用户名: 密码: 验证码:
非饱和含水介质中石油污染物迁移—转化与淋洗技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着石油的大规模勘探、开采,石油化工业的发展及其产品的广泛应用,石油对环境的污染已成为不容忽视的问题。石油进入到环境中后将经历挥发、淋溶、吸附和生物降解等一系列行为,而这些行为决定着石油污染物在环境中的归属。因此,深入研究石油污染物在环境中的迁移转化规律及其归属问题,对石油污染场地的评估、控制和修复具有重要的科学意义和应用价值。
     本研究以取自淄博市的壤土和砂土作为含水介质,选择柴油和汽油为供试油品。通过研究含水介质中石油挥发、淋溶和残留行为;研究不同水溶液条件引起的油水界面张力变化及其对化学淋洗效果的影响,取得了一些新的认识和结论:
     (1)含水介质中石油挥发速率与含油率、风速、容器直径、挥发土样厚度和介质颗粒粒径有关,汽油和柴油的挥发过程可分别用Elovich方程和抛物线模型描述。风加快含水介质中汽油和柴油挥发速率,使柴油中nC9-nC15组分挥发加快,但nC16的挥发受影响小。柴油挥发速率系数分别与容器直径和挥发土样厚度呈线性正相关,而容器直径对汽油挥发影响不明显,增加挥发土样厚度使汽油挥发速率降低。含水介质的颗粒越细,柴油挥发越快,而含水介质则抑制了汽油的挥发,且颗粒越细的含水介质中汽油挥发越慢。粗砂中水分可加快柴油挥发,细砂和亚粘土中水分却使柴油挥发速率减慢。在挥发过程中,柴油中低碳组分逐渐消失,高碳组分的相对含量增大。
     (2)颗粒大小和堆积密度影响含水介质中石油挥发和淋溶过程。当含水介质中石油挥发达到平衡后,亚粘土、细砂和粗砂中石油挥发量依次减少。相同介质中,石油在堆积密度小粗砂中挥发更快,而在堆积密度小的亚粘土中挥发较慢,堆积密度对细砂中石油挥发影响不大。在水淋滤过程中,粗砂中石油释放最快。在随后的反复多次清洗下,亚粘土中石油极限残留量是粗砂的20多倍。
     (3)石油在含水介质中含量和组分分布因含水介质性质和深度而有所不同。粗砂柱的最上层和底层的石油含量较高,中部石油含量相对较低,亚粘土柱的最上层石油含量最低,在其下层的石油含量最高。不同深度粗砂中柴油的nC20、nC21、nC18和nC17相对含量较高,而亚粘土中柴油的nC16和nC15相对含量最高。
     (4)石油最大残留饱和度、稳定残留饱和度和极限残留量与含水介质的颗粒粒径、有机质含量和比表面积等有关。颗粒均匀含水介质中石油最大残留饱和度、稳定残留饱和度和极限残留量均随平均粒径的增大而减小,粒径范围广含水介质中石油最大残留饱和度同样与介质平均粒径有关,但石油稳定残留饱和度与有机质含量和比表面积关系密切。堆积密度影响颗粒均匀含水介质中石油最大残留饱和度的大小,而对石油稳定残留饱和度的影响较小。
     (5)初始水饱和度影响含水介质中石油残留饱和度的大小。初始水饱和度增加使含水介质中石油饱和度降低,但对颗粒均匀含水介质中石油稳定残留饱和度影响较小。当含水介质初始水饱和度大于临界水饱和度时,油水总饱和度为一定值,而当初始水饱和度小于临界水饱和度时,油水总饱和度将随初始水饱和度增加而增加。
     (6)水溶液性质变化、无机盐和有机溶剂的加入对油水界面张力产生不同程度的影响,而无机盐、有机溶剂和阴离子表面活性剂的加入能提高单一表面活性剂的去油效果。化学淋洗油污砂土的静态和土柱试验表明,氯化钙、SDS和有机溶剂分别与Triton X-100混用,其去油率高于单一表面活性剂Triton X-100的去油率,且增效作用依次增大。从3因素对Triton X-100的综合作用静态试验结果分析,各因素的主次顺序为:丙酮>SDS>CaCl2。在4因素淋洗油污砂柱正交试验中,得到各因素的主次顺序为:CaCl2>温度>流量>pH。
With the large-scale oil exploration, mining, development of petroleum chemical industry and widely use of its products, oil pollution to environment cannot be ignored. After entering into environment, oil contaminants undergo a series of acts, such as volatilization, leaching, adsorption and biological degradation, which determine the ultimate fate of oil contaminants in environment. Therefore, it has important scientific significance and application value for assessment, control and remediation of oil-contaminated fields to research the migration, transformation and the final fate of oil contaminants deeply.
     In this paper, loam and sand were taken as representative aquifer media, and diesel oil and gasoline were chosen as the pollutants. The oil volatilization, leaching and residual behaviors were studied. Different solution conditions caused the change of oil-water interfacial tension, which affected the chemical leaching efficiency at the same time. On the basis of these investigation and experimental tests, some conclusions can be summarized as follows:
     (1) The volatilization rates of oil on aquifer media are relevant to oil content, wind speed, vessel diameter, volatilization thickness and particle size. Elovich equation and parabolic model can express the volatilization process of gasoline and diesel oil in aquifer media respectively. The wind can accelerate the volatilization rate of oils. The wind can speed up the volatilization of nC9~nC15of diesel oil significantly, but has little effect on the volatilization of nC16. Linear equations can describe the increment of diesel oil volatilization coefficients with the increasing of volatilization thickness and vessel diameter. But vessel diameter has no significant effect on gasoline volatilization, and the increasing volatilization thickness makes gasoline volatilization rate slow down. The finer is the aquifer media particle size, the faster diesel oil volatizes. But aquifer media block the gasoline volatilization, and gasoline in fine grained aquifer media volatilizes slower. The water in coarse sand can speed up the diesel oil volatilization, while which in fine sand and loam reduce the diesel oil volatilization rate. In the oil volatilization process, the low-carbon components disappear gradually, the relative contents of high-carbon components increase.
     (2) The particle size and bulk density of aquifer media affect oil volatilization and washing process. When the oil volatilization in aquifer media reaches equilibrium, the oil volatilization losses in coarse sand, fine sand and loam increase in turn. In the same aquifer media, oils in coarse sand and loam under lower bulk density volatilize faster and slower respectively, and the bulk density has little effect on the oil volatilization in fine sand. The oil releases fastest in coarse sand with water leaching. The minimum oil content of loam is20times than that of coarse sand under the water washing repeatedly.
     (3) The oil content and oil components in vadose zone soil distribute differently because of the different aquifer media characteristic and soil depth. The oil content of top and bottom layers is higher for coarse sand column, and the oil content of central layer is relatively lower. For loam column, the oil content of top layer is lowest, and the oil content of the layer under top layer is highest. The relative contents of nC2o, nC21, nC18and nC17are relatively higher in different depth of coarse sand column, but the relative contents of nC16and nC15are highest for loam column.
     (4) The particle size, organic matter content and specific surface area of aquifer media affect the maximum residual oil saturation, stable residual oil saturation and minimum oil content. The maximum residual oil saturation, stable residual oil saturation and minimum oil content of homogeneous aquifer media decrease with the increase of mean grain size. Mean grain size of heterogeneous aquifer media is the main factor affectting maximum residual oil saturation, while the stable residual oil saturation is related to organic matter content and specific surface area. Bulk density of homogeneous aquifer media affects the maximum residual oil saturation, but its effect on stable residual oil saturation is little.
     (5) The residual oil saturation is related to the initial water saturation of aquifer media. The increasing of initial water saturation can result in residual oil saturation in aquifer media reducing, but which has little effect on the residual oil saturation of homogeneous aquifer media. When the initial water saturation is greater than the critical water saturation, the total saturation of oil and water is a constant value, but when the initial water saturation is less than the critical water saturation, the total saturation increases with increasing of initial water saturation.
     (5) The change of solution properties, the adding of inorganic salt and organic solvent affect the oil-water interfical tension. The intruduction of inorganic salt, organic solvent and anionic surfactant can improve the oil removal efficiency of sole surfactant. The chemical leaching experiments show that the oil removal rates of mixed solvent are higher than the single Triton X-100. The improvement effects of CaCl2, SDS and organic increase in turn. The composite effect of the three factors on the oil removal rate of Triton X-100is Acetone>SDS> CaCl2in orthogonal test. While the effect of the four factors on the oil removal rate of water is CaCl2>temperature>flow velocity>pH.
引文
[1]Roeder E., Falta R.W., Lee C.M., and Coates J.T.. DNAPL to LNAPL Transitions During Horizontal Cosolvent Flooding[J]. Ground Water Monitoring and Remediation,2001, 21:77-88.
    [2]Rao, P.S.C., Annabel, M.D., Kim, H. NAPL source zone characterization and remediation technology performance assessment:recent developments and applications of tracer techniques[J]. Journal of Contaminant Hydrology,2000,45(1-2):63-78.
    [3]周友亚,贺晓珍,侯红,汀莉,谷庆宝,李发生.气相抽提法区除土壤中的苯和乙苯[J].化工学报,2009,60(10):2590-2595.
    [4]Ostendorf, D.W., Kampbell, D.H.. Biodegradation of hydrocarbon vapors in the unsaturated zone[J]. Water Resour. Res,1991,27:453-462.
    [5]Monteith J.L., Unsworth M.H.. Principles of Environmental Physics[M]. Hodder and Stoughton, London,1990.
    [6]Ma Yan fei, Zheng Xi lai, Feng Xue dong. Studies on the volatilization of oil in soils under natural conditions[J]. Advanced materials research,2010,113:395-398.
    [7]Wipfler E.L., Ness M., Breedveld G.D., etal. Infiltration and redistribution of LNAPL into unsaturated layered aquifer media[J]. Journal of Contaminant Hydrology,2004,71:47-66.
    [8]Radhey S. Sharma, Mostafa H.A. Mohamed. An experimental investigation of LNAPL migration in an unsaturated/saturated sand[J]. Engineering Geology,2003,70:305-313.
    [9]Dekker, T.J., Abriola, L.M. The influence of field-scale heterogeneity on the infiltration and entrapment of dense non-aqueous phase liquids in saturated formations[J]. Journal of Contaminant Hydrology,2000,42:187-218.
    [10]Oostrom M., Hofstee C., Lenhard R.J., Wietsma T.W.. Flow behavior and residual saturation formation of liquid carbon tetrachloride in unsaturated heterogeneous aquifer media[J]. Journal of Contaminant Hydrology,2003,64:93-112.
    [11]徐金兰,黄廷林,唐智新,等.石油污染土壤生物修复高效菌的降解特性[J].石油学报(石油加工),2009,25(4):570-576.
    [12]张秀霞,耿春香,房苗苗,等.固定化微生物应用于生物修复石油污染[J].石油学报(石油加工),2008,24(4):409-414.
    [13]Lahvis, M.A., Baehr, A.L.. Estimation of rates of aerobic hydrocarbon biodegradation by simulation of gas transport in the unsaturated zone. Water Resour. Res,1996,32:2231-2249.
    [14]Venosa A.D., Lee K., Suidan M.T., et al. Bioremediation and blorestoration of a crude oil contaminated fresh-water wetland on the St.Lawrence River. Bioremediation Journal,2002, 6(3):261-281.
    [15]Chang M.C., Huang C.R., Shu H.Y.. Effects of surfactants on extraction of phenanthrene inspiked sand[J]. Chemosphere,2000,41:1295-1300.
    [16]Chrysikopoulos CV, Kim T-J. Local mass transfer correlations for nonaqueous phase liquid pool dissolution in saturated aquifer media. Trans Aquifer media,2000,38(1-2):167-187.
    [17]Sutton O. G. Wind structure and evaporation in a turbulent atmosphere[J]. Proc. R. Soc. London, Ser. A,1934,146:701-722.
    [18]Jones F E. Evaporation of Water[M]. Lewis Publishers, Chelsea, MI,1992
    [19]Mackay D, Matsugu R S. Evaporation rates of liquid hydrocarbon spills on land and water[J]. Can.J.Chem. Eng,1973,51:434-439.
    [20]Stiver W, Mackay D. Evaporation rate of spills of hydrocarbons and petroleum mixtures[J]. Eviron Sci Technol,1984,18:834-840.
    [21]Fingas M.F. Studies on the evaporation of crude oil and petroleum products:I.The relationship between evaporation rate and time[J]. Hazard. Mater,1997,56:227-236
    [22]Fingas M.F. Studies on the evaporation of crude oil and petroleum products:11. Boundary layer regulation[J]. J. Hazard. Mater,1998,57:41-58.
    [23]Fingas M.F. Modelling evaporation using models that are not boundary-layer regulated. [J] J. Hazard. Mater,2004,107:27-36.
    [24]Sleep B E, Sykes J F. Modeling the transport of volatile organics in variably saturated media [J].Water Resources Research,1989,25(1):81-92.
    [25]Jokuty P.S., Whiticar S., Wang Z., M.F., etal. Properties of Crude Oils and Oil Products, Environment Canada Manuscript Report EE-165, Ottawa, Ont.,1999.
    [26]Galin T S, Gerstl Z, Yaron B. Soil pollution by petroleum products, Ⅲ. Kerosene stability in soil column as affected by volatilization[J]. Journal of Contaminant Hydrology,1990,5: 375-385.
    [27]李玉瑛,郑西来,李冰,等.柴油挥发行为的研究[J].化工环保,2005,25(6):423426.
    [28]Spencer W. F. and Cliath M. M.. Pesticide Volatilization as Related to Water Loss From Soil[J]. J Environ Qual,1973,2:284-289.
    [29]Andre Wolters, Volker Linnemanna, Michael Herbsta, et. al. Pesticide Volatilization from Soil[J]. Journal of Environmental Quality,2003,32:1183-1193.
    [30]黄廷林,史红星.黄土地区石油类挥发试验与挥发动力学[J].西安建筑科技大学学报(自然科学版),2003,35(2):111-115.
    [31]Jarsjo J, Destouni G, Yaron B. Retention and volatilization of kerosene:laboratory experiments on glacial and postglacial soils[J]. J Contam Hydrol,1994,17:167-185.
    [32]童玲,郑西来,李梅,等.不同下垫面苯系物的挥发行为研究[J].环境科学2008,29(7):2058-2062.
    [33]褚家成.海上溶油风化特征和对污染油种的鉴别[J].环境化学,1982,6:298-303.
    [34]Brutsaert W.. Evaporation into the Atmosphere[M]. Reidel Publishing Company, Dordrecht, Holland,1982.
    [35]Moder B.T., UweGoos K., Eisenreich S.J. Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces[J]. Environmental Sci. Technol.,1997,31:1079-1086.
    [36]Thomas M Y, Walter J and Weber J R. A distributed reactivity model for sorption by soils and sediments,3.Effects of diagenetic processes on sorption energetics[J]. Environmental Sci. Technol.1995,29 (1):92-97.
    [37]Grathwohl P. Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons:implications on correlations[J]. Environmental Sci. Technol.,1990,24:1687-1693.
    [38]Weber W.J.J., McGinley P.M., Katz L.E. A distributed reactivity model for sorption by soils and sediments.1.conceptual basis and equilibrium assessments[J]. Environmental Sci. Technol.,1992,26:1955-1962.
    [39]Young T.M., Weber W.J.J. TiO2 photocatalysis for indoor air applications:effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene[J]. Environmental Sci. Technol.,1995,29:1223-1331.
    [40]Gargarini D R, Lion L W. Influence of the nature of soil organics on the sorption of toluene and trichloroethylene[J]. Environmental Science and Technology,1986,20:1263-1369.
    [41]Xu D, Zhu S, Chen H, Li F. Structural characterization of humic acids isolated from typical soils in China arid their adsorption characteristics to phenanthrene[J]. Colloid Surface A, 2006,276:1-7.
    [42]Wen B, Zhang J, Zhang S, et al. Phenanthrene sorption to soil humic acid and different humin fractions[J]. Environmental Science and Technology,2007,41:3165-3171.
    [43]赵文谦,晁晓波,黄勤生.泥沙吸附石油的数学模型与试验研究[J].水利学报,1997(12):50-57.
    [44]李崇明,赵文谦,罗麟.河流泥沙对石油的吸附、解吸规律及影响因素的研究[J].中国环境科学,1997,17(1):23-26.
    [45]李崇明,赵文谦,罗麟.泥沙吸附石油的实验研究[J].四川联合大学学报(工程科学版),1997,1(4):34-40.
    [46]李秀华,倪进治,骆永明.上壤颗粒均匀含水介质对菲的吸附解吸行为的研究[J].土壤,2006,38(5):584-590.
    [47]Wu S.Sorption kinetics of hydrophobic organic compounds to natural sediments and soils[J]. Environ Sci Technol,1986,20(7):717-725.
    [48]Voice T C, Weber W J. Sorption of hydrophobic compounds by sediments, soils and suspended solids-Ⅰ[J]. Water Res,1983,17(10):1433-1441.
    [49]Weber W J, Voice T C, Messoud P, et al.Sorption of hydrophobic compounds by sediments,soils and suspended solids-I[J]. Water Res,1983,17(10):1443-1452
    [50]Verstraete W R. Modeling of the breakdown and the mobilization of hydrocarbons in unsaturated soil layers[J]. Proceedings,1976,99-112.
    [51]Abdul As et al.. Laboratory study of the flow of some organic solvents and their aqueous solution through Bentonite and Kadlin clays[J]. Ground water,1990,28(4):524-533.
    [52]Paul T Kostecki, Edward J.Calabreae. Petroleum Contaminated Soils[M]. Lewis Publishers, 1990.
    [53]Cooke A B. Centrifuge modeling of flow and contaminant transport through partially saturated soils[J]. Kingston:Dept of Civil Engineering Queen's University,1991.
    [54]Larsen T. Sorption of hydrophobic hydrocarbons on three aquifer material in a flow through system[J]. Chemosphere,1992,24:439-451.
    [55]耿春香,路帅.西北地区土壤中石油类污染物的垂直渗透规律[J].环境污染与防治,2003,25(1):61-62.
    [56]李勇,徐瑞薇.有机污染物在土壤和地下水中迁移建模[J].农村生态环境(学报),1994,10(3):64-68.
    [57]陶澎,曹军.山地土壤表层水溶性有机物淋溶动力学模拟研究[J].中国环境科学,1996,16(6):410-414.
    [58]黄廷林,任磊.黄土地区石油类污染物的径流污染模拟及模型预测[J].中国环境科学,2000,20(4):345-348.
    [59]史红星.石油类污染物在黄土高原地区环境中迁移转化规律的研究[D].西安建筑科技大学硕士学位论文,2001,6.
    [60]赵东风,赵朝成,王联社,等石油类污染物在士壤中的迁移渗透规律[J].石油大学学报(自然科学版),2000,24(3):64-66.
    [61]郑西来,刘孝义,杨喜成.地下水中石油污染物运移的耦合模型及其应用研究[J].工程察,1999,(2):37-41.
    [62]郑西来,刘孝义,席临平.含水介质吸附对石油污染物运移的阻滞效应研究[J].长春科技大学学报,1999,29(1):52-54.
    [63]王洪涛,罗剑,李雨松,等.李光富.石油污染物在土壤中运移数值模拟初探[J].环境科学学报,2000,20(6):755-760.
    [63]李晓华,许嘉琳,王华东,张铁垣.污染土壤环境中石油组分迁移特征研究[J].中国环境科学,1998,18(1.):54-58.
    [64]胡永梅,王敏健.土壤中有机污染物迁移行为的研究方法[J].环境科学进展,1998,6(4):44-53.
    [65]束善治,Soga K.包气带非水相污染物迁移离心模型研究中的相似比例关系[J].长春科技大学学报,2000,30(4):371-375.
    [66]刘晓艳,史鹏飞,孙德智,等.大庆土壤中石油类污染物迁移模拟[J].中国石油大学学报(自然科学版),2006,30(2):120-124.
    [67]纪学雁,刘晓艳,李兴伟,等.分层土柱法研究石油类污染物在土壤中的迁移[J].能源环境保护,2005,19(01):43-45.
    [68]王东海,李广贺,贾道昌.石油类污染物在砂砾石层中的迁移与分布[J].环境科学,1988,19(05):18-21
    [69]晁晓波赵文谦张萍.石油从泥沙上解吸的特性研究[J].环境科学学报,1997,17(04):434-438.
    [70]王东海,李广贺,贾道吕.河滩包气带油污十层残油释放实验研究[J].环境化学,1998,17(6):558-563.
    [71]Brooks R H, Corey A T. Hydraulic properties of aquifer media[M]. Hydrology paper Colorado State University, Fort Collins, Colo,1964.
    [72]Van Genuch ten M T.A closed form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Sei Soc. Am. J.,1980,44:892-989.
    [73]Parker J C, Lenhard R J and Kuppusamy T. A parametric model for constitutive properties governing multiphase flow in aquifer media[J]. Water Resources Research,1987,23 (4): 618-624.
    [74]Mualem Y. A New Model for Predicting the Hydraulic Conductivity of Unsaturated Aquifer media[J]. Water Resource Research.1976,12:513-522.
    [75]Oostrom M, Lenhard R J. Comparison of relative permeability- pressure parametric models for infiltration and redistribution of a light nonaqueous-phase liquid in sandy aquifer media[J]. Advances in Water Research,1998,21(2):145-157.
    [76]Host-Madsen J, Hogh Jensen. Laboratory and numerical in vestigations of immiscible muliphase flow in soli[J]. Journal of Hydrology,1992,135(1-4):13-52.
    [77]Hofstee, C., Dane, J H., Hill, W.E.. Three-fluid retention in aquifer media involving water, PCE and air [J]. J. Contain Transp,1997,25(3-4):235-247.
    [78]武晓峰,唐杰,吕贤弼.毛细压力—饱和度关系的试验研究[J].灌溉排水,1999,18(04):27-31.
    [79]Mercer, J.W., Cohen, R.M. A review of immiscible fluids in the subsurface:properties, models, characterization and remediation[J]. Journal of Contaminant Hydrology,1990,6: 107-163.
    [80]Chevalier, L.R. and Fonte J. M.. Correlation model to predict residual immiscible organic contaminants in sandy soils[J]. J. Hazard. Material,2000, B72:39-52.
    [81]Barranco, F.T., Jr., H.E. Dawson, J.M. Christener and B.D. Honeyman. Influence of aqueous pH and ionic strength on the wettability of quartz in the presence of dense non-aqueous-phase liquids[J]. Environ. Sci. Technol.,1997,31(3):676-681.
    [82]Bear, J. Dynamics of Fluids in Aquifer media[M]. Dover Publication, Inc. NY,1972:764.
    [83]Fritjof Fagerlund F., Auli Niemia and Magnus Oden. Comparison of relative permeability-fluid saturation-capillary pressure relations in the modelling of non-aqueous phase liquid infiltration in variably saturated, layered media [J]. Advances in Water Resources,2006,29(2):1705-1730.
    [84]Morrow N.R., Songkran B. Effects of viscous and buoyancy forces on non-wetting phase trapping in aquifer media, in:D.O. Shah Ed.., Surface Phenomena in Enhanced Oil Recovery, Plenum, New York,1981.
    [85]Lizette R. Chevalier, Jeannette M. Fonte. Correlation model to predict residual immiscible organic contaminants in sandy soils[J], Journal of Hazardous Materials,2000, B72:39-52.
    [86]Abrams, A. The influence of fluid viscosity, interfacial tension, and flow velocity on residual oil saturation left by waterflood[J]. SPE J.,1975,October:437-447.
    [87]Anderson, W.G. Wettability literature survey-Part 5:The effects of wettability on relative permeability[J]. J. Pet. Technol.,1987b,November:1453-1987.
    [88]Lowe, D.F., Oubre C.L. and Ward C.H.. Surfactants and Cosolvents for NAPL Remediation[M]. Lewis Publishers, Boca Raton, FL.1999:412.
    [89]Lord, D.L., Demond A.H.. Influence of organic acid solution chemistry on subsurface transport properties 2. capillary pressure-saturation[J]. Environ. Sci. Technol.1997,31(7): 2052-2058.
    [90]Powers, S.E., Anckner W.H.. Wettability of NAPL-contaminated sands[J]. J. Environ. Eng., 1996,122(10):889-896.
    [91]Zheng, J., Shao J. and Powers S.E.. Asphaltenes from coal tar and creosote:Their role in reversing the wettability of aquifer systems[J]. J. Colloid Interf.Sci,2001b,344:365-371.
    [92]Hoag, G. E. and Marley, M. C. Gasoline residual saturation in unsaturated uniform aquifer materials[J]. J. Environ. Eng,1986,112(3):586-604.
    [93]Eckberg, O. K. and Sunada, D. K.. Nonsteady three-phase phase immiscible fluid distribution in aquifer media[J]. Water Resour. Res,1984,20(12):1-17.
    [94]Wilson, J. L., Conrad, S. H., Mason, W. R., et al. Laboratory investigation of residual liquid organics from spills, leaks and the disposal of hazardous wastes in groundwater[M]. R. S. Kerr Environmental Research Laboratory, U.S. Environmental Protection Agency,1990.
    [95]武晓峰,唐杰,藤间幸久.土壤-地下水中有机污染物的就地处置[J].环境污染治理技术与设备,2000,4(1):46-51.
    [96]周加祥,刘铮.铬污染土壤修复技术研究进展[J].环境污染治理技术与设备,2000,4(1):51-55.
    [97]Semer R, Reddy K R. Evaluation of soil washing processto remove mixed contaminants from a sandy loam[J]. J. Hazard. Mater,1996,45:45-57.
    [98]Asante-Duah, D.K.. Managing Contaminated Sites:Problem Diagnosis and Development of Site Restoration[M]. Wiley, New York, NY,1996.
    [99]Feng, D., Lorenzen, L., Aldrich, C. and Mare, P.W.. Ex-situ diesel contaminated soil washing with mechanical methods[J]. Minerals Engineering,2001,14(9):1093-1100.
    [100]Chu,W., Chan, K.H.. The mechanism of the surfactant-aided soil washing system for hydrophobic and partial hydrophobic organics[J]. Science of the Total Environment,2003, 307(1-3):83-92.
    [101]Urum, K., Pekdemir, T, Gopur, M. Optimum conditions for washing of crude oil-contaminated soil with biosurfactant solutions[J]. Process Safety and Environmental Protection:Transactions of the Institution of Chemical Engineers, Part B 2003,81(3): 203-209.
    [102]Cort, T.L, Song, M.-S. and Bielefeldt, A.R.. Nonionic surfactant effects on pentachlorophenol biodegradation[J]. Water Research,2002,36:1253-1361.
    [103]Lee, D.-H., Cody, R.D., Kim, D.J., et al. Effect of soil texture on surfactant-based Remediation of hydrophobic organic-contaminated soil[J]. Environment International,2002, 27:681-688.
    [104]Zhong, L., Mayer, A.S. and Pope, G.A.. The effects of surfactant formulation on nonequilibrium NAPL solubilization[J]. Journal of Contaminant Hydrology,2003,60:55-75.
    [105]Pinto LJ, Moore MM. Release of polycyclic aromatic hydrocarbons from contaminated soils by surfactant and remediation of this effluent bypenicilliumsp[J]. Environ.Toxicol. Chem, 2000,19(7):1741-1748
    [106]Chang MC, Huang CR, Shu HY. Effects of surfactants on extraction of phenanthrene in spiked sand[J]. Chemosphere,2000,41(8):1295-1300
    [107]Chu W, So WS. Modeling the two stages of surfactant-aided soil washing[J]. Wat. Res., 2001,35(3):761-767
    [108]Wu Q, Marshall WD. Approaches to the remediation of polychlorinated biphenyl (PCB) contaminated soil-a laboratory study[J]. J. Environ. Monit.,2001,3(3):281-287.
    [109]Zheng Z, Obbard JP. Removal of polycyclic aromatic hydrocarbons from soil using surfactant and white rot fungus phanerochaete chrysosporium[J]J.Chem.Technol.Biotechnol., 2000,15:1183-1189.
    [110]Layton AC, Lajoie CA, Easter JP et al. An integrated surfactant solubilization and PCB bioremediation process for soils[J]. Bioremediation Journal,1998,2(1):43-56.
    [111]Allred, B. and Brown, G.O., Surfactant-induced reductions in soil hydraulic conductivity[J]. Ground Water Monitoring and Remediation,1994,14:174-184.
    [112]Rosen, M.J., Surfactants and interfacial phenomena[M]. John Wiley & Sons, New York, 1989.
    [113]Hiemenz, P.C.. Principles of colloid and surface chemistry[M].2nd ed. Marcel Dekker Inc., New York,1986.
    [114]Harwell, J.H., Sabatini, D.A. and Knox, R.C., Surfactants for ground water remediation[J]. Colloids and Surfaces (A),1999,151:255-268.
    [115]Lee, D.H.. Experimental investigation of the removal of hydrophobic organic compounds from two Iowa soils using food grade surfactants and recovery of used surfactants[D]. Ph.D. Dissertation. Iowa State University, Ames, IA,1999, pp200.
    [116]Dal-Heui Lee,Ho-Wan Chang,Chul Kim. Mixing effect of NaCl and surfactant on the remediation of TCB contaminated soil[J]. Geosciences Journal,2008,12(01):63-68.
    [117]Rao C, Annable M D, Sillan R K, et al. Field-Scale Evaluation of in situ Cosolvent Flushing for Enhanced Aquifer Remediation[J]. Water Resources Research,1997,33 (12):2674-2686.
    [118]Sillan R K, Annable M D, Rao P S C. Evaluation of in situ Cosolvent Flushing Dynamics Using a Network of Spatially Distributed Multilevel Samplers[J]. Water Resources Research, 1998,34(9):2191-2202.
    [119]赵保卫,朱琨,陈学民,等.重非水相液体性质对非离子表面活性剂增溶作用当的影响[J].环境化学,2007,26(4):452-456.
    [120]郑海亮,陈家军,杨建,等.醇-柴油间界面张力及对砂柱柴油去除率的影响[J].环境化学,2009,28(5):422-426.
    [121]巩宗强,李培军,王新,等.利用植物油淋洗修复受多环芳烃污染的土壤[J].中国环境科学,2002,22(5):421-424.
    [122]朱学愚,刘建立,朱俊杰,等.山东淄博裂隙岩溶水中石油污染物分布和迁移特征[J].中国科学(D辑),2000,30(5):479-485.
    [123]陈余道,朱学愚,朱学顺,等.岩溶裂隙含水层中石油类污染物的迁移与水力截获.环境科学学报,2000,20(4):406-409.
    [124]朱学愚,刘建立.山东淄博市大武水源地裂隙岩溶水中污染物运移的数值研究[J].地学前缘,2001,12(1):171-178.
    [125]陈余道,朱学愚,刘建立,等.淄博市乙烯厂区包气带中石油物质的分布特征及归宿[J].南京大学学报(自然科学版),1998,34(3):371-375.
    [126]王东海,李广贺,刘翔,等.包气带中残油动态释放实验研究[J].环境科学学报,2000,20(2):145-150.
    [127]Strausz O.P., Mojelsky T.W. and Lown E.M. The molecular structure of asphaltene:an unfolding story[J]. Fuel,1992,71:1355-1368.
    [128]Leathy L G and Colwell R R. Microbial degradation of hydrocarbons in the environment[J]. Microgiological Reviews,1990,54:305-315.
    [129]Taylor Ch and Viraraghavan T. A bench-scale investigation of Sand treatment of soil contaminated with diesel fuel[J]. Chemophere,1999,39,1583-1593.
    [130]Vindrig D.L. and Manning Jr. Biodegradation of no.2 diesel fuel in the vadose zone:a soil column study[J]. Environmental Toxicology and Chemistry,1995,14:1813-1822.
    [131]水质石油类和动植物油的测定—红外光度法[S].GBPT16488-1996.
    [132]水污染物排放总量监测技术规范[S].HJPT92-2002.
    [133]杨春艳,田小萌.红外分光光度法测定石油类和动植物[J].云南环境科学,2003,22(2):58-60.
    [134]刘晓艳,毛国成等.土壤中石油类有机污染物检测方法研究进展[J].中国环境监测,2006,22(2):75-80.
    [135]俞元春,陈静,朱剑禾.红外光度法测定土壤中总萃取物、石油类、动植物油、及其准确度之方法研究[J].中国环境监测,2003,19(6):6-8.
    [136]俞元春.土壤石油类(红外法)标样制作方法的研究[J].中国环境监测,2005,21(2):27-28.
    [137]杨宏斌,童张法,金朝晖等,正己烷蒂取—气相色谱法快速测定水中三氯乙烯[J].中国环境监测,2007,23(4):37-39
    [138]王贵宾,王国良,崔新安等,苯取法脱除南海原油中环烷酸的工艺研究[J].石油化工腐蚀与防护,2006,23(2):6-8.
    [139]龚莉娟.土壤中石油类的测定方法[J].中国环境监测,1999,15(2):24-25.
    [140]国家环保总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M]. 北京:中国环境科学出版社,2002.
    [141]王敏,赵冬宝.紫外分光光度法测定污水中油含量的改进[J].水道港口,2006,(3):195-197.
    [142]Li Yu-ying, Zheng Xi-lai, Li Bing, et.al. Volatilization behaviors of diesel oil from the soils [J]. Journal of Environment Science,2004,16(6):1033-1036
    [143]Jeongkon Kim, Yavuz Corapcioglu M. Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table [J]. Journal of Contaminant Hydrology,2003,65: 137-158.
    [144]关松荫,张德生,张志明.土壤酶及其研究法[M].北京:农业出版社.1986,第1版.274-338.
    [145]哈兹耶夫.土壤酶活性[M].科学出版社,1980:35-46.
    [146]中国科学院南京土壤研究所微生物室编,土壤微生物研究法[M].科学出版社,1985:48-52.
    [147]Aon M A, Colaneri A C.II.Temporal and spatial evolution of enzymatic activities and physic-chemical properties in an agricultural soil[J]. Applied Soil Ecology,2001,18(3): 255-270.
    [148]Dinesh R, Dubev PR, Shvam CP. Soil microbial biomass an enzyme activities influenced by organic manure incorporation into soils of a rice-rice system[J]. J. Agron.Crop Sci.,1998,181: 173-178.
    [149]Atlas R.M. Microbial degradation of petroleum hydrocarbons:an environmental perspective[J]. Microbiological Reviews,1981,45:180-209.
    [150]Hoag, G. E. and Marley, M. C. Gasoline residual saturation in unsaturated uniform aquifer materials[J]. J. Environ. Eng,1986,112(3):586-604.
    [151]Oostrom M., Hofstee C., Lenhard R.J,et al. Flow behavior and residual saturation formation of liquid carbon tetrachloride in unsaturated heterogeneous aquifer media[J]. Journal of Contaminant Hydrology,2003,64:93-112.
    [152]Lenhard, R. J. and Parker, J.C. Measurement and prediction of saturationpressure Relationships in three phase aquifer media systems[J]. J. Contain. Hydrol.,1987:407-424.
    [153]Leverett, M. C. Capillary behavior in porous soils[J]. Trans. AIME. Petrol. Div,1941,142: 152-169.
    [154]Corey, A. T., Rathjens, C. H., Henderson, J. H., et al. Three-phase relative permeability[J]. Technical Note 375, Trans. AIME Petr. Eng. Div,1956,207:349-351.
    [155]Ng K.M., Davis H.T., Scriven L.E.. Visualization of blob mechanics in flow through aquifer media[J]. Chem. Eng. Sci,1978,33:1009-1017.
    [156]Morrow N.R., Songkran B.. Effects of viscous and buoyancy forces on non-wetting phase trapping in aquifer media[M]. in:D.O. Shah_Ed.., Surface Phenomena in Enhanced Oil Recovery, Plenum, New York,1981.
    [157]Chu W., Chan K. The mechanism of the surfactant aided washing for hydrophobic soil and partial hydrophobic organics[J]. Sci. Tot. Environ,2003,307:83-92.
    [158]Wang S., Mulligan C.N.. An evaluation of foam surfactant technology in remediation of contaminated soil[J]. Chemosphere,2004,57:1079-1089.
    [159]Dal-Heui Lee, Ho-Wan Chang, Chul Kim. Mixing effect of NaCl and surfactant on the remediation of TCB contaminated soil[J]. Geosciences Journal,2008,12(1):63-68.
    [160]Chang M.C, Huang C.R, Shu H.Y. Effects of surfactants on extraction of phenanthrene in spiked sand[J]. Chemosphere,2000,41:1295-1300.
    [161]罗玉祥,王海鹏,刘超卓,等.原油界面张力系数与温度关系的实验研究[J].科学技术与工程,2009,9(13):3758-3761.
    [162]Sleep B.E. and Ma Y. Thermal variation of organic fluid properties and impact on thermal remediation feasibility[J]. J. Soil Contam,1997,6(3):281-306.
    [163]McCaffery, F.G. Measurement of interfacial tensions and contact angles at high temperature and pressure[J]. J. Can. Pet.,1972, July-September:26-32.
    [164]Kim I.S., Park J.S., Kim K.W. Enhanced biodegradation of polycyclic aromatic hydrocarbons using non-ionic surfactants in soil slurry[J]. Appl. Geochem,2001,16: 1419-1429.
    [165]赵国玺.表而活性剂物理化学[M].北京:北京大学出版社,1984.
    [166]Aon M A, Colaneri A C.II.Temporal and spatial evolution of enzymatic activities and physic-chemical properties in an agricultural soil[J]. Applied Soil Ecology,2001,18(3): 255-270.
    [167]Holland, P.M., Rubingh, D.N. Nonideal multicomponent mixed micelle model[J]. J. Phys. Chem,1983(87):1984-1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700