effect of preparation solvent on physical and chemical properties [J]. J. Mater. Chem.,2001,11(7):1843-1849.
    [89]Huq R, Mercier L, Kooyman P J. Incorporation of cyclodextrin into mesostructured silica[J]. Chemistry of materials,2001,13(12):4512-4519.
    [90]Liu N, Chen Z, Dunphy D R, et al. Photoresponsive Nanocomposite Formed by Self-Assembly of an Azobenzene-Modified Silane[J]. Angewandte Chemie International Edition,2003,42(15):1731-1734.
    [91]Fowler C E, Mann S, Lebeau B. Covalent coupling of an organic chromophore into functionalized MCM-41 mesophases by template-directed co-condensation[J]. Chem. Commun.,1998(17):1825-1826.
    [92]Mal N K, Fujiwara M, Tanaka Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica[J]. Nature,2003,421(6921):350-353.
    [93]Descalzo A B, Jimenez D, Marcos M D, et al. A new approach to chemosensors for anions using MCM-41 grafted with amino groups[J]. Advanced Materials,2002,14(13-14): 966-969.
    [94]Yokoi T, Yoshitake H, Tatsumi T. Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di-and tri-amino-organoalkoxysilanes[J]. Journal of Materials Chemistry,2004,14(6):951-957.
    [95]Antochshuk V, Jaroniec M. 1-Allyl-3-propylthiourea modified mesoporous silica for mercury removal[J]. Chem. Commun.,2002 (3):258-259.
    [96]Zhang Z, Han Y, Zhu L, et al. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure[J]. Angewandte Chemie International Edition,2001,40(7):1258-1262.
    [97]Wu Y, Wang J, Liu P, et al. Framework-substituted lanthanide MCM-22 zeolite:Synthesis and characterization[J]. Journal of the American Chemical Society,2010,132(51): 17989-17991.
    [98]Chen S Y, Jang L Y, Cheng S. Synthesis of Zr-incorporated SBA-15 mesoporous materials in a self-generated acidic environment[J]. Chemistry of materials,2004,16(21):4174-4180.
    [99]Newalkar B L, Olanrewaju J, Komarneni S. Direct synthesis of titanium-substituted mesoporous SBA-15 molecular sieve under microwave-hydrothermal conditions[J]. Chemistry of materials,2001,13(2):552-557.
    [100]Asefa T, MacLachlan M J, Coombs N. et al. Periodic mesoporous organosilicas with organic groups inside the channel walls[J]. Nature,1999,402(6764):867-871.
    [101]Inagaki S, Guan S, Fukushima Y, et al. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks[J]. Journal of the American Chemical Society,1999,121(41):9611-9614.
    [102]Inagaki S, Guan S, Ohsuna T, et al. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure[J]. Nature,2002,416(6878):304-307.
    [103]Muth O, Schellbach C, Froba M. Triblock copolymer assisted synthesis of periodic mesoporous organosilicas (PMOs) with large pores [J]. Chemical Communications,2001 (19):2032-2033.
    [104]Walcarius A, Mercier L. Mesoporous organosilica adsorbents:nanoengineered materials for removal of organic and inorganic pollutants[J]. Journal of Materials Chemistry,2010,20(22): 4478-4511.
    [105]Wu Z, Zhao D. Ordered mesoporous materials as adsorbents[J]. Chemical Communications, 2011,47(12):3332-3338.
    [106]Feng X, Fryxell G E, Wang L Q, et al. Functionalized monolayers on ordered mesoporous supports[J]. Science,1997,276(5314):923-926.
    [107]Mercier L, Pinnavaia T J. Access in mesoporous materials:Advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation[J]. Advanced Materials,1997,9(6):500-503.
    [108]Lam K F, Yeung K L, Mckay G. Efficient approach for Cd2+ and Ni2+ removal and recovery using mesoporous adsorbent with tunable selectivity [J]. Environmental science & technology,2007,41(9):3329-3334.
    [109]Seneviratne J, Cox J A. Sol-gel materials for the solid phase extraction of metals from aqueous solution[J]. Talanta,2000,52(5):801-806.
    [110]Dai S, Burleigh M C, Shin Y, et al. Imprint coating:a novel synthesis of selective functionalized ordered mesoporous sorbents[J]. Angewandte Chemie International Edition, 1999,38(9):1235-1239.
    [111]Kim T H, Jang M, Park J K. Bifunctionalized mesoporous molecular sieve for perchlorate removal[J]. Microporous and Mesoporous Materials,2008,108(1):22-28.
    [112]Yoshitake H, Yokoi T, Tatsumi T. Adsorption of chromate and arsenate by amino-functionalized MCM-41 and SBA-15[J]. Chemistry of materials,2002,14(11): 4603-4610.
    [113]Lam K F, Yeung K L, Mckay G. Selective mesoporous adsorbents for and Cu 2+ separation[J]. Microporous and mesoporous materials,2007,100(1):191-201.
    [114]Hamoudi S, Saad R, Belkacemi K. Adsorptive removal of phosphate and nitrate anions from aqueous solutions using ammonium-functionalized mesoporous silica[J]. Industrial & Engineering Chemistry Research,2007,46(25):8806-8812.
    [115]Saad R, Hamoudi S, Belkacemi K. Adsorption of phosphate and nitrate anions on ammonium-functionnalized mesoporous silicas[J]. Journal of Porous Materials,2008,15(3): 315-323.
    [116]Denoyel R, Rey E S. Solubilization in confined surfactant mesophases[J]. Langmuir,1998, 14(25):7321-7323.
    [117]Sepehrian H, Fasihi J, Khayatzadeh Mahani M. Adsorption behavior studies of picric acid on mesoporous MCM-41 [J]. Industrial & Engineering Chemistry Research,2009,48(14): 6772-6775.
    [118]Zhao H, Nagy K L, Waples J S, et al. Surfactant-templated mesoporous silicate materials as sorbents for organic pollutants in water[J]. Environmental science & technology,2000, 34(22):4822-4827.
    [119]Zhao Y X, Ding M Y, Chen D P. Adsorption properties of mesoporous silicas for organic pollutants in water[J]. Analytica chimica acta,2005,542(2):193-198.
    [120]Inumaru K, Kiyoto J, Yamanaka S. Molecular selective adsorption of nonylphenol in aqueous solution by organo-functionalized mesoporous silica[J]. Chemical Communications, 2000 (11):903-904.
    [121]Baccile N, Babonneau F. Organo-modified mesoporous silicas for organic pollutant removal in water:Solid-state NMR study of the organic/silica interactions[J]. Microporous and Mesoporous Materials,2008,110(2):534-542.
    [122]Hu Q, Li J J, Hao Z P, et al. Dynamic adsorption of volatile organic compounds on organofunctionalized SBA-15 materials[J]. Chemical Engineering Journal,2009,149(1): 281-288.
    [123]Johnson-White B, Zeinali M, Shaffer K M, et al. Detection of organics using porphyrin embedded nanoporous organosilicas[J]. Biosensors and Bioelectronics,2007,22(6): 1154-1162.
    [124]Borghard W G, Calabro D C, DiSanzo F P, et al. Characterization and testing of periodic mesoporous organosilicas as potential selective benzene adsorbents[J]. Langmuir,2009, 25(21):12661-12669.
    [125]Trammell S A, Zeinali M, Melde B J, et al. Nanoporous organosilicas as preconcentration materials for the electrochemical detection of trinitrotoluene[J]. Analytical chemistry,2008, 80(12):4627-4633.
    [126]Wei F, Yang J Y, Gao L, et al. Capturing nitrosamines in tobacco-extract solution by hydrophobic mesoporous silica[J]. Journal of hazardous materials,2009,172(2):1482-1490.
    [127]Serrano D P, Calleja G, Botas J A, et al. Adsorption and hydrophobic properties of mesostructured MCM-41 and SBA-15 materials for volatile organic compound removal[J]. Industrial & engineering chemistry research,2004,43(22):7010-7018.
    [128]Araujo R S, Azevedo D C S, Cavalcante Jr C L, et al. Adsorption of polycyclic aromatic hydrocarbons (PAHs) from isooctane solutions by mesoporous molecular sieves:Influence of the surface acidity[J]. Microporous and Mesoporous Materials,2008,108(1):213-222.
    [129]Yong G, Jin Z, Tong H, et al. Selective reduction of bulky polycyclic aromatic hydrocarbons from mainstream smoke of cigarettes by mesoporous materials[J]. Microporous and mesoporous materials,2006,91(1):238-243.
    [130]Flam F. Molecular imprints make a mark[J]. Science,1994,263(5151):1221-1222.
    [131]Wuiff G.Molecular imprinting, sponsored by engineering foundation,New York.NY, USA. Enzyme engineering:Proceedings of the international enzyme engineering conference New York:Acad of Sciences,1984,434:327-333.
    [132]Asanuma H, Hishiya T, Komiyama M. Tailor-made receptors by molecular imprinting[J]. Advanced Materials,2000,12(14):1019-1030.
    [133]Wulff G, Sarhan A, Zabrocki K. Enzyme-analogue built polymers and their use for the resolution of racemates[J]. Tetrahedron Letters,1973,14(44):4329-4332.
    [134]Vlatakis G, Andersson L I. Muller R, et al. Drug assay using antibody mimics made by molecular imprinting [J].Nature,1993,361(6413):645-647.
    [135]Chuang S W, Rick J, Chou T C. Electrochemical characterisation of a conductive polymer molecularly imprinted with an Amadori compound[J]. Biosensors and Bioelectronics,2009, 24(10):3170-3173.
    [136]Liang R N, Song D A, Zhang R M, et al. Potentiometric Sensing of Neutral Species Based on a Uniform-Sized Molecularly Imprinted Polymer as a Receptor[J]. Angewandte Chemie, 2010,122(14):2610-2613.
    [137]Hu X, Li G, Li M, et al. Ultrasensitive specific stimulant assay based on molecularly imprinted photonic hydrogels[J]. Advanced Functional Materials,2008,18(4):575-583.
    [138]Wulff G. Enzyme-like catalysis by molecularly imprinted polymers[J]. Chemical reviews, 2002,102(1):1-28.
    [139]Lanza F, Sellergren B. Method for synthesis and screening of large groups of molecularly imprinted polymers[J]. Analytical chemistry,1999,71(11):2092-2096.
    [140]Long C, Mai Z, Yang Y, et al. Determination of multi-residue for malachite green, gentian violet and their metabolites in aquatic products by high-performance liquid chromatography coupled with molecularly imprinted solid-phase extraction[J]. Journal of Chromatography A, 2009,1216(12):2275-2281.
    [141]Beltran A, Borrull F, Marce R M, et al. Molecularly-imprinted polymers:useful sorbents for selective extractions[J]. TrAC Trends in Analytical Chemistry,2010,29(11):1363-1375.
    [142]Maier N M, Lindner W. Chiral recognition applications of molecularly imprinted polymers: a critical review[J]. Analytical and bioanalytical chemistry,2007,389(2):377-397.
    [143]Mayes A G, Mosbach K. Molecularly imprinted polymers:useful materials for analytical chemistry?[J]. TrAC Trends in Analytical Chemistry,1997,16(6):321-332.
    [144]Kempe M. Antibody-mimicking polymers as chiral stationary phases in HPLC[J]. Analytical chemistry,1996,68(11):1948-1953.
    [145]Huval C C, Bailey M J, Braunlin W H, et al. Novel cholesterol lowering polymeric drugs obtained by molecular imprinting[J]. Macromolecules,2001,34:1548-1550.
    [146]Cacho C, Turiel E, Martin-Esteban A, et al. Semi-covalent imprinted polymer using propazine methacrylate as template molecule for the clean-up of triazines in soil and vegetable samples[J]. Journal of Chromatography A,2006,1114(2):255-262.
    [147]Whitcombe M J, Rodriguez M E, Villar P, et al. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting:synthesis and characterization of polymeric receptors for cholesterol[J]. Journal of the American Chemical Society,1995,117(27):7105-7111.
    [148]Masque N, Marce R M, Borrull F. Molecularly imprinted polymers:new tailor-made materials for selective solid-phase extraction[J]. TrAC Trends in Analytical Chemistry,2001, 20(9):477-486.
    [149]Matsui J, Miyoshi Y, Doblhoff-Dier O, et al. A molecularly imprinted synthetic polymer receptor selective for atrazine[J]. Analytical Chemistry,1995,67(23):4404-4408.
    [150]Sellergren B. Imprinted dispersion polymers:a new class of easily accessible affinity stationary phases[J]. Journal of chromatography A,1994,673(1):133-141.
    [151]Hedborg E, Winquist F, Lundstrom I, et al. Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices[J]. Sensors and actuators A:Physical, 1993,37:796-799.
    [152]Crescenzi C, Bayoudh S, Cormack P A G, et al. Determination of clenbuterol in bovine liver by combining matrix solid-phase dispersion and molecularly imprinted solid-phase extraction followed by liquid chromatography/electrospray ion trap multiple-stage mass spectrometry[J]. Analytical chemistry,2001,73(10):2171-2177.
    [153]Ye L, Ramstrom O, Mosbach K. Molecularly imprinted polymeric adsorbents for byproduct removal[J]. Analytical Chemistry,1998,70(14):2789-2795.
    [154]Tan C J, Tong Y W. Preparation of superparamagnetic ribonuclease a surface-imprinted submicrometer particles for protein recognition in aqueous media[J]. Analytical chemistry, 2007,79(1):299-306.
    [155]Tan C J, Chua H G, Ker K H, et al. Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization[J]. Analytical chemistry,2008,80(3):683-692.
    [156]Hosoya K, Yoshizako K, Tanaka N, et al. Uniform-size macroporous polymer-based stationary phase for HPLC prepared through molecular imprinting technique[J]. Chemistry Letters,1994,23(8):1437-1438.
    [157]Hoshina K, Horiyama S, Matsunaga H, et al. Molecularly imprinted polymers for simultaneous determination of antiepileptics in river water samples by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A,2009, 1216(25):4957-4962.
    [158]Ye L,Cormack P A G,Mosbach K.Molecularly imprinted monodisperse microspheres for competitive radioassay[J].Anal Commun,1999,36(2):35-38.
    [159]Ye L,Weiss R,Mosbach K.Synthesis and characterization of molecularly imprinted micropheres[J].Macromolecules,2000,33(22):8239-8245.
    [160]Jing T, Gao X D, Wang P, et al. Determination of trace tetracycline antibiotics in foodstuffs by liquid chromatography-tandem mass spectrometry coupled with selective molecular-imprinted solid-phase extraction[J]. Analytical and bioanalytical chemistry,2009, 393(8):2009-2018
    [161]Tamayo F G, Casillas J L, Martin-Esteban A. Evaluation of new selective molecularly imprinted polymers prepared by precipitation polymerisation for the extraction of phenylurea herbicides[J]. Journal of Chromatography A,2005,1069(2):173-181.
    [162]Jiang M, Zhang J, Mei S, et al. Direct enrichment and high performance liquid chromatography analysis of ultra-trace Bisphenol A in water samples with narrowly dispersible Bisphenol A imprinted polymeric microspheres column[J]. Journal of Chromatography A,2006,1110(1):27-34.
    [163]Gao D, Zhang Z, Wu M, et al. A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles[J]. Journal of the American Chemical Society,2007,129(25):7859-7866.
    [164]Lu C H, Wang Y, Li Y, et al. Bifunctional superparamagnetic surface molecularly imprinted polymer core-shell nanoparticles[J]. J. Mater. Chem.,2009,19(8):1077-1079.
    [165]Liu J, Chen H, Lin Z, et al. Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water[J]. Analytical chemistry,2010,82(17):7380-7386.
    [166]Carter S R, Rimmer S. Surface molecularly imprinted polymer core-shell particles[J]. Advanced Functional Materials,2004,14(6):553-561.
    [167]Li Y, Yin X F, Chen F R, et al. Synthesis of magnetic molecularly imprinted polymer nanowires using a nanoporous alumina template[J]. Macromolecules,2006,39(13): 4497-4499.
    [168]Li Y, Yang H H, You Q H, et al. Protein recognition via surface molecularly imprinted polymer nanowires[J]. Analytical chemistry,2006,78(1):317-320.
    [169]Qian K, Fang G, Wang S. A novel core-shell molecularly imprinted polymer based on metal-organic frameworks as a matrix[J]. Chemical Communications,2011,47(36): 10118-10120.
    [170]Zhang Z, Xu S, Li J, et al. Selective solid-phase extraction of Sudan I in chilli sauce by single-hole hollow molecularly imprinted polymers[J]. Journal of agricultural and food chemistry,2011,60(1):180-187.
    [171]Yan J, Yu J, Zhao P, et al. A novel high selectivity sensor for tetradifon residues based on double-side hollow molecularly imprinted materials[J]. Analytical Methods,2012,4(1): 177-182.
    [172]Xu W, Zhou W, Xu P, et al. A molecularly imprinted polymer based on TiO2 as a sacrificial support for selective recognition of dibenzothiophene[J]. Chemical Engineering Journal, 2011,172(1):191-198.
    [173]Guan G, Liu R, Mei Q, et al. Molecularly Imprinted Shells from Polymer and Xerogel Matrices on Polystyrene Colloidal Spheres[J]. Chemistry-A European Journal,2012,18(15): 4692-4698.
    [174]Meng Z, Chen W, Mulchandani A. Removal of estrogenic pollutants from contaminated water using molecularly imprinted polymers[J]. Environmental science & technology,2005, 39(22):8958-8962.
    [175]Le Noir M, Plieva F, Hey T, et al. Macroporous molecularly imprinted polymer/cryogel composite systems for the removal of endocrine disrupting trace contaminants[J]. Journal of Chromatography A,2007,1154(1):158-164.
    [176]Lin Y, Shi Y, Jiang M, et al. Removal of phenolic estrogen pollutants from different sources of water using molecularly imprinted polymeric microspheres[J]. Environmental Pollution, 2008,153(2):483-491.
    [177]Li Y, Li X, Dong C, et al. Selective recognition and removal of chlorophenols from aqueous solution using molecularly imprinted polymer prepared by reversible addition-fragmentation chain transfer polymerization[J]. Biosensors and Bioelectronics,2009,25(2):306-312.
    [178]Caro E, Marce R M, Cormack P A G, et al. Molecularly imprinted solid-phase extraction of naphthalene sulfonates from water[J]. Journal of Chromatography A,2004,1047(2): 175-180.
    [179]Yu Q, Deng S, Yu G. Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents[J]. Water research,2008, 42(12):3089-3097.
    [180]Valtchev M, Palm B S, Schiller M, et al. Development of sulfamethoxazole-imprinted polymers for the selective extraction from waters[J]. Journal of hazardous materials,2009, 170(2):722-728.
    [181]Dai C, Geissen S U, Zhang Y, et al. Performance evaluation and application of molecularly imprinted polymer for separation of carbamazepine in aqueous solution[J]. Journal of Hazardous Materials,2010,184(1):156-163.
    [182]Dai C, Geissen S U, Zhang Y, et al. Selective removal of diclofenac from contaminated water using molecularly imprinted polymer microspheres[J]. Environmental Pollution,2011, 159(6):1660-1666.
    [183]Kyzas G Z, Bikiaris D N, Lazaridis N K. Selective separation of basic and reactive dyes by molecularly imprinted polymers (MIPs)[J]. Chemical Engineering Journal,2009,149(1): 263-272.
    [184]Luo X, Zhan Y, Huang Y, et al. Removal of water-soluble acid dyes from water environment using a novel magnetic molecularly imprinted polymer[J]. Journal of hazardous materials,2011,187(1):274-282.
    [185]Krupadam R J, Bhagat B, Wate S R, et al. Fluorescence spectrophotometer analysis of polycyclic aromatic hydrocarbons in environmental samples based on solid phase extraction using molecularly imprinted polymer[J]. Environmental science & technology,2009,43(8): 2871-2877.
    [186]Krupadam R J, Khan M S, Wate S R. Removal of probable human carcinogenic polycyclic aromatic hydrocarbons from contaminated water using molecularly imprinted polymer [J]. Water research,2010,44(3):681-688.
    [187]Baggiani C, Anfossi L, Baravalle P, et al. Molecular recognition of polycyclic aromatic hydrocarbons by pyrene-imprinted microspheres[J]. Analytical and bioanalytical chemistry, 2007,389(2):413-422.
    [188]Song X, Li J, Xu S, et al. Determination of 16 polycyclic aromatic hydrocarbons in seawater using molecularly imprinted solid-phase extraction coupled with gas chromatography-mass spectrometry[J]. Talanta,2012.
    [1]Wang X, Li Y. Monodisperse nanocrystals:general synthesis, assembly, and their applications[J]. Chemical Communications,2007 (28):2901-2910.
    [2]Jeong U, Wang Y, Ibisate M, et al. Some new developments in the synthesis, functionalization, and utilization of monodisperse colloidal spheres[J]. Advanced Functional Materials,2005, 15(12):1907-1921.
    [3]Liu J, Qiao S Z, Hu Q H. Magnetic nanocomposites with mesoporous structures:synthesis and applications[J]. Small,2011,7(4):425-443.
    [4]Polshettiwar V, Luque R, Fihri A, et al. Magnetically recoverable nanocatalysts[J]. Chemical reviews,2011,111(5):3036.
    [5]Li W, Yang J, Wu Z, et al. A Versatile Kinetics-Controlled Coating Method To Construct Uniform Porous TiO2 Shells for Multifunctional Core-Shell Structures[J]. Journal of the American Chemical Society,2012,134(29):11864-11867.
    [6]Zhu M, Diao G. Review on the progress in synthesis and application of magnetic carbon nanocomposites[J]. Nanoscale,2011,3(7):2748-2767.
    [7]Zhang W M, Wu X L, Hu J S, et al. Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries[J]. Advanced Functional Materials,2008,18(24): 3941-3946.
    [8]Zhu M, Diao G. Magnetically Recyclable Pd Nanoparticles Immobilized on Magnetic Fe3O4@ C Nanocomposites:Preparation, Characterization, and Their Catalytic Activity toward Suzuki and Heck Coupling Reactions[J]. The Journal of Physical Chemistry C,2011,115(50): 24743-24749.
    [9]Zhu M, Wang C, Meng D, et al. In situ synthesis of silver nanostructures on magnetic Fe3O4@ C core-shell nanocomposites and their application in catalytic reduction reactions[J]. Journal of Materials Chemistry A,2013,1(6):2118-2125.
    [10]Zhang J, Du J, Qian Y, et al. Shape-controlled synthesis and their magnetic properties of hexapod-like, flake-like and chain-like carbon-encapsulated Fe3O4 core/shell composites[J]. Materials Science and Engineering:B,2010,170(1):51-57.
    [11]Lei C, Han F, Li D, et al. Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes[J]. Nanoscale,2013,5(3):1168-1175.
    [12]Li L, Wang T, Zhang L, et al. Selected-Control Synthesis of Monodisperse Fe3O4@ C Core-Shell Spheres, Chains, and Rings as High-Performance Anode Materials for Lithium-Ion Batteries[J]. Chemistry-A European Journal,2012,18(36):11417-11422.
    [13]Yao T, Cui T, Wu J, et al. Preparation of acid-resistant core/shell Fe3O4@C materials and their use as catalyst supports[J]. Carbon,2012,50(6):2287-2295.
    [14]Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of colloid and interface science,1968,26(1):62-69.
    [15]Lee Y G, Park J H, Oh C, et al. Preparation of highly monodispersed hybrid silica spheres using a one-step sol-gel reaction in aqueous solution[J]. Langmuir,2007,23(22): 10875-10878.
    [16]Deng T S, Marlow F. Synthesis of Monodisperse Polystyrene@Vinyl-SiO2 Core-Shell Particles and Hollow SiO2 Spheres[J]. Chemistry of Materials,2012,24(3):536-542.
    [17]Liu J, Qiao S Z, Liu H, et al. Extension of the Stober Method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres[J]. Angewandte Chemie International Edition,2011,50(26):5947-5951.
    [18]Meng Y, Gu D, Zhang F, et al. Ordered mesoporous polymers and homologous carbon frameworks:amphiphilic surfactant templating and direct transformation[J]. Angewandte Chemie,2005,117(43):7215-7221.
    [19]Choma J, Jamiola D, Augustynek K, et al. Carbon-gold core-shell structures:formation of shells consisting of gold nanoparticles[J]. Chemical Communications,2012,48(33): 3972-3974.
    [20]Choma J, Jamiola D, Augustynek K, et al. New opportunities in Stober synthesis:preparation of microporous and mesoporous carbon spheres[J]. Journal of Materials Chemistry,2012, 22(25):12636-12642.
    [21]Zhang X, Li Y, Cao C. Facile one-pot synthesis of mesoporous hierarchically structured silica/carbon nanomaterials[J]. Journal of Materials Chemistry,2012,22(28):13918-13921.
    [22]Fuertes A B, Valle-Vigon P, Sevilla M. One-step synthesis of silica@ resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules[J]. Chemical Communications,2012,48(49):6124-6126.
    [23]Liu J, Sun Z, Deng Y, et al. Highly Water-Dispersible Biocompatible Magnetite Particles with Low Cytotoxicity Stabilized by Citrate Groups[J]. Angewandte Chemie,2009,121(32): 5989-5993.
    [24]Tung V C, Allen M J, Yang Y, et al. High-throughput solution processing of large-scale graphene[J]. Nature nanotechnology,2008,4(1):25-29.
    [25]Zhao G, Jiang L, He Y, et al. Sulfonated graphene for persistent aromatic pollutant management J]. Advanced Materials,2011,23(34):3959-3963.
    [26]Lu A H, Hao G P, Sun Q. Can Carbon Spheres Be Created through the Stober Method?[J]. Angewandte Chemie International Edition,2011,50(39):9023-9025.
    [27]Gao D, Zhang Z, Wu M, et al. A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles[J]. Journal of the American Chemical Society,2007,129(25):7859-7866.
    [28]Mangold K M, Schuster J, Weidlich C. Synthesis and properties of magnetite/polypyrrole core-shell nanocomposites and polypyrrole hollow spheres[J]. Electrochimica Acta,2011, 56(10):3616-3619.
    [29]Ma Z, Guan Y, Liu H. Synthesis and characterization of micron-sized monodisperse superparamagnetic polymer particles with amino groups[J]. Journal of Polymer Science Part A:Polymer Chemistry,2005,43(15):3433-3439.
    [30]Nikitenko S I, Koltypin Y, Palchik O, et al. Synthesis of Highly Magnetic, Air-Stable Iron-Iron Carbide Nanocrystalline Particles by Using Power Ultrasound[J]. Angewandte Chemie,2001,113(23):4579-4581.
    [31]Zhang Z, Kong J. Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution[J]. Journal of hazardous materials,2011,193:325-329.
    [32]Wang D W, Li F, Lu G Q, et al. Synthesis and dye separation performance of ferromagnetic hierarchical porous carbon[J]. Carbon,2008,46(12):1593-1599.
    [33]Zhang X, Liu S, Tong H, et al. Room-temperature catalytic oxidation of benzo (a) pyrene by Ce-SBA-15 supported active CeSiO4 phase[J]. Applied Catalysis B:Environmental,2012.
    [34]Tejeda-Agredano M C, Gallego S, Niqui-Arroyo J L, et al. Effect of interface fertilization on biodegradation of polycyclic aromatic hydrocarbons present in nonaqueous-phase liquids[J]. Environmental science & technology,2010,45(3):1074-1081.
    [35]Yang K, Wang X, Zhu L, et al. Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes[J]. Environmental science & technology,2006, 40(18):5804-5810.
    [36]Kong H, He J, Gao Y, et al. Removal of polycyclic aromatic hydrocarbons from aqueous solution on soybean stalk-based carbon[J]. Journal of Environmental Quality,2011,40(6): 1737-1744.
    [37]Ania C O, Cabal B, Pevida C, et al. Effects of activated carbon properties on the adsorption of naphthalene from aqueous solutions[J]. Applied surface science,2007,253(13): 5741-5746.
    [38]Jonker M T O, Koelmans A A. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: mechanistic considerations[J]. Environmental science & technology,2002,36(17): 3725-3734.
    [1]Breivik K, Alcock R, Li Y F, et al. Primary sources of selected POPs:regional and global scale emission inventories[J]. Environmental Pollution,2004,128(1):3-16.
    [2]B.J. Finlayson-Pitts, J.N. Pitts Jr., Chemistry of the Upper and Lower Atmosphere, first edition, Academic Press,1999,436.
    [3]Mastral A M, Callen M S, Garcia T. Polyaromatic environmental impact in coal-tire blend atmospheric fluidized bed (AFB) combustion[J]. Energy & fuels,2000,14(1):164-168.
    [4]Li P, Li X, Stagnitti F, et al. Studies on the sources of benzo(a)pyrene in grain and aboveground tissues of rice plants[J]. Journal of hazardous materials,2009,162(1):463-468.
    [5]McMurry P H. A review of atmospheric aerosol measurements[J]. Atmospheric Environment, 2000,34(12):1959-1999.
    [6]Baek S O, Field R A, Goldstone M E, et al. A review of atmospheric polycyclic aromatic hydrocarbons:sources, fate and behavior[J]. Water, air, and soil pollution,1991,60(3-4): 279-300.
    [7]Yang K, Zhu L, Xing B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials[J]. Environmental science & technology,2006,40(6):1855-1861.
    [8]Kong H, He J, Gao Y, et al. Removal of polycyclic aromatic hydrocarbons from aqueous solution on soybean stalk-based carbon[J]. Journal of Environmental Quality,2011,40(6): 1737-1744.
    [9]Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. science,1998,279(5350):548-552.
    [10]Garcia T, Solsona B, Taylor S H. Naphthalene total oxidation over metal oxide catalysts[J]. Applied Catalysis B:Environmental,2006,66(1):92-99.
    [11]Zhang X W, Shen S C, Yu L E, et al. Oxidative decomposition of naphthalene by supported metal catalysts[J]. Applied Catalysis A:General,2003,250(2):341-352.
    [12]Zhang X W, Shen S C, Hidajat K, et al. Naphthalene oxidation over 1% Pt and 5% Co/y-Al2O3 catalysts:Reaction intermediates and possible pathways[J]. Catalysis letters, 2004,96(1-2):87-96.
    [13]Ntainjua N E, Carley A F, Taylor S H. The role of support on the performance of platinum-based catalysts for the total oxidation of polycyclic aromatic hydrocarbons[J]. Catalysis Today,2008,137(2):362-366.
    [14]Garcia T, Solsona B, Taylor S H. Nano-crystalline ceria catalysts for the abatement of polycyclic aromatic hydrocarbons[J]. Catalysis letters,2005,105(3-4):183-189.
    [15]Garcia T, Solsona B, Taylor S H. Naphthalene total oxidation over metal oxide catalysts[J]. Applied Catalysis B:Environmental,2006,66(1):92-99.
    [16]Aranda A, Lopez J M, Murillo R, et al. Total oxidation of naphthalene with high selectivity using a ceria catalyst prepared by a combustion method employing ethylene glycol[J]. Journal of hazardous materials,2009,171(1):393-399.
    [17]Puertolas B, Solsona B, Agouram S, et al. The catalytic performance of mesoporous cerium oxides prepared through a nanocasting route for the total oxidation of naphthalene[J]. Applied Catalysis B:Environmental,2010,93(3):395-405.
    [18]Timofeeva M N, Jhung S H, Hwang Y K, et al. Ce-silica mesoporous SBA-15-type materials for oxidative catalysis:Synthesis, characterization, and catalytic application[J]. Applied Catalysis A:General,2007,317(1):1-10.
    [19]Dai Q, Wang X, Chen G, et al. Direct synthesis of Cerium (Ⅲ)-incorporated SBA-15 mesoporous molecular sieves by two-step synthesis method[J]. Microporous and mesoporous materials,2007,100(1):268-275.
    [20]Selvaraj M, Park D W, Ha C S. Well ordered two-dimensional mesoporous CeSBA-15 synthesized with improved hydrothermal stability and catalytic activity[J]. Microporous and Mesoporous Materials,2011,138(1):94-101.
    [21]Timofeeva M N, Kholdeeva O A, Jhung S H, et al. Titanium and cerium-containing mesoporous silicate materials as catalysts for oxidative cleavage of cyclohexene with H2O2: A comparative study of catalytic activity and stability [J]. Applied Catalysis A:General,2008, 345(2):195-200.
    [22]Shi X, Ji S, Wang K. Oxidative Dehydrogenation of Ethane to Ethylene with Carbon dioxide over Cr-Ce/SBA-15 Catalysts[J]. Catalysis letters,2008,125(3-4):331-339.
    [23]Mu Z, Li J J, Tian H, et al. Synthesis of mesoporous Co/Ce-SBA-15 materials and their catalytic performance in the catalytic oxidation of benzene[J]. Materials Research Bulletin, 2008,43(10):2599-2606.
    [24]Wang F, Li J, Yuan J, et al. Short channeled Zr-Ce-SBA-15 supported palladium catalysts for toluene catalytic oxidation[J]. Catalysis Communications,2011,12(15):1415-1419.
    [25]Wang N, Chu W, Zhang T, et al. Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas [J]. International Journal of Hydrogen Energy,2012,37(1):19-30.
    [26]Marie-Rose S C, Belin T, Mijoin J, et al. Catalytic combustion of polycyclic aromatic hydrocarbons (PAHs) over zeolite type catalysts:Effect of water and PAHs concentration[J]. Applied Catalysis B:Environmental,2009,90(3):489-496.
    [27]Park J I, Lee J K, Miyawaki J, et al. Platinum catalysts supported on hydrothermally stable mesoporous aluminosilicate for the catalytic oxidation of polycyclic aromatic hydrocarbons (PAHs)[J]. Catalysis Communications,2010,11(13):1068-1071.
    [28]Park J I, Lee J K, Miyawaki J, et al. Catalytic oxidation of polycyclic aromatic hydrocarbons (PAHs) over SBA-15 supported metal catalysts[J]. Journal of Industrial and Engineering Chemistry,2011,17(2):271-276.
    [29]Narender N, Reddy K S K, Mohan K V V K, et al. Synthesis, characterization and catalytic properties of SeMCM-41 molecular sieves:oxidation of 2-methylnaphthalene to 2-methyl-1, 4-naphthoquinone[J]. Journal of Porous Materials,2011,18(3):337-343.
    [30]Aranda A, Aylon E, Solsona B, et al. High activity mesoporous copper doped cerium oxide catalysts for the total oxidation of polyaromatic hydrocarbon pollutants [J]. Chemical Communications,2012,48(39):4704-4706.
    [31]Zhou Y, Yang J, Yang J Y, et al. One-pot synthesis of novel ferric cubic mesoporous silica (Im3m symmetry) and its highly efficient adsorption performance [J]. Journal of Materials Chemistry,2011,21(36):13895-13901.
    [32]Zhang X, Qu Z, Li X, et al. In-situ synthesis of Ag/SBA-15 nanocomposites by the "pH-adjusting" method[J]. Materials Letters,2011,65(12):1892-1895.
    [33]Yong G P, Tian D, Tong H W, et al. Mesoporous SBA-15 supported silver nanoparticles as environmentally friendly catalysts for three-component reaction of aldehydes, alkynes and amines with glycol as a "green" solvent[J]. Journal of Molecular Catalysis A:Chemical,2010, 323(1):40-44.
    [34]Wang K, Li X, Ji S, et al. Effect of CexZr1-xO2 Promoter on Ni-Based SBA-15 Catalyst for Steam Reforming of Methane[J]. Energy & Fuels,2008,23(1):25-31.
    [35]Yong G, Jin Z, Tong H, et al. Selective reduction of bulky polycyclic aromatic hydrocarbons from mainstream smoke of cigarettes by mesoporous materials[J]. Microporous and mesoporous materials,2006,91(1):238-243.
    [36]Han Y J, Kim J M, Stucky G D. Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15[J]. Chemistry of materials,2000,12(8):2068-2069.
    [37]Dickson C L, Glasser F P. Cerium (III, IV) in cement:Implications for actinide (III, IV) immobilisation[J]. Cement and concrete research,2000,30(10):1619-1623.
    [38]Skakle J M S, Dickson C L, Glasser F P. The crystal structures of CeSiO4 and Ca2Ce8 (SiO4) 6O2[J]. Powder diffraction,2000,15(04):234-238.
    [39]Chen S Y, Lee J F, Cheng S. Pinacol-type rearrangement catalyzed by Zr-incorporated SBA-15[J]. Journal of Catalysis,2010,270(1):196-205.
    [40]Laha S C, Mukherjee P, Sainkar S R, et al. Cerium containing MCM-41-type mesoporous materials and their acidic and redox catalytic properties[J]. Journal of Catalysis,2002,207(2): 213-223.
    [41]Zhao X G, Shi J L, Hu B, et al. In situ formation of silver nanoparticles inside pore channels of ordered mesoporous silica[J]. Materials Letters,2004,58(16):2152-2156.
    [42]G.H. Kuehl,1996, US Patent No.5 583 277.
    [43]Balanikas G, Hussain N, Amin S, et al. A study of chemical carcinogenesis.109. Oxidation of polynuclear aromatic hydrocarbons with ceric ammonium sulfate:preparation of quinones and lactones[J]. The Journal of Organic Chemistry,1988,53(5):1007-1010.
    [44]Sharma M K, Buettner G R. Interaction of vitamin C and vitamin E during free radical stress in plasma:an ESR study[J]. Free Radical Biology and Medicine,1993,14(6):649-653.
    [45]Yong G P, Li C F, Li Y Z, et al. New zwitterionic radical salts:dimers in solution and unusual magnetic and luminescent properties in the solid state[J]. Chemical Communications, 2010,46(18):3194-3196.
    [1]Staples C A, Dome P B, Klecka G M, et al. A review of the environmental fate, effects, and exposures of bisphenol A[J]. Chemosphere,1998,36(10):2149-2173.
    [2]Biles J E, McNeal T P, Begley T H, et al. Determination of bisphenol-A in reusable polycarbonate food-contact plastics and migration to food-simulating liquids[J]. Journal of Agricultural and Food Chemistry,1997,45(9):3541-3544.
    [3]Wang J, Cormack P A G, Sherrington D C, et al. Monodisperse, molecularly imprinted polymer microspheres prepared by precipitation polymerization for affinity separation applications[J]. Angewandte Chemie International Edition,2003,42(43):5336-5338.
    [4]Ansell R J. Molecularly imprinted polymers for the enantioseparation of chiral drugs[J]. Advanced drug delivery reviews,2005,57(12):1809-1835.
    [5]Lu C H, Zhou W H, Han B, et al. Surface-imprinted core-shell nanoparticles for sorbent assays[J]. Analytical chemistry,2007,79(14):5457-5461.
    [6]Yang H H, Zhang S Q, Tan F, et al. Surface molecularly imprinted nanowires for biorecognition[J]. Journal of the American Chemical Society,2005,127(5):1378-1379.
    [7]Chen L, Xu S, Li J. Recent advances in molecular imprinting technology:current status, challenges and highlighted applications[J]. Chemical Society Reviews,2011,40(5): 2922-2942.
    [8]Pan G, Guo Q, Cao C, et al. Thermo-responsive molecularly imprinted nanogels for specific recognition and controlled release of proteins[J]. Soft Matter,2013.,9,3840-3850.
    [9]Balamurugan S, Spivak D A. Molecular imprinting in monolayer surfaces[J]. Journal of Molecular Recognition,2011,24(6):915-929.
    [10]Golsefidi M A, Es'haghi Z, Sarafraz-Yazdi A. Design, synthesis and evaluation of a molecularly imprinted polymer for hollow fiber-solid phase microextraction of chlorogenic acid in medicinal plants[J]. Journal of Chromatography A,2012,1229:24-29.
    [11]Zhang Z, Xu S, Li J, et al. Selective solid-phase extraction of Sudan I in chilli sauce by single-hole hollow molecularly imprinted polymers[J]. Journal of agricultural and food chemistry,2011,60(1):180-187.
    [12]Guan G, Liu R, Mei Q, et al. Molecularly Imprinted Shells from Polymer and Xerogel Matrices on Polystyrene Colloidal Spheres[J]. Chemistry-A European Journal,2012,18(15): 4692-4698.
    [13]Xu S, Chen L, Li J, et al. Preparation of hollow porous molecularly imprinted polymers and their applications to solid-phase extraction of triazines in soil samples[J]. Journal of Materials Chemistry,2011,21(32):12047-12053.
    [14]Carter S R, Rimmer S. Surface molecularly imprinted polymer core-shell particles[J]. Advanced Functional Materials,2004,14(6):553-561.
    [15]Zhao Y, Ma Y, Li H, et al. Composite QDs@MIP Nanospheres for Specific Recognition and Direct Fluorescent Quantification of Pesticides in Aqueous Media[J]. Analytical chemistry, 2011,84(1):386-395.
    [16]Lu C H, Wang Y, Li Y, et al. Bifunctional superparamagnetic surface molecularly imprinted polymer core-shell nanoparticles[J]. J. Mater. Chem.,2009,19(8):1077-1079.
    [17]Qian K, Fang G, Wang S. A novel core-shell molecularly imprinted polymer based on metal-organic frameworks as a matrix[J]. Chemical Communications,2011,47(36): 10118-10120.
    [18]Zhou W H, Lu C H, Guo X C, et al. Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition[J]. Journal of Materials Chemistry, 2010,20(5):880-883.
    [19]Radhakrishnan B, Ranjan R, Brittain W J. Surface initiated polymerizations from silica nanoparticles[J]. Soft Matter,2006,2(5):386-396.
    [20]Gao D, Zhang Z, Wu M, et al. A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles[J]. Journal of the American Chemical Society,2007,129(25):7859-7866.
    [21]Liu J, Chen H, Lin Z, et al. Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water[J]. Analytical chemistry,2010,82(17):7380-7386.
    [22]He M, Meng M, Wan J, et al. A new molecularly imprinted polymer prepared by surface imprinting technique for selective adsorption towards kaempferol[J]. Polymer bulletin,2012, 68(4):1039-1052.
    [23]Zhao W, Sheng N, Zhu R, et al. Preparation of dummy template imprinted polymers at surface of silica microparticles for the selective extraction of trace bisphenol A from water samples[J]. Journal of hazardous materials,2010,179(1):223-229.
    [24]Gonzato C, Courty M, Pasetto P, et al. Magnetic Molecularly Imprinted Polymer Nanocomposites via Surface-Initiated RAFT Polymerization [J]. Advanced Functional Materials,2011,21(20):3947-3953.
    [25]Titirici M M, Sellergren B. Thin molecularly imprinted polymer films via reversible addition-fragmentation chain transfer polymerization[J]. Chemistry of materials,2006,18(7): 1773-1779.
    [26]Sulitzky C, Ruckert B, Hall A J, et al. Grafting of molecularly imprinted polymer films on silica supports containing surface-bound free radical initiators [J]. Macromolecules,2002, 35(1):79-91.
    [27]Lu C H, Zhou W H, Han B, et al. Surface-imprinted core-shell nanoparticles for sorbent assays[J]. Analytical chemistry,2007,79(14):5457-5461.
    [28]Wybranska K, Niemiec W, Szczubialka K, et al. Adenine molecularly imprinted polymer-coated submicrometer silica gel particles[J]. Chemistry of Materials,2010,22(18): 5392-5399.
    [29]Jiang X,.Tian W, Zhao C, et al. A novel sol-gel-material prepared by a surface imprinting technique for the selective solid-phase extraction of bisphenol A[J]. Talanta,2007,72(1): 119-125.
    [30]Zou H, Wu S, Shen J. Polymer/silica nanocomposites:preparation, characterization, properties, and applications[J]. Chem Rev,2008,108(9):3893-3957.
    [31]Bikiaris D, Karavelidis V, Karayannidis G. A new approach to prepare poly (ethylene terephthalate)/silica nanocomposites with increased molecular weight and fully adjustable branching or crosslinking by SSP[J]. Macromolecular rapid communications,2006,27(15): 1199-1205.
    [32]Zaharieva J, Milanova M, Todorovsky D. SiO2/polyester hybrid for immobilization of Ru (ii) complex as optical gas-phase oxygen sensor[J]. Journal of Materials Chemistry.2011,21(13): 4893-4903.
    [33]Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of colloid and interface science,1968,26(1):62-69.
    [34]Zhang X B, Li J, You B, et al. Hollow porous molecularly imprinted polymer nanosphere for fast and efficient recognition of bisphenol A[J]. RSC Advances,2012,2(26):9778-9780.
    [35]Lin Z, Xia Z, Zheng J, et al. Synthesis of uniformly sized molecularly imprinted polymer-coated silica nanoparticles for selective recognition and enrichment of lysozyme[J]. Journal of Materials Chemistry,2012,22(34):17914-17922.
    [36]Ou D L, Seddon A B. Near-and mid-infrared spectroscopy of sol-gel derived ormosils:vinyl and phenyl silicates[J]. Journal of non-crystalline solids,1997,210(2):187-203.
    [37]Griffete N, Li H, Lamouri A, et al. Magnetic nanocrystals coated by molecularly imprinted polymers for the recognition of bisphenol A[J]. Journal of Materials Chemistry,2012,22(5): 1807-1811.
    [38]Zhou H, Xu Y, Tong H, et al. Direct synthesis of surface molecularly imprinted polymers based on vinyl-SiO2 nanospheres for recognition of bisphenol A[J]. Journal of Applied Polymer Science,2012. DOI:10.1002/APP.38598.
    [39]Mandal T K, Fleming M S, Walt D R. Production of hollow polymeric microspheres by surface-confined living radical polymerization on silica templates[J]. Chemistry of materials, 2000,12(11):3481-3487.
    [40]Liu G, Yang X, Wang Y. Silica/poly (NN'-methylenebisacrylamide) composite materials by encapsulation based on a hydrogen-bonding interaction[J]. Polymer,2007,48(15): 4385-4392.
    [41]Deng T S, Marlow F. Synthesis of Monodisperse Polystyrene@Vinyl-SiO2 Core-Shell Particles and Hollow SiO2 Spheres[J]. Chemistry of Materials,2012,24(3):536-542.
    [42]Liu G, Li L, Yang X, et al. Preparation of silica/polymer hybrid microspheres and the corresponding hollow polymer microspheres with functional groups[J]. Polymers for Advanced Technologies,2008,19(12):1922-1930.
    [43]Shi Y, Lv H, Lu X, et al. Uniform molecularly imprinted poly (methacrylic acid) nanospheres prepared by precipitation polymerization:the control of particle features suitable for sustained release of gatifloxacin[J]. Journal of Materials Chemistry,2012,22(9):3889-3898.
    [44]Cela-Perez M C, Castro-Lopez M M, Lasagabaster-Latorre A, et al. Synthesis and characterization of bisphenol-A imprinted polymer as a selective recognition receptor[J]. Analytica chimica acta,2011,706(2):275-284.
    [45]Zhao W, Sheng N, Zhu R, et al. Preparation of dummy template imprinted polymers at surface of silica microparticles for the selective extraction of trace bisphenol A from water samples[J]. Journal of hazardous materials,2010,179(1):223-229.
    [46]Ren Y, Ma W, Ma J, et al. Synthesis and properties of bisphenol A molecular imprinted particle for selective recognition of BPA from water[J]. Journal of colloid and interface science,2012,367(1):355-361.
    [47]Zhang X B, Tong H W, Yong G, et al. An improved Stober method towards uniform and monodisperse Fe3O4@ C nanospheres [J]. J. Mater. Chem. A,2013, DOI:10.1039/C3TA11249G.
    [1]Staples C A, Dome P B, Klecka G M, et al. A review of the environmental fate, effects, and exposures of bisphenol A[J]. Chemosphere,1998,36(10):2149-2173.
    [2]Hiroi H, Tsutsumi O, Momoeda M, et al. Differential interactions of bisphenol A and 17 beta-estradiol with estrogen receptor alpha (ER alpha) and ER beta[J]. Endocrine. Journal., 1999,46,773-778.
    [3]Kang J H, Kondo F, Katayama Y. Human exposure to bisphenol A[J]. Toxicology,2006, 226(2):79-89.
    [4]Rezaee M, Yamini Y, Shariati S, et al. Dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-UV detection as a very simple, rapid and sensitive method for the determination of bisphenol A in water samples[J]. Journal of chromatography,2009,1216(9):1511-1514.
    [5]Cai Y Q, Jiang G B, Liu J F, et al. Multi-walled carbon nanotubes packed cartridge for the solid-phase extraction of several phthalate esters from water samples and their determination by high performance liquid chromatography [J]. Analytica Chimica Acta,2003,494(1): 149-156.
    [6]Watabe Y, Hosoya K, Tanaka N, et al. Novel surface modified molecularly imprinted polymer focused on the removal of interference in environmental water samples for chromatographic determination[J]. Journal of Chromatography A,2005,1073(1):363-370.
    [7]Navarro-Villoslada F, Vicente B S, Moreno-Bondi M C. Application of multivariate analysis to the screening of molecularly imprinted polymers for bisphenol A[J]. Analytica chimica acta,2004,504(1):149-162.
    [8]Jiang X, Tian W, Zhao C, et al. A novel sol-gel-material prepared by a surface imprinting technique for the selective solid-phase extraction of bisphenol A[J]. Talanta,2007,72(1): 119-125.
    [9]Yin Y M, Chen Y P, Wang X F, et al. Dummy molecularly imprinted polymers on silica particles for selective solid-phase extraction of tetrabromobisphenol A from water samples[J]. Journal of Chromatography A,2012,1220:7-13.
    [10]Chen L, Xu S, Li J. Recent advances in molecular imprinting technology:current status, challenges and highlighted applications[J]. Chemical Society Reviews,2011,40(5): 2922-2942.
    [11]Barahona F, Turiel E, Cormack P A G, et al. Chromatographic performance of molecularly imprinted polymers:Core-shell microspheres by precipitation polymerization and grafted MIP films via iniferter-modified silica beads[J]. Journal of Polymer Science Part A:Polymer Chemistry,2010,48(5):1058-1066.
    [12]Gao D, Zhang Z, Wu M, et al. A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles[J]. Journal of the American Chemical Society,2007,129(25):7859-7866.
    [13]Tan J, Wang H F, Yan X P. Discrimination of saccharides with a fluorescent molecular imprinting sensor array based on phenylboronic acid functionalized mesoporous silica[J]. Analytical chemistry,2009,81(13):5273-5280.
    [14]Qian K, Fang G, Wang S. A novel core-shell molecularly imprinted polymer based on metal-organic frameworks as a matrix[J]. Chemical Communications,2011,47(36): 10118-10120.
    [15]He C, Long Y, Pan J, et al. A method for coating colloidal particles with molecularly imprinted silica films[J]. Journal of Materials Chemistry,2008,18(24):2849-2854.
    [16]Yilmaz E, Ramstrom O, Moller P, et al. A facile method for preparing molecularly imprinted polymer spheres using spherical silica templates[J]. Journal of Materials Chemistry,2002, 12(5):1577-1581.
    [17]Tamayo F G, Titirici M M, Martin-Esteban A, et al. Synthesis and evaluation of new propazine-imprinted polymer formats for use as stationary phases in liquid chromatography[J]. Analytica chimica acta,2005,542(1):38-46.
    [18]Baggiani C, Baravalle P, Giovannoli C, et al. Binding behaviour of molecularly imprinted polymers prepared by a hierarchical approach in mesoporous silica beads of varying porosity[J]. Journal of Chromatography A,2011,1218(14):1828-1834.
    [19]Xu S, Chen L, Li J, et al. Preparation of hollow porous molecularly imprinted polymers and their applications to solid-phase extraction of triazines in soil samples[J]. Journal of Materials Chemistry,2011,21(32):12047-12053.
    [20]Xu W, Zhou W, Xu P, et al. A molecularly imprinted polymer based on TiO2 as a sacrificial support for selective recognition of dibenzothiophene[J]. Chemical Engineering Journal, 2011,172(1):191-198.
    [21]Balamurugan S, Spivak D A. Molecular imprinting in monolayer surfaces[J]. Journal of Molecular Recognition,2011,24(6):915-929.
    [22]Guan G, Liu R, Mei Q, et al. Molecularly Imprinted Shells from Polymer and Xerogel Matrices on Polystyrene Colloidal Spheres[J]. Chemistry-A European Journal,2012,18(15): 4692-4698.
    [23]Zhang Z, Xu S, Li J, et al. Selective solid-phase extraction of Sudan I in chilli sauce by single-hole hollow molecularly imprinted polymers[J]. Journal of agricultural and food chemistry,2011,60(1):180-187.
    [24]Golsefidi M A, Es'haghi Z, Sarafraz-Yazdi A. Design, synthesis and evaluation of a molecularly imprinted polymer for hollow fiber-solid phase microextraction of chlorogenic acid in medicinal plants[J]. Journal of Chromatography A,2012,1229:24-29.
    [25]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. nature,1992,359(6397):710-712.
    [26]Wang Y, Yu A, Caruso F. Nanoporous polyelectrolyte spheres prepared by sequentially coating sacrificial mesoporous silica spheres[J]. Angewandte Chemie,2005,117(19): 2948-2952.
    [27]Dong A, Ren N, Tang Y, et al. General synthesis of mesoporous spheres of metal oxides and phosphates[J]. Journal of the American Chemical Society,2003,125(17):4976-4977.
    [28]Tatsuda N, Nakamura T, Yamamoto D, et al. Synthesis of highly monodispersed mesoporous tin oxide spheres[J]. Chemistry of Materials,2009,21(21):5252-5257.
    [29]Schumacher K, Ravikovitch P I, Du Chesne A, et al. Characterization of MCM-48 materials[J]. Langmuir,2000,16(10):4648-4654.
    [30]YeonaKim J, BonaYoon S. Synthesis of highly ordered mesoporous polymer networks[J]. Journal of Materials Chemistry,2001,11 (12):2912-2914.
    [31]Yang H. Zhao D. Synthesis of replica mesostructures by the nanocasting strategy [J]. Journal of Materials Chemistry,2005,15(12):1217-1231.
    [32]Jiang H, Sun T, Li C, et al. Peapod-like nickel@ mesoporous carbon core-shell nanowires:a novel electrode material for supercapacitors[J]. RSC Adv.,2011,1(6):954-957.
    [33]Vinu A, Sawant D P, Ariga K, et al. Benzylation of benzene and other aromatics by benzyl chloride over mesoporous AlSBA-15 catalysts[J]. Microporous and mesoporous materials, 2005,80(1):195-203.
    [34]Navarro-Villoslada F, Vicente B S, Moreno-Bondi M C. Application of multivariate analysis to the screening of molecularly imprinted polymers for bisphenol A[J]. Analytica chimica acta,2004,504(1):149-162.
    [35]Cela-Perez M C, Castro-Lopez M M, Lasagabaster-Latorre A, et al. Synthesis and characterization of bisphenol-A imprinted polymer as a selective recognition receptor[J]. Analytica chimica acta,2011,706(2):275-284.
    [36]Griffete N, Li H, Lamouri A, et al. Magnetic nanocrystals coated by molecularly imprinted polymers for the recognition of bisphenol A[J]. Journal of Materials Chemistry,2012,22(5): 1807-1811.
    [37]Ren Y, Ma W, Ma J, et al. Synthesis and properties of bisphenol A molecular imprinted particle for selective recognition of BPA from water[J]. Journal of colloid and interface science,2012,367(1):355-361.
    [38]Liu J, Wang W, Xie Y, et al. A novel polychloromethylstyrene coated superparamagnetic surface molecularly imprinted core-shell nanoparticle for bisphenol A[J]. Journal of Materials Chemistry,2011,21(25):9232-9238.
    [39]Zhao W, Sheng N, Zhu R, et al. Preparation of dummy template imprinted polymers at surface of silica microparticles for the selective extraction of trace bisphenol A from water samples[J]. Journal of hazardous materials,2010,179(1):223-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700