用户名: 密码: 验证码:
稀土掺杂微纳发光材料的生长机制与光谱学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土掺杂发光材料在照明、显示、激光、生物传感及防伪等诸多领域都有着广泛的应用前景。特别是固态照明光源在船只、舰艇及潜艇等载运工具上的应用可以大大减少能源消耗,提高载运工具的续航能力。随着纳米技术的发展,低维纳米结构材料呈现出特殊的光、电、磁和机械性能。因此,低维纳米结构材料在纳米器件和功能材料等诸多领域具有潜在的应用前景。众所周知,这些性质受纳米材料的结构、形貌和尺寸影响很大。纳米结构材料的形貌和尺寸对其物理及化学性质的影响成为了当前热门研究课题。因此,实现这类材料的可控合成具有十分重要的理论和现实意义。本文采用不同的化学方法合成了不同体系的稀土掺杂微纳米荧光材料,并对其形成过程与发光机理进行了详细地研究。主要研究内容如下。
     (1)采用超声化学法合成了3D结构的CaWO4:Tb3+微米球。XRD与SEM结果表明,每个微米球的表面非常粗糙,包含了许多小的纳米粒子。我们对微球生长过程进行了研究,结果发现3D结构的CaWO4:Tb3+微米球是由纺锤粒子组装而成的,而且在组装过程中PEG-600对微球的形成发挥着重要的作用。在紫外光激发下,CaWO4:Tb3+微米球展现出较强的绿光发射,并且观察到了CaWO4:Tb3+微米球中W042-与Tb3+之间及Tb3+的5D3及5D4能级间的能量传递过程。通过发光动力学研究证明了Tb3+的5D3能级间能量传递的机理为电偶极-电偶极相互租用。
     (2)采用微波水热法合成了NaY(WO4)2:Eu3+微米花,样品的XRD及SEM结果证实所得到的产物为纯相NaY(WO4)2:Eu3+。另外,实验发现一定温度的退火处理对产物的形貌基本上不产生影响。我们对NaY(WO4)2:Eu3+微米花的生长过程进行了研究,发现这种微米花是由许多纳米片组装而成的。详细研究了NaY(WO4)2:Eu3+微米花的光谱性质及温度猝灭发光机理,结果证实Crossover过程是Eu3+温度猝灭的主要机理。
     (3)通过一步水热法直接合成了柿饼状NaLa(WO4)2:Eu3+,Tb3+微晶。XRD与SEM结果表明Na3Cit在柿饼状NaLa(WO4)2:Eu3+,Tb3+形成过程中起着重要的作用。在柿饼状NaLa(WO4)2:Eu3+,Tb3+微晶中,观察到Tb3+到Eu3+的能量传递过程,并且随着Eu3+离子浓度的增加,这种能量传递效率随之增加,并且样品的发光颜色也随之能够被有效地调节。
     (4)采用共沉淀法合成了Eu3+及Dy3+掺杂的Y2(MoO4)3微米花。SEM结果表明Y2(MoO4)3微米花是由许多纳米片组装而成的,而且在合成过程中β-环糊精能够有效调节Y2(MoO4)3微米花的尺寸及形貌均匀性。因此,这个实验也建立了一种无机微纳米材料形貌可控的合成方法。最后,对上述两个样品中Dy3+及Eu3+发光性质进行了研究,并发现Dy3+离子间及Eu3+离子间能量传递分别为电偶极-电偶极相互作用及交换相互作用类型。
     (5)采用共沉淀法合成了La2(MoO4)3:Eu3+纳米粒子。XRD与SEM结果证实我们制备的La2(MoO4)3:Eu3+纳米粒子晶体结构为四方相,且平均粒径约为88.5nm。我们研究了La2(MoO4)3:Eu3+;纳米粒子的电-声子耦合性质,发现La2(MoO4)3的最大声子能量约为1900cm-1,而且Eu3+与La2(MoO4)3基质电-声子相互作用为弱耦合体系。通过对Eu3+浓度猝灭的分析,证明Eu3+浓度猝灭机理为自猝灭过程。我们建立了一种粉体样品中稀土离子光学跃迁计算的方法。在这个方法中,我们不仅能够获得稀土离子Eu3+的J-O参数,也能够估计出基质材料的折射率。
     (6)采用溶剂热法合成了YF3:Tb3+,Eu3+微纳米晶。通过控制反应条件,能够得到均匀的三明治结构的YF3:Tb3+,Eu3+亚微米晶。通过对其生长过程的研究,发现EG在三明治结构的YF3:Tb3+,Eu3+亚微米晶的生长过程中起到溶剂与结构导向双重作用。最后,我们详细研究了三明治结构的YF3:Tb3+,Eu3+亚微米晶的发光性质,结果证实YF3:Tb3+,Eu3+亚微米晶Tb3+到Eu3+的能量传递机理为电偶极-电偶极相互作用。
     (7)采用水热法合成了正交相EuF3亚微米球。通过在合成过程中引入离子半径较大的稀土离子,观察到EuF3晶体发生了由正交相到六方相的相变过程。而且在相变的过程中,导致产物形貌组装程度及粒径均随着稀土离子半径的增大或浓度的增加而显著降低。我们认为导致EuF3相变的原因是由于半径较大的稀土离子能够有效降低正交相到六方相相变所需克服的势垒。另外,相变也导致了EuF3荧光发射的增强。因此,这也将提供一种新的纳米晶材料制备及改性的方法。
     (8)以YF3:Er3+,Yb3+亚微米纺锤为前驱体,采用水热法合成了NaYF4:Er3+,Yb3+微米管。通过改变反应时间,我们观察到了NaYF4由立方相到六方相的相变过程。在980nm红外激光激发下六方相NaYF4:Er3+,Yb3+微米管的上转换强度约是其立方相的10倍,并且所有的上转换过程均是双光子过程。
     (9)以Na3Cit为金属离子络合试剂,采用水热法合成了六方相NaEuF4微纳米晶。通过改变反应体系的pH值及Na3Cit/Eu3+的摩尔比,获得了不同形貌的NaEuF4微纳米晶,并对不同反应条件下六方相NaEuF4微纳米晶形成过程也进行了详细的分析。在394nm激发下,观察到了六方相NaEuF4亚微米球随粒径的减小而荧光增强现象。造成这种现象的原因可能是由于Eu3+间或Eu3+到其它猝灭中心的能量传递被阻断。
     (10)通过共沉淀法合成了不同粒径的GdVO4:Dy3+微/纳米粒子。XRD结果表明GdVO4:Dy3+;纳米粒子具有更加扭曲的晶体结构。通过对其浓度猝灭机理的分析,发现Dy3+在纳米粒子中具有较高的掺杂浓度,而且此时Dy3+之间长程相互作用被阻断。除此之外,Dy3+在纳米粒子中具有较长的荧光寿命,导致这种现象的原因可能是由于纳米粒子空间填充率不同所致。
     (11)采用离子液体辅助水热法合成了轮胎状YBO3:Eu3+纳米结构微球。通过改变体系的pH值,实现了YBO3:Eu3+微纳米晶的定向生长及形貌的控制。研究发现[MOIM]Cl离子液体在YBO3:Eu3+纳米结构微球的生长过程中起到溶剂及软模板的作用。通过比较YBO3:Eu3+纳米结构微球与相应体材料中Eu3+的光谱,发现YBO3:Eu3+纳米结构微球中Eu-O电荷迁移带发生移动,而且改变激发波长,YBO3:Eu3+纳米结构微球中Eu3+的5Do→7F2跃迁几率增加。
Rare earth doped luminescent materials have wide potential applications in the fields of lighting, display, laser, biosensor, anti-counterfeiting, etc. Especially, the solid state lighting resource employed in the vehicles of ships, naval vessels and submarines can reduce the consumption of energy and improve the self-supportability of vehicles efficiently. With the development of nanotechnology, low-dimensional nanostructured materials have sparked a worldwide interest due to their unique electronic, optical, and mechanical properties and their potential applications in nanodevices and functional materials. It is well known that these properties can be influenced greatly by the structure, morphology and size of nanomaterials. Therefore, the controlled syntheses of nanomaterials are very important for both fundamental research and practical applications. In this thesis, we synthesized different rare earth ions doped micro-/nano-materials through various chemical methods and studied their growth process and luminescent mechanism. The main contents in this thesis are as follows.
     (1)3D structured CaWO4:Tb3+microspheres were prepared via a sonochemical route. XRD and SEM results displayed that the surface of each microsphere is very rough and contains a lot of small nanoparticles. The formation mechanism of3D structured CaWO4:Tb3+microspheres were studied. It was found that3D structured CaWO4:Tb3+microspheres are assembled by spindles. Moreover, PEG-600plays an important role in the formation of microsphere. Under UV excitation,3D structured CaWO4:Tb3+microspheres exhibit intense green emission. The energy transfer processes from WO42-to Tb3+and between5D3and5D4levels of Tb3+ions were observed in the3D structured CaWO4:Tb3+microspheres. It was also proved that electric dipole-dipole interation is the main mechanism for energy transfer between5D3and5D4levels of Tb3+.
     (2) NaY(WO4)2:Eu3+microflowers were prepared via microwave-assisted hydrothermal process. XRD and SEM results showed that the product is pure NaY(WO4)2:Eu3+. Moreover, the final morphology of product was influenced slightly by calcination process. The growth process of NaY(WO4)2:Eu3+microflowers were studied. It was found that the NaY(WO4)2:Eu3+microflowers are assembled by many nanoflakes. The luminescent properties of NaY(WO4)2:Eu3+microflowers were studied in details. The crossover process is responsible for fluorescent quenching induced by high temperature.
     (3) Persimmon-like NaLa(WO4)2:Eu3+,Tb3+microcrystals were prepared via one-pot hydrothermal process. XRD and SEM results showed that Na3Cit plays an important role in the formation of persimmon-like NaLa(WO4)2:Eu3+,Tb3+microcrystals. The energy transfer from Tb3+to Eu3+can be observed in the persimmon-like NaLa(WO4)2:Eu3+,Tb3+microcrystals. Moreover, with the increase of Eu3+concentration, the energy transfer efficiency increases and the luminescent color can be tuned efficiently.
     (4) Eu3+and Dy3+doped Y2(MoO4)3microflowers were prepared by co-precipitation method. SEM results revealed that Y2(MoO4)3microflowers are assembled by many nanoflakes. Moreover,β-cyclodextrin can control the size and morphology of the products in the synthesis process. Therefore, β-cyclodextrin assisted co-precipitation reaction may be an efficient approach for preparation of inorganic micro-/nano-materials with special morphologies. Finally, it was confirmed that the energy transfer mechanisms in Eu3+and Dy3+single doped molybdate phosphors are exchange and electric dipole-dipole interaction, respectively.
     (5) La2(MoO4)3:Eu3+nanoparticles were prepared via co-precipitation method. XRD and SEM results showed the crystal structure of the resultant La2(MoO4)3:Eu3+nanoparticles is tetragonal phase. Moreover, the average size of La2(MoO4)3:Eu3+nanoparticles is about88.5nm. The electron-phonon coupling properties were studied. It is found that the maximum phonon energy of La2(MoO4)3:Eu3+nanoparticles is about1900cm-1. It was also confirmed that the mechanism of concentration quenching for Eu3+is a self-quenching process. Additionally, a new route for J-O parameters calculation was developed, in which the refractive index of host might be estimated.
     (6) YF3:Tb3+,Eu3+micro-/nano-crystals were prepared through a solvothermal process, and the uniform sandwich-structural rhombus-like YF3:Tb3+,Eu3+particles could be obtained by well controling the reaction parameters. The growth mechanism of sandwich-structural rhombus-like YF3:Tb3+,Eu3+particles were studied. It was found that EG plays double functions in the formation of sandwich-structural rhombus-like YF3:Tb3+,Eu3+particles. Finally, the luminescent properties of sandwich-structural rhombus-like YF3+:Tb3+,Eu3+were studied. The energy transfer from Tb3+to Eu3+in the sandwich-structural rhombus-like YF3:Tb3+,Eu3+particles was conformed to be electric dipole-dipole interaction.
     (7) Orthorhombic EuF.3submicrospheres were prepared via a hydrothermal process. The phase transition of EuF3phosphor from orthorhombic phase to hexagonal one was observed when rare earth ions with larger ionic radius were introduced into the reaction system. Moreover, in the phase transition process it was found that the size and assembling degree of the product decreased with the increase of rare earth ions concentration or radius. The rare earth ions-induced phase transition was attributed to the decrease of energy from orthorhombic phase to hexagonal one. Meanwhile, the luminescent enhancement can be observed.
     (8) NaYF4:Er3+,Yb3+microtubes were prepared through a hydrothermal process with YF3:Er3+,Yb3+submicrotubes as precursor. The phase transition process of NaYF4from cubic to hexagonal was observed with the increase of reaction time. Under980nm exaction, the uponversion luminescent intensities of hexagonal NaYF4:Er3+,Yb3+microtubes is10times as that of the cubic sample. It was confirmed that both the green and red upconversion emissions are two-photon process.
     (9) Hexagonal NaEuF4micro-/nano-crystals were prepared via a hydrothermal process in the presence of Na3Cit. Different morphologies of hexagonal NaEuF4micro-/nano-crystals were obtained by changing the pH value and Na3Cit/Eu3+molar ratio. The formation mechanism of hexagonal NaEuF4micro-/nano-crystals was studied. Under394nm excitation, it was found that the luminescent intensity of hexagonal NaEuF4micro-/nano-crystals increased with the decrease of size of product, which was attributed to the fact that the energy transfer from Eu3+to quenching center was hindered.
     (10) Bulk and nanosized GdVO4:Dy3+phosphors were prepared via a simple co-precipitation process. The characteristic emissions from4F9/2level of Dy3+in the bulk and nanosized samples were observed. It was found that electric dipole-dipole interaction is hindered in the nanosized samples based on the analysis of the dependence of luminescent intensity on concentration. The decay time of the4F9/2level in the nanosized GdVO4:2mol%Dy3+sample is determined to be longer than that in the0.3mol%Dy3+doped bulk sample. Moreover, the fluorescent lifetime of this level in the nanosized sample is strongly dependent on the index of refraction of the medium surrounding the nanoparticles and a0.68filling factor is obtained. The intrinsic radiative lifetimes and internal quantum efficiencies of the4F9/2level of Dy3+in the nanosized and bulk samples were obtained, which indicated that the internal quantum efficiency of nanosized sample was higher than that of the bulk sample.
     (11) Three dimensional (3D) architectures YBO3phosphors were prepared via an ionic liquid assisted hydrothermal process and characterized by XRD, FE-SEM and photoluminescence (PL). It was found that the pH value and ionic liquid played an important role on the morphology of products. Self-assembly evolution of microblocks and Ostwald ripening process were assigned to the possible formation mechanism for the tyre-like YBO3microspheres based on the analysis of time-dependent experiments. Compared with corresponding bulk, the tyre-like YBO3:5mol%Eu3+microspheres demonstrated a red shift of the charge transfer band (CTB) with a long excitation tail at the long wavelength side of the CTB, and high improved chromaticity in the spectra. Two kinds Eu3+environments in the tyre-like sample, namely, interior and outside Eu3+, were found by exciting the samples at different excitation wavelengths. Finally, fluorescent decays and Judd-Ofelt (J-O) theory were utilized for analysis of local crystal environments around Eu3+ions in the tyre-like and bulk phosphors.
引文
[1]张立德.纳米材料.北京:化学工业出版社,2000.
    [2]Xu Z H, Li C X, Li G G et al. Self-assembled 3D urchin-like NaY(MoO4)2:Eu3+/Tb3+ microarchitectures:hydrothermal synthesis and tunable emission colors. The Journal of Physical Chemistry C,2010,114 (6):2573-2582.
    [3]Schwartzberg A M, Olson T Y, Talley C E et al. Synthesis, characterization and tunable optical properties of hollow gold nanospheres. The Journal of Physical Chemistry B,2006,110 (40): 19935-19944.
    [4]Hu M, Chen J Y, Li Z Y et al. Gold nanostructures:engineering their plasmonic properties for biomedical applications. Chemical Society Reviews,2006,35 (11):1084-1094.
    [5]Gudiksen M S, Lauhon L J, Wang J F et al. Growth of nanowire superlattice structure for nanoscale photonics and electronics. Nature,2002,415 (6872):617-620.
    [6]Galliot, G, Larre, C, Caminade A M et al. Regioselective stepwise growth of dendrimer units in the internal voids of a main dendrimer. Science,1997,277 (5334):1981-1984.
    [7]林梦海,林银钟.结构化学.厦门:科学出版社,2004.
    [8]臧竞存.新型晶体材料.北京:化学工业出版社,2007.
    [9]Tian N, Zhou Z Y, Sun S G et al. Platinum metal catalysis of high index surfaces:from single-crystal planes to electrochemically shape-controlled nanoparticels. The Journal of Physical Chemistry C,2008,112(50):19801-19817.
    [10]Proussevitch A A, Sahagian D L. Recognition and separation of discrete objects within complex 3D voxelized structures. Computers & Geosciences,2001,27 (4):441-454.
    [11]林金阳,王灵婕,张永爱等.热蒸发法原位生长—维氧化锌纳米材料及其场发射特性研究.人工晶体学报,2011,6(4):1500-1503.
    [12]Wang C X. Synthesis of Al4C3 nanowalls via thermal evaporation and potential application in vacuum microelectronic devices as cold electron emitters. CrystEngComm,2012,14 (23): 7951-7957.
    [13]Zhang G L, Liang Y J, Shi H L et al. Synthesis of hollow nanosphere Sb2Te3 via a thermal evaporation process. Apllied Surface Science,2012,258 (24):10068-10071
    [14]王超,贺跃辉,彭超群等.一维金属纳米材料研究进展.中国有色金属学报,2012,22(1):128-138.
    [15]Wagner R S, Ellis W C. Vapor liquid solid mechanism of single crystal growth. Applied Physics Letters,1964,4(5):89-90.
    [16]Givargizov E I. Fundamental aspects of VLS growth. Journal of Crystal Growth,1975,31: 20-30.
    [17]Vaddiraju S, Chandrasekaran H, Sunkara M K. Vapor phase synthesis of tungsten nanowires. Journal of the American Chemical Society,2003,125(36):10792-10793.
    [18]Thirumalaial, R V K G B, Davydov A V, Davydov A V et al. SiC nanowire vapor-liquid-solid growth using vapor-phase catalyst delivery. Journal of Materials Research,2012,70(1):1-7.
    [19]Pomerantseva, E A, Goodilin E A, Tretyakov Y D. Unconventional vapor-liquid-solid mechanism of ultra-long Ba6Mn24O48 whiskers growth from chloride fluxes. CrystEngComm, 2012,14 (10):3778-3786.
    [20]Tomie T, Inoue S, Matsumura Y. In situ mass spectroscopic analysis for chemical vapor deposition synthesis of single-walled carbon nanotubes. Chemical Physics Letters,2012,533 (1): 56-59.
    [21]Ecouteau E, Heanadi K, Seo J W et al. CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chemical Physics Letters, 2003,378 (1-2):9-17
    [22]Cassell A M, Raymakers J A, Kong J et al. Large scale CVD synthesis of single-walled carbon nanotubes. The Journal of Physical Chemistry B,1999,103 (31):6484-6492.
    [23]Prabakar S, Bumby C W, Tilley R D. Liquid-phase synthesis of flower-like and flake-like titanium disulfide nanostructures. Chemistry of Materials,2009,21 (8):1725-1730.
    [24]Kwak W C, Kim T G, Lee Wonjoo et al. Template-free liquid-phase synthesis of high-Density CdS nanowire arrays on conductive glass. The Journal of Physical Chemistry C,2009,113 (4): 1615-1619.
    [25]Semagina N, Minsker L K. Recent Advances in the liquid-phase synthesis of metal nanostructures with controlled shape and size for catalysis. Catalysis Reviews:Science and Engineering,2009,51 (2):147-217.
    [26]Mantzaris N V. Liquid-phase synthesis of nanoparticles:Particle size distribution dynamics and control. Chemical Engineering Science,2005,60 (17):4749-4770.
    [27]Riwotzki K, H. Meyssamy H, Kornowski A et al. Liquid-phase synthesis of doped Nanoparticles:Colloids of luminescing LaPO4:Eu and CePO4:Tb particles with a narrow particle size distribution. The Journal of Physical Chemistry B,2000,104 (13):2824-2828.
    [28]Riwotzki K, Meyssamy H, Schnablegger H et al. Liquid-phase synthesis of colloids and redispersible powders of strongly luminescent LaPO4:Ce,Tb nanocrystals. Angewandte Chemie International Edition,2001,40 (3):573-576.
    [29]Brust M, Walker M, Bethell D et al. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Journal of the Chemical Society, Chemical Communications,1994, 125(7):801-802.
    [30]Yu M X, Li F Y, Chen Z G et al. Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. Analytical Chemistry,2009,81 (3):930-035.
    [31]Kumar R, Nyk M, Ohulchanskyy T Y et al. Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Advanced Functional Materials,2009,19 (6):853-859.
    [32]Zhou J, Sun Y, Du X X et al. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials,2010,31 (12):3287-3295.
    [33]Nyk M, Kumar R, Ohulchanskyy T Y et al. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+and Yb3+ doped fluoride nanophosphors. Nano Letters,2008,8(11):3834-3838.
    [34]Zhang F, Wong S S. Ambient large-scale template-mediated synthesis of high-aspect ratio single-crystalline, chemically doped rare-earth phosphate nanowires for bioimaging. ACS Nano, 2010,4 (1):99-112.
    [35]Konishi T, Shimizu M, Kameyama Y J et al. Fabrication of upconversion emissive LaOCl phosphors doped with rare-earth ions for bioimaging probes. Journal of Materials Science: Materials in Electronics,200,18 (1):183-186.
    [36]Choi J S, Cheon J W, Jun Y W et al. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angewandte Chemie International Edition, 2006,45 (21):3414-3439.
    [37]黄俊华,郝保红.晶体生长机理的研究综述.北京石油化工学院学报,2006,14(2):58-64.
    [38]Cho S N, Lee S M, Cheon J W et al. Anisotropic shape control of colloid inorganic nanocrystals. Advanced Materials,2003,15 (5):441-444.
    [39]Nathanael A J, Hong S I, Mangalaraj D et al. Template-free growth of novel hydroxyapatite nanorings:Formation mechanism and their enhanced functional properties. Crystal Growth & Design,2012,12 (7):3565-3574.
    [40]Liu B, Zeng H C. Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors. Small,2005,1 (5):566-571.
    [41]Yang H G, Zeng H C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. The Journal of Physical Chemistry B,2004,108 (11):3492-3495.
    [42]Brailsford A D, Wynblatt P. The dependence of Ostwald ripening kinetics on particle volume fraction. Acta Metallurgical,1979,27 (3):489-497.
    [43]Johnson N J J, Korinek A, Dong C H et al. Self-focusing by Ostwald ripening:a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. Journal of the American Chemistry Society,2012,134(27):11068-11071.
    [44]Zhang Q, Liu S J, Yu S H. Recent advances in oriented attachment growth and synthesis of functional materials:concept, evidence, mechanism, and future. Journal of Materials Chemistry, 2009,19(2):191-207.
    [45]Xu M W, Wang F, Ding B J et al. Electrochemical synthesis of leaf-like CuO mesocrystals and their lithium storage properties. RSC Advances,2012,2 (6):2240-2243.
    [46]Kim S M, Sun Y M. Enhanced formation of PbSe nanorods via combined solution-liquid-solid growth and oriented attachment. CrystEngComm,2012,14 (6):1948-1953.
    [47]Li D S, Nielsen M H, Lee J R I et al. Direction-specific interactions control crystal growth by oriented attachment. Science,2012,336 (6084):1014-1018.
    [48]Zhang Q, Chen X Y, Zhou Y X et al. Synthesis of ZnWO4@MWO4 (M= Mn, Fe) Core-Shell Nanorods with Optical and Antiferromagnetic Property by Oriented Attachment Mechanism. The Journal of Physical Chemistry C,2007,111 (10):3927-3933.
    [49]Wang F, Hang Y, Lim C S et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature,2010,463 (8777):1061-1065.
    [50]Wang X, Zhuang J, Peng Q et al. A general strategy for nanocrystal synthesis. Nature,2005, 437(3968):121-124.
    [51]Penn R Lee, Banfield J F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions:insights from titania. Geochim Cosmochim Acta,1999, 63(10):1549-1557.
    [52]Tang Z Y, Kotov N A, Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science,2002,279 (5579):237-240.
    [53]Pacholski C, Kornowski A, Weller H et al. Self-assembly of ZnO:from nanodots to nanorods. Angewandte Chemie International Edition,2002,41 (7):1188-1191.
    [54]Yu J H, Joo J, Park H M et al. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. Journal of the American Chemical Society,2005,127 (15):5662-5670.
    [55]Cho K S, Talapin D V, Gaschler W et al. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. Journal of the American Chemistry Society,2005,127 (19): 7140-7147.
    [56]Cushing B L, Kolesnichenko V L, O'Connor C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews,2004,104 (9):3893-3946.
    [57]Wang L Y, Li Y D. Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. Nano Letters,2006,6 (8):1645-1649.
    [58]Xu X X, Wang X, Nisar A et al. Combinatorial hierarchically ordered 2D architectures self-assembled from nanocrystal building blocks. Advanced Materials,2008,20 (19):3702-3708.
    [59]Wang G F, Peng Q, Li Y D. Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. Journal of the American Chemical Society,2009,131 (40):14200-14201.
    [60]Yan R X, Sun X M, Wang X et al. Crystal structures, anisotropic growth, and optical properties:Controlled synthesis of lanthanide orthophosphate one-dimensional nanomaterials. Chemical A European Journal,2005,11 (7):2183-2195.
    [61]Chen D Q, Yu Y L, Huang F et al. Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping. Journal of the American Chemical Society,2010,132 (29):9976-9978.
    [62]Chen D Q, Yu Y L, Huang F et al. Phase transition from hexagonal LnF3 (Ln= La, Ce, Pr) to cubic Ln0.8M0.2F2.8 (M= Ca, Sr, Ba) nanocrystals with enhanced upconversion induced by alkaline-earth doping. Chemical Communications,2011,47 (9):2601-2603.
    [63]Chen D Q, Huang P, Yu Y L et al. Dopant-induced phase transition:a new strategy of synthesizing hexagonal upconversion NaYF4 at low temperature. Chemical Communications, 2011,47(20):5801-5803.
    [64]Zeng S J, Guo Z R, Xu C F et al. Modifying crystal phase, shape, size, optical and magnetic properties of monodispersed multifunctional NaYbF4 nanocrystals through lanthanide doping. CrystEngComm,2011,13 (12):4276-4281.
    [65]吴庆银,柳云骐,唐瑜.现代无机合成与制备化学.北京:化学工业出版社,2010.
    [66]Richards W T, Loomis A L. The chemical effects of high frequency sound waves I A. Preliminary survey. Journal of the American Chemical Society,1927,49 (12):3086-3100
    [67]杨强,黄剑锋.超声化学法在纳米材料制备中的应用及其研究进展.化工进展,2010,29(6):1091-1095.
    [68]李廷盛,尹其光.超声化学.北京:科学出版社,1995.
    [69]Dietmar R Ultrasound in materials chemistry. Journal of Materials Chemistry,1996,6(10): 1605-1618.
    [70]Suslick K S. Choe S B, Cichowlas A et al. Sonochemical synthesis of amorphous iron. Nature, 1991,353:414-416.
    [71]Kumar R V, Diamant Y, Gedanken A. Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chemistry of Materials,2000,12 (8): 2301-2305.
    [72]Zhu J J, Xu S, Wang H et al. Sonochemical synthesis of CdSe hollow spherical assemblies via an in-situ template route, Advanced Materials,2003,15 (2):156-159.
    [73]Yin L X, Wang Y Q, Pang G S et al. Sonochemical synthesis of cerium oxide nanoparticles-effect of additives and quantum size effect. Journal of Colloid Interface Science, 2002,246(1):78-84.
    [74]Zhu Y C, Li H L, Koltypin Y et al. Sonochemical synthesis of titania whiskers and nanotubes. Chemical Communications,2001,2001 (24):2616-2617.
    [75]Bang J H, Suslick K S. Sonochemical synthesis of nanosized hollow hematite. Journal of the American Chemical Society,2007,129 (8):2242-2243.
    [76]Zhu L, Liu X M, Meng J et al. Facile sonochemical synthesis of single-crystalline europium fluorine with novel nanostructure. Crystal Growth & Design,2007,7 (12):2505-2511.
    [77]Zhu L, Li Q, Liu X D, Morphological control and luminescent properties of CeF3 nanocrystals. The Journal of Physical Chemistry C,2007,111 (16):5898-5903.
    [78]Ding Y H, Li C Y, Guo R. Facile fabrication of pomponlike microarchitectures of lanthanum molybdate via an ultrasound route. Ultrasonics Sonochemistry,2010,17(1):46-54.
    [79]石海信.声化学反应机理研究.化学世界,2006,47(10):635-638.
    [80]Dhas N A, Suslick K S. Sonochemical preparation of hollow nanospheres and hollow nanocrystals. Journal of The American Chemical Society,2005,127 (8):2368-2369.
    [81]Hyeon T W, Fang M M, Suslick K S. Nanostructured molybdenum carbide:sonochemical synthesis and catalytic properties. Journal of the American Chemical Society,1996,118 (23): 5492-5493.
    [82]Geng J, Lv Y N, Lu D J et al. Sonochemical synthesis of PbWO4 crystals with dendritic, flowery and star-like structures. Nanotechnology,2006,17 (10):2614.
    [83]Geng J, Lu D J, Zhu J J et al. Antimony(Ⅲ)-doped PbWO4 crystals with enhanced photoluminescence via a shape-controlled sonochemical route. The Journal of Physical Chemistry B,2006,110(28):13777-13785.
    [84]Geng J, Zhu J J, Chen H Y. Sonochemical preparation of luminescent PbWO4 nanocrystals with morphology evolution. Crystal Growth & Design,2006,6(1):321-326.
    [85]Geng J, Zhu J J, Lu D J et al. Hollow PbWO4 nanospindles via a facile sonochemical route. Inorganic Chemistry,2006,45 (20):8403-8407.
    [86]Yu C C, Yu M, Li C X et al. Spindle-like lanthanide orthovanadate nanoparticles:facile synthesis by ultrasonic irradiation, characterization, and luminescent properties. Crystal Growth & Design,2009,9 (2):783-791.
    [87]Mao C J, Geng J, Wu X C et al. Selective synthesis and luminescence properties of self-assembled SrMoO4 superstructures via a facile sonochemical route. The Journal of Physical Chemistry C,2010,114(5):1982-1988.
    [88]Shin Y M, Hohman M M. Experimental characterization of electrospinning:the electrically forced jet and instabilities. Polymer,2001,42 (25):9955-9967.
    [89]Doshi J, Reneker D H L, Electrospinning process and applications of electrospun fibers Journal of Electrostatics,1995,35(2-3):151-160.
    [90]Hou Z Y, Li G G, Lian H Z et al. One-dimensional luminescent materials derived from the electrospinning process:preparation, characteristics and application. Journal of Materials Chemistry,2012,22 (12):5254-5276.
    [91]吴大诚,杜仲良,高绪珊.纳米纤维.北京:化学工业出版社,2003.
    [92]D. Li, Y. Wang, Y. Xia, Electrospinning nanofibers as uniazially aligned arrays and layer-by-layer stacked films. Adv. Mater.,2004,16 (4):361-366
    [93]G. Larsen, R.V.Ortiz, K. Minchow, A. Barrero, I.G. Loscertales, A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets, Journal of The American Chemical Society,2003,125 (5):1154-1155.
    [94]Hou Z Y, Yang P P, Li C X et al. Preparation and luminescence properties of YVO4:Ln and Y(V, P)O4:Ln (Ln= Eu3+,Sm3+, Dy3+) nanofibers and microbelts by sol-gel/electrospinning process. Chemistry of Materials,2008,20 (21):6686-6696.
    [95]Song H W, Yu H Q, Pan G H et al. Electrospinning preparation, structure, and photoluminescence properties of YBO3:Eu3+ nanotubes and nanowires. Chemistry of Materials, 2008,20 (14):4762-4767.
    [96]Mccann J T, Chen J I L, Li D et al. Electrospinning of polycrystalline barium titanate nanofibers with controllable morphology and alignment. Chemical Physics Letters,2006,424 (1-3):162-166.
    [97]Hou Z Y, Chai R T, Zhang M L et al. Fabrication and luminescence properties of one-dimensional CaMoO4:Ln3+(Ln= Eu, Tb, Dy) nanofibers via electrospinning process. Langmuir,2009,25 (20):12340-12348.
    [98]Zhang H, Song H W, Yu H Q et al. Modified photoluminescence properties of rare-earth complex/polymer composite fibers prepared by electrospinning. Applied Physics Letters,2007,90 (10):103103 (3pages).
    [99]Tan S T, Feng X M, Zhao B et al. Preparation and photoluminescence properties of electrospun nanofibers containing PMO-PPV and Eu(ODBM)3phen. Materials Letters,2008,62 (16):2419-2421.
    [100]Wang H G, Yang Q B, Sun L et al. Improved photoluminescence properties of europium complex/polyacrylonitrile composite fibers prepared by electrospinning. Journal of Alloys and Compounds,2009,488 (1):414-419.
    [101]Hoar T P, Schulman J H. Transparent water-in-oil dispersions:the oleopathic hydro-micelle. Nature,1943,152 (1038):102-103.
    [102]Schulman J H, Stoeckenius W, Prince L M. Mechanism of formation and structure of microemulsions by electron microscopy. Journal of Physical Chemistry,1959,63(10):1677-1680.
    [103]Hua R N, Zang C Y, Shao C et al. Synthesis of barium fluoride nanoparticles from microemulsion. Nanotechnology,2003,14 (6):588-591.
    [104]Deorsola F A, Vallauri D. Study of the process parameters in the synthesis of TiO2 nanospheres through reactive microemulsion precipitation. Powder Technology,2009,190 (3):304-309.
    [105]Curri M L, Agostiano A, Manna L et al. Synthesis and characterization of CdS nanoclusters in a quaternary microemulsion:the role of the cosurfactant. The Journal of Physical Chemistry B, 2000,104 (35):8391-8397.
    [106]Xia H S, Wang Q. Synthesis and characterization of conductive polyaniline nanoparticles through ultrasonic assisted inverse microemulsion polymerization. Journal of Nanoparticles Research,2001,3(5-6):399-409.
    [107]Fan W L, Song X Y, Sun S X et al. Microemulsion-mediated hydrothermalsynthesis and characterization of zircon-type LaVO4 nanowires. Journal of Solid State Chemistry,2007,180(1): 284-290.
    [108]Wu M M, Long J B, Huang A H et al. Microemulsion-mediated hydrothermal synthesis and characterization of nanosize rutile and anatase particles. Langmuir,1999,15 (26):8822-8825.
    [109]Yang J, Lin C K, Zhang Z L et al. In(OH)3 and In2O3 nanorod bundles and spheres: microemulsion-mediated hydrothermal synthesis and luminescence properties. Inorganic Chemistry,2006,45 (22):8973-8979.
    [110]Pan H C, Liang F P, Mao C J et al. Highly luminescent Zinc(II)-Bis(8-hydroxyquinoline) complex nanorods:sonochemical synthesis, characterizations, and protein sensing. The Journal of Physical Chemistry B,2007,111 (20):5767-5772.
    [111]Ganguli A K, Ganguly A, Vaidya S. Microemulsion-based synthesis of nanocrystalline materials. Chemical Society Reviews,2010,39 (2):474-485.
    [112]徐如人,庞文琴.无机合成与制备化学.北京:高等教育出版社,2001.
    [113]Zeng J H, Su J, Li Z H et al. Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb3+,Er3+ phosphors of controlled size and morphology. Advanced Materials,2005,17 (17):2119-2123.
    [114]Zeng J H, Li Z H, Su J et al. Synthesis of complex rare earth fluoride nanocrystal phosphors. Nanotechnology,2006,17(14):3549-3555.
    [115]Liang X, Wang X, Zhuang J et al. Branched NaYF4 nanocrystals with luminescent properties. Inorganic Chemistry,2007,46 (15):6050-6055.
    [116]Wang F, Chatterjee D K, Li Z Q et al. Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence. Nanotechnology,2006,17 (23):5786-5791.
    [117]Wang F, Liu X G. Upconversion multicolor fine-tuning:visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. Journal of the American Chemistry Society,2008, 130 (17):5642-5643.
    [118]Li C X, Quan Z W, Yang P P et al. Shape-controllable synthesis and upconversion properties of lutetium fluoride (Doped with Yb3+/Er3+) microcrystals by hydrothennal process. The Journal of Physical Chemistry C,2008,112(35):13395-13404.
    [119]Li C X, Yang J, Yang P P et al. Hydrothennal synthesis of lanthanide fluorides LnF3(Ln= La to Lu) nano-/microcrystals with multiform structures and morphologies. Chemistry of Materials,2008,20 (13):4317-4326.
    [120]Li C X, Yang J, Quan Z W et al. Different microstructures of β-NaYF4 fabricated by hydrothermal process:Effects of pH values and fluoride sources. Chemistry of Materials,2007,19 (20):4933-4942.
    [121]Li C X, Quan Z W, Yang J et al. Highly uniform and monodisperse β-NaYF4:Ln'(Ln= Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals:Hydrothermal synthesis and luminescent properties. Inorganic Chemistry,2007,46 (16):6329-6337.
    [122]Zhang F, Zhao D Y. Synthesis of uniform rare earth fluoride (NaMF4) nanotubes by in situ ion exchange from their hydroxide [M(OH)3] parents. ACS Nano,2009,3(1):159-164.
    [123]Lei F, Yan B. Morphology-controlled synthesis, physical Characterization, and photoluminescence of novel self-Assembled pomponlike white light phosphor:Eu3+ -doped sodium gadolinium tungstate. The Journal of Physical Chemistry C,2009,113 (3):1074-1082.
    [124]Zheng Y H, You H P, Liu K et al. Facile selective synthesis and luminescence behavior of hierarchical NaY(WO4)2:Eu3+ and Y6WO,2:Eu3+. CrystEngComm,2011,13 (8):3001-3007.
    [125]Wu H, Xu H F, Su Q et al. Size- and shape-tailored hydrothermal synthesis of YVO4 crystals in ultra-wide pH range conditions. Journal Materials Chemistry,2003,13 (5):1223-1228.
    [126]Zheng Y H, You H P, Jia Guang et al. Facile hydrothermal synthesis and luminescent properties of large-scale GdVO4:Eu3+ nanowires. Crystal Growth & Design,2009,9(12): 5101-5107.
    [127]Fan W L, Song X Y, Bu Y X et al. Selected-control hydrothermal synthesis and formation mechanism of monazite-and zircon-type LaVO4 nanocrystals. The Journal of Physical Chemistry B,2006,110 (46):23247-23254.
    [128]Yang J, Quan Z W, Kong D Y et al. Y2O3:Eu3+ microspheres:solvothermal synthesis and luminescence properties. Crystal Growth & Design,2007,7 (4):730-735.
    [129]Mao Y B, Huang J Y, Ostroumov R et al. Synthesis and luminescence properties of erbium-doped Y2O3 nanotubes. The Journal of Physical Chemistry C,2008,112 (7):2278-2285.
    [130]Yang J, Li C X, Cheng Z Y et al. Size-tailored synthesis and luminescent properties of one-dimensional Gd2O3:Eu3+ nanorods and microrods. The Journal of Physical Chemistry C,2007, 111(49):18148-18154.
    [131]Nedelec J M, Avignant D, Mahiou R. Soft chemistry routes to YPO4-based phosphors: dependence of textural and optical properties on synthesis pathways. Chemistry of Materials,2002, 14 (2):651-655.
    [132]Li C X, Hou Z Y, Zhang C M et al. Controlled synthesis of Ln3+(Ln= Tb, Eu, Dy) and V5+ ion-doped YPO4 nano-/microstructures with tunable luminescent colors. Chemistry of Materials, 2009,21 (19):4598-4607.
    [133]Fang Y P, Xu A W, Song R Q et al. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires. Journal of the American Chemistry Society, 2003,125(51):1605-16034.
    [134]Jiang X C, Sun L D, Yan C H. Ordered nanosheet-based YBO3:Eu3+ assemblies:Synthesis and tunable luminescent properties. The Journal of Physical Chemistry B,2004,108 (11): 3387-3390.
    [135]Li Y P, Zhang J H, Zhang X et al. Luminescent properties in relation to controllable phase and morphology of LuBO3:Eu3+ nano/microcrystals synthesized by hydrothermal approach. Chemistry of Materials,2009,21 (3):468-475.
    [136]Jia G, You H P, Liu K et al. Highly uniform YBO3 hierarchical architectures:Facile synthesis and tunable luminescence properties. Chemistry A European Journal,2010,16 (9):2930-2937.
    [137]Liu X M, Zhao J W, Sun Y J et al. Ionothermal synthesis of hexagonal-phase NaYF4:Yb3+,Er3+/Tm3+ upconversion nanophosphors. Chemical Communications,2009,2009 (43): 6628-6630.
    [138]Chen C, Sun L D, Li Z X et al. Ionic Liquid-based route to spherical NaYF4 nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence. Langmuir,2010,26(11):8797-8803.
    [139]Zhang Y W, Sun X, Si R, et al. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. Journal of the American Chemistry Society,2005,127 (10):3260-3261.
    [140]Boyer J C, Cuccia L A, Capobianco J A. Synthesis of colloidal upconverting NaYF4:Er3+/Yb3+and Tm3+/Yb3+ monodisperse nanocrystals. Nano Letters,2007,7 (4):847-852.
    [141]Mai H X, Zhang Y W, Sun L D et al. Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals. The Journal of Physical Chemistry B,2007,111 (49):13721-13729.
    [142]Yi G S, Chow G M. Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Advanced Functional Materials,2006,16 (18):2324-2329.
    [143]Zhang F, Wan Y, Shi Y et al. Ordered mesostructured rare-earth fluoride nanowire arrays with upconversion fluorescence. Chemistry of Materials,2008,20 (11):3778-3784.
    [144]Li C X, Lin J. Rare earth fluoride nano-/microcrystals:synthesis, surface modification and application. Journal of Materials Chemistry,2010,20 (33):6831-6847.
    [145]Tao Y, Zhao G W, Zhang W P et a. Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors. Materials Research Bulletin,1997,32 (5):501-506.
    [146]Shea L E, Mckittrick J, Lopez O A et al. Synthesis of red-emitting, small particle size luminescent oxides using an optimized combustion process. Journal of American Ceramic Society, 1996,79 (12):3257-3265.
    [147]Hennek J W, Kim M G, Kanatzidis M G et al. Exploratory combustion synthesis:amorphous indium yttrium oxide for thin-film transistors. Journal of the American Chemistry Society,2012, 134 (23):9593-9596.
    [148]Rabuffetti F, Lee J S, Brutchey R L. Vapor diffusion sol-gel synthesis of fluorescent perovskite oxide nanocrystals. Advanced Materials,2012,24 (11):1434-1438.
    [149]Allen J J, Rosenberg E, Johnston E et al. Sol-gel synthesis and characterization of silica polyamine composites:applications to metal ion capture. ACS Applied Materials & Interfaces, 2012,4(3):1573-1584.
    [150]Aravindan V, Karthikeyan K, Ravi S et al. Adipic acid assisted sol-gel synthesis of Li2MnSiO4 nanoparticles with improved lithium storage properties. Journal of Materials Chemistry,2010,20 (35):7340-7343
    [151]Li G G, Xu X G, Peng C et al. Yellow-emitting NaCaPO4:Mn2+ phosphor for field emission displays. Optics Express,2011,19 (17):16423-16431.
    [152]Geng D L, Li G G, Shang M M et al. Nanocrystalline CaYAIO4:Tb3+/Eu3+ as promising phosphors for full-color field emission displays. Dalton Transactions,2012,41 (10):3078-3086.
    [153]Yang D M, Li G G, Kang X X et al. Room temperature synthesis of hydrophilic Ln3+ -doped KGdF4 (Ln= Ce, Eu, Tb, Dy) nanoparticles with controllable size:energy transfer, size-dependent color-tunable luminescence properties. Nanoscale,2012,4(11):3450-3459.
    [154]Li H, Zhu G Y, Huang X J et al. Synthesis and electrochemical performance of dendrite-like nanosized SnSb alloy prepared by co-precipitation in alcohol solution at low temperature. Journal of Chemistry Materials,2010,10 (3):693-696.
    [155]Caponetti E, Saladino M L, Serra F et al. Synthesis and electrochemical performance of dendrite-like nanosized SnSb alloy prepared by co-precipitation in alcohol solution at low temperature. Journal of Materials Science,2007,42 (12):4418-4427.
    [156]张思远.稀土离子的光谱学—光谱性质和光谱理论.北京:科学出版社,2008.
    [157]徐叙瑢,苏勉曾.发光学与发光材料.北京:化学工业出版社,2004.
    [158]黄世华.激光光谱学原理和方法.长春:吉林大学出版社,2002.
    [159]Blasse G, Grabmaier B C. Luminescent Materials. Berlin:Springer,1994.
    [160]Dexte D L. A theory of sensitized luminescence in solids. Journal of Chemical Physics,1953, 21 (5):836-850.
    [161]Shionoya S, Yen W M. Phosphor Handbook. New York:CRC Press,2000.
    [162]Miyakawa T, Dexter D L. Phonon sidebands, multiphonon relaxation of excited states and phonon assisted energy transfer between ions in solids. Physical Review,1970, B1:2961.
    [163]Holstein T, Lyo S K, Orbach R. Phonon-assisted energy transport in inhomogeneously broadened systems. Physical Review Letters,1976,36 (15):891-894.
    [164]Holstein T, Lyo S K, Orbach R. Laser Spectroscopy of Solids. Berlin:Springer,1981.
    [165]Xia S D, Tanner P A. Theory of one phonon assisted energy transfer between rare-earth ions in crystals. Physical Review B,2002,66 (214305):1-17.
    [166]黄世华.离子中心的发光动力学.北京:科学出版社,2002.
    [167]Inokuti M, Hirayama F. Influence of energy transfer by the exchange Mechanism on donor luminescence. Journal of Chemical Physics,1965,43 (6):1978-1989.
    [168]Jia G H, Tu C Y, Li J F et al. Optical spectroscopy of Yb3+ doped SrWO4 scheelite crystal. Journal of Alloys and Compounds,2007,436 (1-2):341-344.
    [169]Zhang Y, Holzwarth N A W, Williams R T. Electronic band structures of the scheelite materials CaMoO4, CaWO4, PbMo04, and PbW04. Physical Review B,1998,57 (20): 12738-12750.
    [170]Barbosa L B, Ardila D R, Cusatis C et al. Growth and characterization of crack-free scheelite calcium molybdate single crystal fiber. Journal of Crystal Growth,2002,235 (1-4): 327-332.
    [171]Larson A C, Von Dreele R B. General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR,2004.
    [172]Jiang H, Zhao T, Yan C et al. Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances. Nanoscale,2010,2(10):2195-2198.
    [173]Luo C, Zhang Y, Zeng X et al. The role of poly(ethylene glycol) in the formation of silver nanoparticles. Journal of Colloids and Interface Science,2005,288 (2):444-448.
    [174]Yu T T, Sun J S, Hua R N et al., Luminescence of complex ion WO1218- in Dy3+ doped nanocrystal Gd6WO12 phosphor. Journal of Alloys and Compounds,2011,509 (2):391-395.
    [175]Liu X R, Wang X J, Wang Z K. Selectively excited emission and Tb3+→Ce3+ energy transfer in yttrium aluminum garnet. Physical Review B,1989,39 (15):10633-10639.
    [176]Furrer A, Gudel H U, Blank H et al. Direct observation of exchange splittings in Cs3Tb2Br9 by neutron spectroscopy. Physical Review Letters,1989,62 (2):210-213.
    [177]Guedel H U, Furrer A, Blank H. Exchange interactions in rare-earth-metal dimers. Neutron spectroscopy of cesium ytterbium halides, Cs3Yb2Cl9 and Cs3Yb2Br9. Inorganic Chemistry,1990, 29 (20):4081-4084.
    [178]Sendor D, Hilder M, Juestel T et al. One dimensional energy transfer in lanthanoid picolinates. Correlation of structure and spectroscopy. New Journal of Chemistry,2003,27 (7): 1070-1077.
    [179]Cavalli E, Boutinaud P, Cucchietti T. et al. Spectroscopy and excited states dynamics of Tb3+ -doped KLa(MoO4)2 crystals. Optical Materials,2009,31 (3):470-473.
    [180]Colfen H, Antonietti M. Mesocrystals:Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angewandte Chemie International Edition,2005,44 (35): 5576-5591.
    [181]Berdowski P A M, VanKeulen J, Blasse G. The critical concentration for quenching of the Eu3+ luminescence in some Gd3+:Eu3+ systems. Journal of Solid State Chemistry,1986,63 (1): 86-88.
    [182]Van Uitert L. G. Characterization of energy transfer interactions between rare earth ions. Journal of Electrochemistry Society,1967,114(25):1048-1063.
    [183]Judd B R. Optical absorption intensities of rare-earth ions. Physical Review,1962,127 (3): 750-761.
    [184]Ofelt G S. Intensities of crystal spectra of rare-earth ions. Journal of Chemical Physics,1962, 37(3):511 (10 pages).
    [185]Berry M T, May P S, Xu H. Temperature dependence of the Eu3+ 5D0 lifetime in europium rris(2,2,6,6-tetramethyl-3,5-heptanedionato). Journal of Physical Chemistry,1996,100 (22): 9216-9222.
    [186]Chen Z, Bu W, Zhang N et al. Oleic acid/oleylamine cooperative-controlled crystallization mechanism for monodisperse tetragonal bipyramid NaLa(MoO4)2 nanocrystals. The Journal of Physical Chemistry C,2009,113 (28):12176-12185.
    [187]Laudise R A, Ballman A A. Hydrothermal synthesis of zinc oxide and zinc sulfide. Journal of Physical Chemistry,1960,64 (5):,688-691.
    [188]Cao X F, Zhang L, Chen X T et al. Persimmon-like (BiO)2CO3 microstructures: hydrothermal preparation, photocatalytic properties and their conversion into Bi2S3. Cry stEngComm,2011,13(6):1939-1945.
    [189]Rai S, Hazarika S. Fluorescence dynamics of Tb3+and Tb3+/Ho3+ doped phosphate glasses. Optical Materials,2008,30 (9):1343-1348
    [190]Guo N, Zheng Y H, Jia Y C et al. Wann-white-emitting from Eu2+/Mn2+ -codoped Sr3Lu(PO4)3 phosphor with tunable color tone and correlated color temperature. The Journal of Physical Chemistry C,2012,116 (1):1329-1934.
    [191]Geng D L, Li G G, Shang M M et al. Color tuning via energy transfer in Sr3In(PO4)3:Ce3+/Tb3+/Mn2+ phosphors. Journal of Materials Chemistry,2012,22 (28): 14262-14271.
    [192]Yang W Q, Liu H G, Liu G K et al. Trivalent europium-doped strontium molybdate red phosphors in white light-emitting diodes:Synthesis, photophysical properties and theoretical calculations. Acta Materialia,2012,60 (15):'5399-5407.
    [193]Zhao X X, Wang X J, Chen B J et al. Luminescent properties of Eu3+ doped a-Gd2(MoO4)3 phosphor for white light emitting diodes. Optical Materials,2007,29 (12):1680-1684.
    [194]Yan S X, Zhang J H, Zhang X et al. Enhanced red emission in CaMoO4:Bi3+, Eu3+. The Journal of Physical Chemistry C,2007,111 (35):13256-13260.
    [195]黄世华,楼立人.能量传递中敏化剂发光强度与浓度的关系.发光学报,1990,11(1):1-7.
    [196]陈宝玖,王海宇,黄世华.用Eu3+做探针研究硼铅玻璃材料.发光学报,2000,21(6):762-765.
    [197]Maczka M, Hermanowicz K, Tomaszewski P E et al. Vibrational and luminescence studies of MIln(MoO4)2 (MI= K, Rb) and MIAl(Mo04)2 (MI= K, Na) molybdates doped with chromium(III) prepared via the Pechini method. Optical Materials,2008,31 (2):167-175.
    [198]Bih H, Bih L, Manoun B et al. X-ray diffraction and vibrational Raman spectra of the Li2-xNaxCo2(MoO4)3 (0≤x≤1.4) solid solution with a lyonsite structure. Journal of Molecular Structure,2010,965 (1-3):7-13.
    [199]Hanuza J, Fomitsev V V. Polarized IR and Raman spectra of KDy(Mo04)2 single crystals, and the 92MO-100MO isotope effect. Journal of Molecular Structure,1980,66:1-24.
    [200]Gu F, Wang S F, Lv M K et al. Effect of Dy3+ doping and calcination on the luminescence of ZrO2 nanoparticles. Chemical Physics Letters,2003,380 (1-2):185-189.
    [201]Cheng L H, Li X P, Sun J S et al. Investigation of the luminescence properties of Dy3+-doped a-Gd2(Mo04)3 phosphors. Physica B:Condensed Matter,2010,405 (21) 4457-4461.
    [202]Pei Z W, Su Q, Li S H. Investigation on the luminescence properties of Dy3+ and Eu3+ in alkaline-earth borates. Journal of Luminescence,1991,50 (2):123-126.
    [203]Auzel F. A fundamental self-generated quenching center for lanthanide-doped high-purity solids. Journal of Luminescence,2002,100 (1-4):125-130.
    [204]Guo P, Zhao F, Li G et al. Novel phosphors of Eu3+, Tb3+ or Bi3+ activated Gd2GeO5. Journal of Luminescence,2003,105 (1):61-67.
    [205]Yan B, Wu J H. Facile composite synthesis and photoluminescence of NaGd(Mo04)2:Ln3+ (Ln= Eu, Tb) submicrometer phosphors. Journal of Materials Research,2009,24 (1):32-38.
    [206]Lei F, Yan B, Chen H H. Solid-state synthesis, characterization and luminescent properties of Eu3+ -doped gadolinium tungstate and molybdate phosphors:Gd(2-x)MO6:Eux3+ (M=W, Mo). Journal of Solid State Chemistry,2008,181 (10):2845-2851.
    [207]Becker P C, Olsson N A, Simpson J R. Erbium doped amplifiers:fundamentalsand technology. San Diego:Academic Press,1999.
    [208]Yang J, Li C X, Quan Z W et al. Self-assembled 3D flowerlike Lu2O3 and Lu2O3:Ln3+(Ln= Eu, Tb, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures:Ethylene glycol-mediated hydrothermal synthesis and luminescent properties. Journal of Physical Chemistry C,2008,112 (33): 12777-12785.
    [209]Tripathi G, Rai V K, Rai A et al. Energy transfer between Er3+:Sm3+ codoped TeO2-Li2O glass. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy Spectrochimica, 2008,71 (2):486-489.
    [210]Yu X F, Li M, Xie M Y et al. Dopant-controlled synthesis of water-soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging. Nano Research, 2010,3(1):51-60.
    [211]Dong C H, Raudsepp M, van Veggel F C J M. Kinetically determined crystal structures of undoped and La3+ -doped LnF3. The Journal of Physical Chemistry C,2009,113(1):472-478.
    [212]Zinchenko V F, Efryushina N P, Eryomin O G et al. Synthesis, structure and optical properties of EuF3 film-forming material. Journal of Alloys and Compounds,2002,347 (1-2): L1-L3.
    [213]Kramer K.W, Biner D, Frei G et al. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chemistry of Materials,2004,16 (7):1244-1251.
    [214]Vetrone F, Boyer J C, Capobianco J A. Significance of Yb3+concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals. Journal of Applied Physics, 2004,96(1):661(7pages).
    [215]Bai X, Song H W, Pan G H et al. Size-dependent upconversion luminescence in Er3+/Yb3+ -codoped nanocrystalline yttria:saturation and thermal effects. The Journal of Physical Chemistry C,2007,111 (36):13611-13617.
    [216]Lu W L, Cheng L H, Zhong H Y et al. Dependence of upconversion emission intensity on Yb3+concentration in Er3+/Yb3+ co-doped flake shaped Y2(MoO4)3 phosphors. Journal of Physics D:Applied Physics,2010,43 (8):085404 (7pages).
    [217]Zhao J W, Sun Y J, Kong X G et al. Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+,Er3+ nanocrystals/submicroplates at low doping level. The Journal of Physical Chemistry B,2008,112 (49):15666-15672.
    [218]Yang D M, Kang X J, Shang M M et al. Size and shape controllable synthesis and luminescent properties of BaGdF5:Ce3+/Ln3+ (Ln=Sm, Dy, Eu, Tb) nano/submicrocrystals by a facile hydrothermal process. Nanoscale,2012,3 (6):2589-2595.
    [219]Lu S Z, Zhang J H, Zhang J S et al. Remarkable enhanced photoluminescence of hexagonal GdPO4·nH2O:Eu with decreasing size. Nanotechnology,2010,21 (36):365709 (7pages).
    [220]Dai Q L, Song H W, Wang M Y et al. Size and concentration effects on the photoluminescence of La2O2S:Eu3+ nanocrystals. The Journal of Physical Chemistry C,2010,112 (49):19399-19404.
    [221]Wei Z G, Sun L D, Liao C S et al. Size-dependent chromaticity in YBO3:Eu nanocrystals: correlation with microstructure and site symmetry. The Journal of Physical Chemistry B,2002, 106(41):10610-10617.
    [222]Sotiriou G A, Schneider M, Pratsinis S E. Color-tunable nanophosphors by codoping flame-made Y2O3 with Tb and Eu. The Journal of Physical Chemistry C,2011,115 (4):
    1084-1089.
    [223]Zhou J C, Sun L D, Shen J et al. Fluorescent-magnetic nanocrystals:synthesis and property of YPxV1-xO4:Eu@GdPO4 core/shell structure. Nanoscale,2011,3 (5):1977-1983.
    [224]Das G K, Tan T T Y. Rare-earth-doped and codoped Y2O3 nanomaterials as potential bioimaging probes. The Journal of Physical Chemistry C,2008,112 (30):11211-11217.
    [225]李丹,吕少哲,张继森等Eu3+:Y2O3纳米微粒的尺寸效应和表面态效应的研究.发光学报,2000,21(2):134-138.
    [226]Sun L D, Yao J, Liao C S et al. Physics and chemistry of nanostructured materials. New York:Taylor & Francis Inc,1999.
    [227]Meltzer R S, Feofilov S P, Tissue B M et al. Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium. Physical Reviews B,1999,60 (20): R14012-R14015.
    [228]Trewyn B G, Whitman C M, Lin V S Y. Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano Letters,2004,4 (11):2139-2143.
    [229]Li H, Liu R, Zhao R X et al. Morphology control of electrodeposited Cu2O crystals in aqueous solutions using room temperature hydrophilic ionic liquids. Crystal Growth & Design, 2006,6 (12):2795-2798.
    [230]Li C X, Ma P A, Yang P P et al. Fine structural and morphological control of rare earth fluorides REF3 (RE= La-Lu, Y) nano/microcrystals:microwave-assisted ionic liquid synthesis, magnetic and luminescent properties. CrystEngComm,2011,13 (3):1003-1013.
    [231]Duan X C, Liang J B, Ma J M et al. Shape-controlled synthesis of metal carbonate nanostructure via ionic liquid-assisted hydrothermal route:The case of manganese carbonate. Crystal Growth & Design,2010,10 (10):4449-4455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700