用户名: 密码: 验证码:
面积井网油藏流线模拟及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流线模拟具有运算速度快,算法稳定性好、模拟结果可视化程度高等优点,在水驱、气驱及热力采油中获得了广泛应用。而针对聚合物驱油过程中流体粘度变化和吸附作用的影响,以往的流线模拟方法尚不能很好的模拟其生产动态。论文从流线模拟基本原理出发,准确的重现了水驱流线模型,建立了聚合物驱流线模型,并结合特征线法(MOC)分析了驱替过程特征。重点阐述了典型井网水平井流线特征,并研究了典型井网水驱和聚驱生产动态,为开发动态预测和开发方式选择提供重要参考。
     建立了基于压力场的流线更新方法。首先,从物质平衡方程出发,建立了流线模拟基本方程;通过离散压力方程,求解了压力场和速度场,运用Pollock方法追踪流线,确定了流线分布及沿流线传播时间(TOF)网格分布,并将参数从基础网格传递到TOF网格;然后,沿流线使用TVD差分方法求解一维物质输送方程,并将参数从流线网格传回基础网格,重新求解压力场,完成流线更新。
     重现了水驱流线模型,其计算结果与商业软件Eclipse计算结果保持一致。分析了流线数量、流线更新、一维差分方法以及TOF步长合并因子对流线模拟结果的影响。研究表明,不利驱替过程中采用不变流线的假设是可行的;但对有利驱替,需要不断更新流线才能得到准确的计算结果。
     建立了考虑粘度变化和吸附作用的聚合物驱流线模型,并运用特征线方法分析了一维聚合物驱特征,确立了基于流线更新的聚合物驱流线模拟方法,讨论了聚合物浓度、吸附作用以及段塞大小对五点井网聚驱的影响,并对聚驱参数进行了优化。
     采用水驱流线模型和聚驱流线模型模拟了典型VIHP(直井注-水平井采)井网生产动态特征。与VIVP(直井注-直井采)井网相比,VIHP井网在水驱阶段能显著提高井网注入能力和采油速度,在聚驱阶段(水驱进入高含水后开展聚驱),VIHP井网注聚能力提高不明显。在条件允许的情况下,聚驱阶段采用HIHP(水平井注-水平井采)的开发方式效果更好。
     将研究方法应用于大庆北一断东聚驱后井网重构二次开发的聚合物驱开采过程中,计算了主要参数指标,为聚驱开发方案调整提供了指导。
Due to its incomparable advantages of fast computational speed, stablecomputational algorithm and easily visualized simulation results, streamline simulationhas been widely used in oil recovery, such as water flooding, gas flooding as well asthermal flooding. However, nowadays, the streamline simulation for polymer floodingconsidering viscosity variations and adsorption effects has not been well investigated yet.In this paper, we first established the streamline simulation models for both waterflooding and polymer flooding. Then combined with the method of characteristics (MOC),the displacement characteristics of the two flooding methods are analyzed in detail. Inaddition, horizontal well streamline models are also presented and then the performanceof water flooding and polymer flooding in different well patterns are investigated,whichcan be used as a guide for production prediction and flooding type deciding.
     Streamline updating method is proposed by recalculating pressure filed. The methodcan be accomplished by the following procedures: firstly, the basic equations should bebuilt from material balance equation; secondly, by discretizing pressure equation withfinite difference method, pressure and velocity can be obtained. Then streamlines can betracked using Pollock’s method and the time of flight (TOF) grids is subsequentlydetermined. Meanwhile, parameters are also mapped from the underlying grids to theTOF grids. Thirdly, the one-dimensional (1D) transport equations are solved with TVDscheme and then parameters on the streamlines are mapped back to the underlying grids.Finally, pressure for further streamline tracking can be recalculated. It is recommendedthat the HIHP (horizontal injectors-horizontal producers) should be used for injectivityimprovement in polymer flooding.
     The streamline simulation model of water flooding is well reproduced, and thesimulation results are validated through the software Eclipse. Furthermore, the influenceof number of streamlines, streamline updating,1D solver and merge factor of TOF gridson streamline simulation is investigated. It is indicated that the assumption of fixedstreamlines is just reasonable for an unfavorable displacement process; however, for a favorable displacement the streamlines should be periodically updated for more accuratesimulation results.
     By taking into account viscosity variations and adsorption phenomenon, streamlinesimulation model of polymer flooding is proposed. The method of characteristics isemployed to analyze the characteristics of one-dimensional polymer flooding. It issuggested that the streamlines should be updated in polymer flooding. The influence ofpolymer concentration, adsorption effect and slug size on polymer flooding in a Five-Spotwell pattern is investigated and optimal parameters are suggested.
     The proposed streamline simulation method of water flooding and polymer floodingare extended to study the performance of VIHP (vertical injectors-horizontal producers)well pattern. Compared with the VIVP (vertical injectors-vertical producers) well pattern,the injectivity capacity can be remarkably improved in water flooding; but in contrast,this improvement is not obvious in the further polymer flooding after the water flooding.
     Finally, a field example is performed to apply the streamline simulation methodsdeveloped in this paper. The eastern district of Beiyi fault block in Daqing oil field is inthe second stage polymer flooding after the first stage polymer flooding. Suggestions forwell pattern adjustments are recommended based on calculating and evaluating of themajor parameters of polymer flooding.
引文
Al-Najem A A, Siddiqui S, Soliman M. Streamline simulation technology evolutionand recent trends.2012. SPE160894:1-22.
    AlSofi A M, Blunt M J. Streamline-Based Simulation of Non-Newtonian PolymerFlooding.2007, SPE132774:1-11.
    Bhambri P. A three-dimensional four phase compositional streamline simulator withparallel implementation:[Doctor Thesis]. U.S.A.: University of Houston,2007.
    Barrett R, Berry M, Chan T F, et al. Templates for the solution of linear systemsbuilding blocks for iterative methods. USA: Society for Industrial and AppliedMathematics,1987.
    Batycky R P. A three-dimensional two-phase field scale streamline simulator:[Doctor Thesis]. U.S.A.: Stanford University,1997.
    Bratvedt F, Gimse T, Tegnander C. Streamline computations for porous media flowincluding gravity. Transport in Porous Media,1996,25(1):63-78.
    Bommer P M, Schechter. Mathematical modeling of in-situ uranium leaching. SPEJournal,1979,19(6):393-400.
    Buckley S E, Leverett M C. Mechanism of fluid displacement in sands. Petrol.Trans. AIME,1942,146(1):107-116.
    Charles D D,Startzman R A. Horizontal well stream function model for improvedwaterflood performance and evaluation. Journal of Petroleum Science and Engineering,1996,16:131-149.
    Cheng H, Osako I, Datta-Gupta A, et al. A rigorous compressible streamlineformulation for two-and three-phase black-oil simulation. SPE Journal,2006,11(4):407-417.
    Datta-Gupta A, King M J. Streamline simulation: Theory and Practice. U.S.A.:Society of Petroleum Engineers,2007.
    Di Donato G, HuangW, Blunt M J. Streamline-based dual porosity simulation offractured reservoirs.2003, SPE84036:1-11.
    Douglas J, Peaceman D W, Rachford H H. A method for calculatingmulti-dimensional immiscible displacement. Trans. AIME,1959,216:297-308.
    Doyle R E, Wurl T M. Stream channel concept applied to waterflood performancecalculations for multiwell, multizone, three-component cases. Journal of PetroleumTechnology,1971,23(3):373-382.
    Furati K M. History effects on oil recovery efficiency. Journal of Petroleum Scienceand Engineering,1998,19:295-308.
    Green Don W, Willhite G P. Enhanced oil recovery. U.S.A.: SPE textbook series,Volume6,1998.
    H gland H, Dahle H K, Eigestad G T, et al. Improved streamline and time-of-flightfor streamline simulation on irregular grids. Advances in Water Resources,2007,30(4):1027-1045.
    He Z. Integration of dynamic data into reservoir description using streamlineapproaches:[Doctor Thesis]. U.S.A.: Stanford University,2003.
    Huthali A. Streamline simulation of water injection in naturally fractured reservoirs:[Master Thesis]. U.S.A.: Texas A&M University,2003.
    Harun A. Use of streamline simulations for integrated reservoir modeling:[DoctorThesis]. U.S.A.: The University of Tulsa,2005.
    Higgins R V, Leighton A J. A computer method of calculating two-phase flow in anyirregularly bounded porous media. J. Pet. Tech.,1962:679-683.
    Higgins R V, Leighton A J. Computer predictions of water drive of oil and gasmixtures through irregularly bounded media: Three Phase Flow. Journal of PetroleumTechnology,1962a,14(9):1048-1054.
    Higgins R V, Leighton A J. Aids to Forecasting the Performance of Water Floods.Journal of Petroleum Technology,1964,16(9):1076-1082.
    Hou J, Zhang S K, Du Qing J. A streamline-based predictive model forenhanced-oil-recovery potentiality. Journal of Hydrodynmics,2008,20(3):314-322.
    Jiang Y L. Techniques for modeling complex reservoirs and advanced wells:[DoctorThesis]. U.S.A.: Stanford University,2007.
    Jimenez E A, Datta-Gupta A, King M J. Full-field streamline tracing in complexfaulted systems with non-neighbor connections. SPE Journal,2010,15(1):7-17.
    Johnson E F, Bossler D P, Naumann V O. Calculation of relative permeability fromdisplacement experiment. Trans. AIME,1959,216:370-372.
    King M J, Blunt M J, Mansfield M M, et al. Rapid evaluation of the impact ofheterogeneity on miscible gas injection.1993, SPE26079:1-10.
    Kulkarni K N, Datta-Gupta A. Estimating absolute and relative permeability usingdynamic data: a streamline approach. SPE Journal,2000,5(4):402-411.
    Lake L W, Johnston J R, Stegemeier G L. Simulation and Performance Prediction ofa Large-Scale Surfactant/Polymer Project. SPE Journal,1981,21(6):731-739.
    LeBlanc J L, Caudle B H. A streamline model for secondary recovery. SPE Journal,1971,11(1):7-12.
    Langmuir I. The evaporation, condensation and reflection of molecules and themechanism of adsorption. Physical Review,1916,8(2):149-176.
    Lin J. An image well method for bounding arbitrary reservoir shapes in thestreamline model:[Doctor Thesis]. U.S.A.: U. of Texas, Austin,1972.
    Lolomari T, Bratvedt K, Crane M, et al. The use of streamline simulation in reservoirmanagement: methodology and case studies.2000, SPE63157:1-13.
    Mallison B T. Streamline-based simulation of two-phase, multi-component flow inporous media:[Doctor Thesis]. U.S.A.: Stanford University,2004.
    Martin J C, Woo P T, Wegner R E. Failure of stream tube methods to predictwaterflood performance of an isolated five-spot at favorable mobility ratios. Journal ofPetroleum Technology,1973,25(2):151-153.
    Martin J C, Wegner R E. Numerical solution of multiphase, two-dimensionalincompressible flow using stream-tube relationships. SPE Journal,1979,19(5):313-323.
    Masukawa J, Horne R N. Application of the boundary integral method to immiscibledisplacement problems. SPE Reservoir Engineering,1988,3(3):1069-1077.
    Moreno J, Kazemi H, Gilman J. Streamline simulation of countercurrent water-oiland gas-oil flow in naturally fractured dual-porosity reservoirs.2004, SPE89880:1-14.
    Muskat, M, Wyckoff R. Theoretical analysis of waterfooding networks. Trans. AIME,1934,107:62-77.
    Numbere D T, Tiab D. An improved streamline-generating technique that used theboundary (integral) element method. SPE Reservoir Engineering,1988,3(3):1061-1068.
    Obi E O I, Blunt M J. Streamline-based simulation of carbon dioxide storage in aNorth Sea aquifer, Water Resour. Res.,2006,42(3):1-13.
    Orr Jr F M. Theory of gas injection processes. Copenhagen, Denmark: Tie-LinePublications,2007.
    Osako I.Timestep selection during streamline simulation via transverse fluxcorrection:[Master Thesis]. U.S.A.: Texas A&M University,2003.
    Osako, I. A rigorous compressible streamline formulation for black oil andcompositional simulation:[Master Thesis]. U.S.A.: Texas A&M University,2006.
    Ouyang L B. Single phase and multiphase fluid flow in horizontal wells:[DoctorThesis]. U.S.A.: Stanford University,1998.
    Parsons R W. Directional permeability effects in developed and unconfinedfive-spots. Journal of Petroleum Technology,1972,24(4):487-494.
    Pasarai U, Arihara N. Application of streamline method to hot water-floodingsimulation for heavy oil recovery.2005, SPE93149:1-8.
    Peaceman D W. Interpretation of Well-Block Pressures in Numerical ReservoirSimulation. SPE Journal,1978,23(3):183-194.
    Peddibhotla S. Rapid simulation of multiphase flow in heterogeneous reservoirsusing three-dimensional streamlines:[Doctor Thesis]. U.S.A.: Texas A&M University,1997.
    Pollock D W. Semianalytical computation of path lines for finite-difference models.Ground Water,1988,26(6):743-750.
    Pope G A. The application of fractional flow theory to enhanced oil recovery. SPEJournal,1980,20(3):191-205.
    Prévost M, Edwards M G, Blunt M J, Streamline tracing on curvilinear structuredand unstructured grids. SPE Journal,2002,7(2):139-148.
    Qi R, Beraldo V, LaForce T, et al. Design of carbon dioxide storage in a North Seaaquifer using streamline-based Simulation.2007, SPE109905:1-7.
    Renard G. A2D reservoir streamtube EOR model with periodical automaticregeneration of streamlines. In Situ,1990,14(2):175-200.
    Rodriguez P G, Segura M K, Moreno F J M. Streamline methodology using anefficient operator splitting for accurate modeling of capillarity and gravity effects.2003,SPE79693:1-14.
    Thiele M R. Modeling multiphase flow in heterogeneous media using streamtubes:[Doctor Thesis]. U.S.A.: Stanford University,1994.
    Thiele, M R. Streamline simulation. International Forum on Reservoir Simulation(6th), Schloss Fuschl, Austria,2001:1-24.
    Thiele M R, Batycky R P. Water injection optimization using a streamline-basedworkflow.2003, SPE84080:1-6.
    Thiele M R, Batycky R P, Iding M, et al. Extension of streamline–based dualporosity flow simulation to realistic geology. European Conference on the Mathematics ofOil Recovery (9th) Cannes, France,2004,1-15.
    Thiele M R. Streamline simulation. International Forum on Reservoir Simulation(8th), Stresa/Lago Maggiore, Italy,2005:1-47.
    Thiele M R, Batycky R P. Using streamline-derived injection efficiencies forimproved waterflood management. SPE Res Eval&Eng,2006,9(2):187-196.
    Thiele M B, Batychy R P, Pollitzer S, et al. Polymer-flood modeling usingstreamlines. SPE Reservoir Evaluation&Engineering,2010,13(2):313-322.
    Vaughn G E, Wade W J. When radioactive water tracers reach well-what tracerconcentrations to use. Oil and Gas Journal.1959,57:189.
    Wang B, Lake L W, Pope G A. Development and application of a streamlinemicellar/polymer simulator.1981, SPE10290:1-19.
    Wang Y D. Wang Yuandong-Streamline approach for intergrating production historywith geologic information in reservoir models:[Doctor Thesis]. U.S.A.: StanfordUniversity,2007.
    Welge H J. A simplified method for computing oil recovery by gas or water drive.Tram, AIME,1952,195:91-98.
    Yann Brenier, Jerome Jaffre. Upstream differencing for multiphase flow in reservoirsimulation. SIAM Journal on numerical analysis,1991,28(3):685-696.
    Zhu Z, Gerristen M G, Thiele M. Thermal streamline simulation for hotwaterflooding. SPE Res Eval&Eng,2010,13(3):372-382
    阿齐兹,塞特瑞(袁士义,王家禄译).油藏数值模拟.北京:石油工业出版社,2004.
    蔡燕杰,赵金亮,关悦.孤岛油田中一区聚合物驱油井见效特征及影响因素.石油勘探与开发,2000,27(6):63-64.
    冯德成,刘蔚清,刘同敬,等.应用半解析方法进行试油资料解释研究.油气地质与采收率,2005,12(2):60-62.
    冯其红,袁士义,韩冬.可动凝胶深部调驱流线模拟方法研究.应用基础与工程科学学报,2005,13(2):146-153.
    冯其红,张戈,陶云,等.可动凝胶调驱快速模拟方法研究.中国石油大学学报,2006,30(6):63-66.
    韩大匡,陈钦雷,闫存章.油藏数值模拟基础.北京:石油工业出版社,1993.
    韩大匡,杨普华.发展三次采油为主的提高采收率新技术.油气采收率技术,1994,1(1):12-18.
    何英.低渗透油藏井网部署的油藏工程方法研究:[博士论文].北京:中国科学院渗流流体力学所,2008.
    何应付,尹洪军,刘莉,等.复杂边界非均质渗流场流线分布研究.计算力学学报,2007,24(5):708-712.
    侯健,王玉斗,陈月明.聚合物驱数学模型的流线方法求解.水动力学研究与进展,2002,17(3):343-352.
    侯健,李振泉,王玉斗,等.考虑扩散和吸附作用的聚合物驱替过程渗流数值模拟.计算物理,2003,20(3):239-244.
    侯健,孙焕泉,李振泉,等.微生物驱油数学模型及其流线方法模拟.石油学报,2003a,24(3):56-60.
    侯健.一种基于流线方法的CO2混相驱数学模型.应用数学和力学,2004,25(06):635-642.
    侯健.用流线方法模拟碱_表面活性剂_聚合物三元复合驱.石油大学学报,2004a,1(28):58-62.
    惠瑟姆(庄峰青,岳曾元译).线性与非线性波.北京:科学出版社,1986.
    计秉玉,李莉,王春艳.低渗透油藏非达西渗流面积井网产油量计算方法.石油学报,2008,29(2):256-261.
    计秉玉,王春艳,李莉,等.低渗透储层井网与压裂整体设计中的产量计算.石油学报,2009,30(4):578-582.
    李干佐,翟利民,郑立强,等.我国三次采油进展.日用化学品科学,1999,增刊:1-9.
    刘睿,姜汉桥,张贤松,等.海上中低黏度油藏早期注聚合物见效特征研究.石油学报,2010,31(2):280-283.
    孔祥言.高等渗流力学.合肥:中国科学技术大学出版社,1999.
    秦积舜,李爱芬.油层物理.北京:石油大学出版社,2003.
    宋考平,杨二龙,王锦梅,等.聚合物驱提高驱油效率机理及驱油效果分析.石油学报,2004,25(3):71-74.
    吴军来,刘月田,杨海宁.基于3D流线模拟的水驱油藏动态评价新方法.西安石油大学学报,2011,26(2):43-47.
    吴明录,姚军,黎锡瑜,等.应用流线数值试井方法研究聚合物驱油藏剩余油分布.石油钻探技术,2005,37(3):95-98.
    吴明录,姚军.聚合物驱流线数值试井解释模型及其应用.石油钻探技术,2007,35(2):55-58.
    吴明录,姚军.多层油藏流线数值试井解释模型.石油勘探与开发,2007a,34:609-615.
    吴明录,姚军,胡航.碱_聚合物复合驱油藏流线数值试井解释模型及其应用.石油学报,2008,29(6):894-898.
    姚军,吴明录,戴卫华.流线数值试井解释模型.石油学报,2006,27(3):96-99.
    姚军,吴明录,胡航.碱_聚合物复合驱油藏流线数值试井解释模型及其应用.石油学报,2008,29(6):894-902.
    尹洪军,周洪亮,李美方,等.水平井井网渗流场的流线分析.辽宁工程技术大学学报(增刊),2009,28:82-84.
    王锦梅,陈国,历烨等.聚合物驱油过程中形成油墙的动力学机理.大庆石油地质与开发,2007,26(6):64-66.
    王启民,廖广志,牛金刚.聚合物驱油技术的实践与认识.大庆石油地质与开发,1999,18(4):1-5.
    王启民,冀宝发,隋军,等.大庆油田三次采油技术的实践与认识.大庆石油地质与开发,2001,20(2):1-8.
    曾保全,程林松,罗鹏.基于流线模拟的压裂水平井渗流场及产能特征.西南石油大学学报,2000,32(5):109-113.
    张俊法,王友启,汤达祯等.聚合物前缘突破时间预测.油气地质与采收率,2008,15(6):66-70.
    张德志,姚军.聚合物驱两相流试井参数敏感性.计算物理,2006,23(4):425-430.
    张琪.采油工程原理与设计,东营:石油大学出版社,2000.
    张韵华,奚梅成,陈效群.数值计算方法和算法.北京:科学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700