用户名: 密码: 验证码:
碳纤维增强可溶性聚芳醚复合材料的制备、界面性能及热应力模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂萘联苯型聚芳醚砜酮树脂(PPESK)是一种新型的可溶型高性能热塑性树脂基体,与目前广泛应用的聚醚醚酮(PEEK)等热塑性树脂相比,PPESK树脂的耐热性能得到较大幅度提高的同时,加工性能也得到了很大程度的改善,适合溶剂预浸的方法制备纤维/聚芳醚砜酮树脂基复合材料。本文对连续碳纤维增强杂萘联苯型聚芳醚砜酮复合材料的制备工艺、纤维表面改性方法及其在空间环境温度下的热应力分布规律进行了研究。
     本文在充分研究杂萘联苯型聚芳醚砜酮树脂的溶解特性的基础上,选择适当的溶剂,利用溶液浸渍缠绕的工艺制备CF/PPESK树脂基复合材料预浸料,采用高温模压成型工艺,制备出CF/PPESK复合材料单向板。根据紧密接触模型和能量传递方程对热压成型过程非稳态温度场进行数值分析,探讨了CF/PPESK复合材料的非稳态温度场、成型加工温度和压力与成型时间的关系。采用粘弹性树脂模型对降温过程中复合材料的热应力进行分析,探讨复合材料成型过程中残余热应力的分布规律及对复合材料粘接性能的影响。对CF/PPESK复合材料热压成型工艺参数进行了优化,总结出CF/PPESK复合材料的最佳成型工艺参数。
     采用空气冷等离子体处理方法对碳纤维表面进行处理,用XPS测试不同等离子体处理时间对碳纤维表面元素组成的影响及其变化规律,采用动态接触角测试分析了不同处理时间下,碳纤维表面浸润性的变化规律,利用AFM测试分析等离子体处理时间对碳纤维表面粗糙度的影响,用ILSS测试方法表征了碳纤维/PPESK复合材料的层间剪切强度,确定了最佳的等离子体处理条件。利用SEM观察碳纤维/PPESK树脂基复合材料的层间剪切破坏形貌,并进一步分析了复合材料界面的粘结机理。研究结果表明,空气等离子体处理可在纤维表面引入-C-N-、-C-O-、-C=O、-COO-等极性基团,使得纤维表面极性基团的含量及表面自由能显著增加;等离子体处理对碳纤维表面具有刻蚀作用,经过等离子体处理的碳纤维表面沟槽增多、粗糙度增大。由于等离子体处理,碳纤维表面极性基团含量、表面粗糙度及浸润性能均得到提高,从而改善了纤维与树脂基体的粘接性能,使得CF/PPESK复合材料的层间剪切强度达到79.5MPa,比未处理的CF/PPESK复合材料提高了13.5%。对CF/PPESK复合材料界面粘接机理的研究表明,纤维与树脂基体之间的化学键合、机械嵌合相互作用均能有效地提高复合材料的界面粘接性能,而机械嵌合作用对提高CF/PPESK复合材料界面粘接性能的贡献大于化学键合相互作用。
     作为航天器结构的复合材料,在航天器长期在轨运行期间,反复地出入于地球的阴影区域,其表面温度在-160℃-120℃变化,由于碳纤维与树脂基体的热膨胀系数存在较大的差异,因而在空间交变温度场的作用下,复合材料内将产生交变热应力。本文采用有限元分析的方法,对空间环境下CF/PPESK复合材料内热应力的分布规律进行了分析,并与CF/环氧、CF/双马来酰亚胺树脂基复合材料的热应力分布规律进行了研究比较。结果表明,复合材料内部的缺陷区域是复合材料最薄弱的环节,在空间温度场的作用下,复合材料的缺陷区域将产生较大的应力集中,而CF/PPESK复合材料内热应力值比CF/环氧、CF/双马来酰亚胺复合材料的热应力值低。缺陷区域的Parabolic屈服准则分析表明,热应力对CF/环氧、CF/双马来酰亚胺复合材料的影响比较显著,在空间温度场的作用下,复合材料缺陷区域的热应力将导致树脂基体发生屈服破坏,而CF/PPESK复合材料受空间温度场影响较小,缺陷区域的热应力值均未能导致树脂基体的屈服,表现出较高的热稳定性能。
Poly (phthalazinone ether sulfone ketone) (PPESK) is a kind of novel thermoplastic with excellent thermal resistance and solubility. Compared with traditional thermoplastic such as PEEK, PES, PEI, the thermal resistance is increased, besides the processing property is also improved significantly. It is suitable for preparing fiber/PPESK composite by using solution impregnation technique. In our experiment, CF/PPESK composite manufacture technique was studied, CF surface modification for improving composite interfacial adhesion was carried out and composite thermal stress distribution in the outer space was analyzed.
     In our experiment, suitable solution for PPESK matrix was chosen by comparing the solubility of PPESK matrix in different solvents, and continuous fiber reinforced PPESK composite was prepared by using solution impregnated and compression modeling technique. Numeral analysis for non-equilibrium temperature field during compress modeling process was carried out by using intimate contacting model and energy transfer equation. The relation between the modeling temperature, pressure and modeling time were studied under non-equilibrium temperature field. A viscous-elastic finite element model was adopted to analysis the thermal stress distribution in CF/PPESK composite, and the influence of composite cooling rate on composite thermal stress distribution was discussed. At last, the processing parameters of CF/PPESK composite were optimized, and the optimal composite processing parameters were concluded.
     Air plasma was employed to modified CF surface, for improving the interfacial adhesion between CF and PPESK matrix. Plasma treated CF surface chemical composition was characterized by X-ray photoeletron spectroscopy (XPS). Fiber wettability was analyzed by dynamic contact angle analysis system. CF surface topography was indicated by atomic force microscopy (AFM). Composite failure mechanism was analyzed by scanning electron microscopy, and composite interfacial adhesion mechanism was also studied. Results indicate that air plasma treatment is capable of introducing -C-O-, -C-N-, -C=O as well as -COO- groups onto CF surface. Fiber surface polarity is increased. Besides, air plasma treatment can change carbon fiber surface roughness significantly. After plasma treatment, substantial amount of deep grooves can be found on CF surface. Due to plasma treatment increase CF surface polarity, fiber wettability and fiber surface roughness, composite interlamine shear strength (ILSS) is improved. After plasma treatment, composite ILSS is high up to 79.5MPa, the ILSS is increased by 13.5% compared with that of untreated CF/PPESK composite. Study of composite interfacial adhesion mechanism indicated that both chemical bonding and mechanical bonding interaction have a positive effect on composite interfacial adhesion, however mechanical bonding interaction has a dominant effect than chemical bonding interaction.
     As structure composite of the space craft, during the long-term serving in the orbit, the space craft travels in and out of the earth shadow area. The temperature on the surface of the space craft varies from -160℃to 120℃. Due to the coefficient of thermal expansion of the fiber and the matrix is quite different, thermal stress is caused when temperature changes. In this paper, finite element analysis method was applied to analyze the thermal stress in CF/PPESK composite, and the thermal stress of CF/PPESK composite was compared with that of CF/EP and CF/BMI composite. Results indicate that, in alternating temperature environment, thermal stress is aroused in CF/plastic composite. Composite interfacial defect zone is the weak point in CF/plastic composite. Thermal stress concentration is located in the defect zone. However, the thermal stress in CF/PPESK composite is lower than that of CF/EP and CF/BMI composite.The Parabolic failure criterion analysis implies that thermal stress has a dominant influence on CF/EP composite and CF/BMI composite, in the alternating temperature environment, thermal stress of composite defect zone will induce the matrix failure, while the influence of alternating temperature on CF/PPESK composite is relatively smaller. Thermal stress of the defect zone can not induce the matrix failure. CF/PPESK composite has a higher stability.
引文
[1] 益小苏.先进复合材料技术研究与发展.北京:国防工业出版社,2006.
    [2] 沃丁柱,李顺林,王兴业等.复合材料大全.北京:化学工业出版社,2002.
    [3] 吴人洁.下世纪复合材料发展趋势.工程塑料应用,1999,27(2):28-51.
    [4] Hogg P J, Toughening of thermosetting composites with thermoplastic fibres. Materials Science and Engineering: A, 2005, 412(1-2): 97-103.
    [5] Woo E M, Mao K L, Interlaminar morphology effects on fracture resistance of amorphous polymer-modified epoxy/carbon fibre composites. Composites Part A, 1996, 27(8): 625-631.
    [6] Schoeppner G A, Abrate S. Delamination threshold loads for low velocity impact on composite laminates. Composites Part A, 2000, 31(9): 903-915.
    [7] Ishikawa T, Sugimoto S, Matsusshima M et al. SOME EXPERIMENTAL FINDINGS IN COMPRESSION-AFTER-IMPACT(CAI) TESTS OF CF/PEEK (APC-2) AND CONVENTIONAL CF/EPOXY FLAT PLATES. Composite Science and Technology, 1995, 55(4): 349-363.
    [8] Jen M H R, Lee C H. Strength and life in thermoplastic composite laminates under static and fatigue loads. Part Ⅰ: Experimental. Int. J. Fatigue, 1998, 20(9): 605-615.
    [9] Diao X X, Ye L, Mai Y W. Fatigue behavior of CF/PEEK composite laminates made from commingled prepreg. Part Ⅰ: Experimental studies, Composites Part A, 1997, 28(8): 739-747.
    [10] Kim K Y, Ye L, Interlaminar fracture toughness of CF/PEI composites at elevated temperatures: roles of matrix toughness and fibre/matrix adhesion, Composites Part A, 2004, 4(4): 477-487.
    [11] Hou M, Ye L, Mai Y W. Manufacturing process and mechanical properties of thermoplastic composite components. Journal of Materials Processing Technology, 1997, 63(1-3): 334-338.
    [12] Ye L, Friedrich K. Processing of thermoplastic composites from powder/sheath-fibre bundles. Journal of Materials Processing Technology, 1995, 48(1-4): 317-324.
    [13] Ye L, Friedrich K, Kastel J et al. Consolidation of unidirectional CF/PEEK composites from commingled yarn prepreg. Composites Science and Technology, 1995, 53(4): 333-341.
    [14] Ageorges C, Ye L, Hou M. Experimental investigation of the resistance welding for thermoplastic-matrix composites. Part Ⅰ: heating element and heat transfer. Composites Science and Technology, 2000, 60(7): 1027-1039.
    [15] Hou M, Yang M B, Beehag A et al. Resistance welding of carbon fibre reinforced thermoplastic composite using alternative heating element. Composite Structures, 1999, 47(1-4): 667-672.
    [16] Li Y Q, Zhang M Q, Zeng H M. Strong interaction at interface of carbon fiber reinforced aromatic semicrystalline thermoplastics. Polymer, 1999, 40(15): 4307-4313.
    [17] Hou M, Ye L, Lee H J et al. Manufacture of a carbon-fabric-reinforced polyetherimide(CF/PEI) composite material. Composites Science and Technology, 1998, 58(2): 181-190.
    [18] 张和善.复合材料在F—22上的实际应用.航空工程与维修,1999,2:23-25.
    [19] 陈亚莉.先进战斗机F—22的选材(下).航空制造工程,1996,2:6—8.
    [20] http://www.aeroinfo.com.cn/database/monograph/monographshow.asp?id=14608.
    [21] Dube M, Hubert P, Yousefpour A et al. Resistance welding of thermoplastic composites skin/stringer joints. Composites Part A, 2007(In Press).
    [22] Mitschang P, Blinzler M, Woginger A. Processing technologies for continuous fibre reinforced thermoplastic with novel polymer blends. Composites Science and Technology, 2003, 63(14): 2099-2110.
    [23] Kawai M, Masuko Y, Kawase Y. Micromechanical analysis of the off-axis rate-dependent inelastic behavior of unidirectional AS4/PEEK at high temperature. International journal of Mechanical Sciences, 2001, 43(9): 2069-2090.
    [24] Diaz J, Rubio L. Developments to manufacture structural aeronautical patrs in carbon fiber reinforced thermoplastic materials. J. Materials Processing Technology, 2003, 143-144: 342-346.
    [25] Jenkins M J. Relaxation behaviour in blends of PEEK and PEI. Polymer, 2000, 41(18): 6803-6812.
    [26] 蹇锡高,陈平,廖功雄等.含二氮杂荼酮结构新型聚芳醚系列高性能聚合物的合成与性能.高分子学报,2003.8:469-475.
    [27] 陈平,陆春,于祺等.连续纤维增强PPESK树脂基复合材料的界面性能.材料研究学报,2005,19:159-164.
    [28] 周其凤,范星河,谢晓峰.耐高温聚合物及其复合材料-合成、应用与进展.北京:化学工业出版社,2004.
    [29] 邓杰,李辅安,刘建超.碳纤维增强PEEK预浸带制备工艺探索研究.宇航材料工艺,2003,33(6):30-34.
    [30] 咸贵军,益小苏,潘颐.热塑性树脂熔熔融浸渍连续纤维装置.塑料工业,2000,28(5):15-17
    [31] Velde K V, Kiekens P. Thermoplastic polymers: overview of several properties and their consequences in flax fibre reinforced composites. Polymer Tesing, 2001, 20(8): 885-893.
    [32] Marissen R, Vander D L T, Sterk J. Technology for rapid impregnation of fibre bundles with a molten thermoplastic polymer. Composites Science and Technology, 2000, 60(10): 2029-2034.
    [33] Harras B, Benamar R, White R G. Investigation of non-linear free vibrations of fully clamped symmetrically laminated carbon-fibre-reinforced PEEK(AS4/APC2) rectangular composite panels. Composites Science and Technology, 2002, 62(5): 719-727.
    [34] Barnes J A, Cogswell F N. Transverse flow processes in continuous fibre-reinforced thermoplastic composites. Composites, 1989, 20(1): 38-42.
    [35] Goshawk J A, Navez V P, Jones R S. Squeezing flow of continuous fibre-reinforced composites. Journal of Non-Newtonian Fluid Mechanics, 1997, 73(3): 327-342.
    [36] Sonmez F O, Mustafa A. Process optimization of tape placement for thermoplastic composites. Composites Part A, 2007, 38(9): 2013-2023.
    [37] Long A C, Wiks C E, Tudd C D. Experimental Characterisation of the Consolidation of a Commingled Glass/Polypropylene Composites. Composite Science and Technology, 2001, 61(11): 1591-1603.
    [38] Bernhardsson J, Shishoo T, Effect of Processing Parameters on Consolidation Quality of GF/PP Commingled Yarn Based Composites. Journal of Thermoplastic Composite Materials, 2000, 13: 292-313.
    [39] 娄葵阳,陈祥宝.纤维混杂—热塑性复合材料制备的先进工艺.材料导报,1997,11(2):69-72
    [40] 章奕定,李卫中.PPS泥浆法预浸技术的研究.玻璃钢/复合材料,1997,2:35-36.
    [41] Hou M, Ye L, Mai Y W, Advances in processing of continuous fibre reinforced composites with thermoplastic matrix, J. Plastics. Rubber and Composites Processing and Applications, 1995, 23: 279-293.
    [42] CAROLINA. Carbon Fibre Reinforced Polymers for trengthening of Structural Elements. LULEA UNIVERITY OF TECHNOLOGY, 2003, 18: 13-15.
    [43] HOECKER F, KOCSIS J K. Surface Energetics of Carbon Fibers and Its Effects on the Mechanical Performance of CF/EP Composite. Journal of Applied Polymer Science, 1996, 59: 139-153.
    [44] Marshal P, Price J, Composites, 1991, 22: 388-393.
    [45] Matsui J, Crit. Rev. Surf. Chem., 1990, 1: 71-80.
    [46] 赵渠森.先进复合材料手册.北京:机械工业出版社,2003.
    [47] 黄玉东.聚合物表面与界面技术.北京:化学工业出版社,2003.
    [48] 吴人洁.高聚物的表面与界面.北京:科学出版社,1998
    [49] 伍章健.复合材料界面和界面力学.应用基础与工程科学学报,1995,3(3):302-314.
    [50] 张开.高分子界面科学.北京:中国石化出版社,1997.
    [51] 郑安呐,吴叙勤,李世缙.碳纤维表面及其复合材料界面优化的研究Ⅵ.碳纤维复合材料的界面结合.华东理工大学学报,1994,20(4):485-491.
    [52] 陈平,于祺,孙明等.高性能热塑性树脂基复合材料的研究进展.纤维复合材料,2005,2:52-57.
    [53] 贺福,杨永岗.碳纤维的表面处理与复合材料的层间剪切强度.航空材料学报,1994,14:55-61
    [54] Zheng J, Zhang Z Q, Meng L H. Effects of ozone method treating carbon fibers on mechanical properties of carbon/carbon composites. Materials Chemistry and Physics, 2006, 97(1): 167-172.
    [55] Severini F, Formaro L, Mario Pegoraro et al. Chemical modification of carbon fiber surfaces. Carbon, 2002, 40(5): 735-741.
    [56] Kaushik V K. Surface characterization of KMnO_4 treated carbon fiber precursors using X-ray photoelectron spectroscopy. Polymer Testing, 2000, 19(1): 17-25.
    [57] Yue Z R, Jiang W, Wang L et al. Surface characterization of electrochemically oxidized carbon fibers. Carbon, 1999, 37(11): 1785-1796.
    [58] Ryu S K, Park B J, Park S J. XPS Analysis of Carbon Fiber urfaces-Anodized and Interracial Effect in Fiber-Epoxy Composites. Journal of Colloid and Interface Science, 1999, 215(1): 167-169.
    [59] Fukunaga A, Ueda S. Anodic surface oxidation for pitch-based carbon fibers and the interfacial bond strengths in epoxy matrices. Composites Science and Technology, 2000, 60(2): 249-252.
    [60] Lindsay B, Abel M L, Watts J F. A study of electrochemically treated PAN based carbon fibres by IGC and XPS. Carbon, 2007, 45(12): 2433-2444.
    [61] Yang Y, Lu C X, Su X L. Effect of nano-SiO_2 modified emulsion sizing on the interfacial adhesion of carbon fibers reinforced composites. Materials Letters, 2007, 61(17): 3601-3604.
    [62] Dilsiz N, Wightman J P. Surface analysis of unsized and sized carbon fibers. Carbon, 1999, 37(7): 1105-1114.
    [63] Huang Y D, Liu L, Qiu J H et al. Influence of ultrasonic treatment on the characteristics of epoxy resin and the interfacial property of its carbon fiber composites. Composites Science and Technology, 2002, 62(16): 2153-2159.
    [64] Li J Q, Huang Y D, Xu Z W et al. High-energy radiation technique treat on the surface of carbon fiber. Materials Chemistry and Physics, 2005, 94(2-3): 315-321.
    [65] 赵化侨.等离子体化学与工艺.合肥:中国科技大学出版社.1993.
    [66] 彭静,张军,蹇锡高等.等离子体技术在CF/树脂基复合材料中的应用.材料导报,1999,13:48-58.
    [67] Kingsley K C H, Lamoriniere S, Kalinka G. Interfaciai behavior between atmospheric-plasma-fluorinated carbon fibers and poly(vinylidene fluoride). J. Colloid and Interface Science, 2007, 313(2): 476-484.
    [68] Kingsley K C H, Lee A F, Alexander Bismarck. Fluorination of carbon fibres in atmospheric plasma. Carbon, 2007, 45(4): 775-784.
    [69] Zhang X Z, Huang Y D, Wang T Y. Plasma activation of carbon fibres for polyarylacetylene composites. Surface and Coatings Technology, 2007, 201(9-11): 4965-4968
    [70] Zhang X Z, Huang Y D, Wang T Y. Surface analysis of plasma grafted carbon fiber. Applied Surface Science, 2006, 253: 2885-2892.
    [71] Lu C, Chen P, Yu Q et al. Interfacial adhesion of plasma treated carbon fiber/Poly(phthalazinone ether sulfone ketone) composite. Journal of Applied Polymer Science, 2007, 106: 1733-1741.
    [72] Wen H C, Yang K, Ou K L. Effects of ammonia plasma treatment on the surface characteristics of carbon fibers. Surface and Coatings Technology, 2006, 200(10): 3166-3169.
    [73] Park S J, Kim B J. Influence of oxygen plasma treatment on hydrogen chloride removal of activated carbon fibers. Journal of Colloid and Interface Science, 2004, 275(2): 590-595.
    [74] Wu G M. Oxygen plasma treatment of high performance fibers for composites. Materials Chemistry and Physics, 2004, 85(1): 81-87.
    [75] 肖少伯.碳纤维及其复合材料在卫星上的应用.高科技纤维与应用,1999,24(2):1-7.
    [76] 肖少伯,林大庆,刘德利.碳/环氧复合材料波纹壳制造技术.工程塑料应用,1999,27(1) :13-15.
    [77] 王建昌,安庆升,叶周军等.碳纤维复合材料卫星天线的研制.纤维复合材料,2007,1:18-20.
    [78] Han J H, Kim C G. Low earth orbit space environment simulation and its effects on graphite/epoxy composites. Composite Structures, 2006, 72: 218-226.
    [79] Shin K B, Kim C G, Hong C S et al. Thermal distortion analysis of orbiting solar array including degradation effects of composite materials. Composites Part B: Engineering, 2001, 32(2): 271-285.
    [80] Shin K B, Kim C G, Hong C S et al. Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments. Composites Part B: Engineering, 2000, 31(4): 223-235.
    [81] O'Neill M, Hollaway L. A study of the thermal behaviour of carbon fibre-reinforced thermoplastic structures in geosynchronous equatorial orbit. Composites, 1992, 23(5): 347-353.
    [82] Kobayshi S, Terada K, Ogihara S et al. Damage-mechanics analysis of matrix cracking in cross-ply CFRP laminates under thermal fatigue. Composites Science and Technology, 2001, 61(12): 1735-1742
    [83] Fiedler B, Schulte K. Photo-elastic analysis of fibre-reinforced model composite materials. Composites Science and Technology, 1997, 57(8): 859-867.
    [84] Portu G D, Micele L, Sekiguchi Y et al. Measurement of residual stress distributions in Al_2O_3/3Y-TZP multilayered composites by fluorescence and Raman microprobe piezo-spectroscopy. Acta Materialia, 2005, 53(5): 1511-1520.
    [85] Ward Y, Young R J, Shatwell R A. Determination of residual stresses in SiC monofilament reinforced metal-matrix composites using Raman spectroscopy. Composites Part A, 2002, 33(10): 1409-1416.
    [86] Leveque D, Auvray M H. Study of carbon-fibre strain in model composites by raman spectroscopy. Composites Science and Technology, 1996, 56(7): 749-754.
    [87] Wood J R, Huang Y L, Young R J et al. Measurement of thermal strains during compressive fragmentation in single-fibre composites by Raman spectroscopy. Composites Science and Technology, 1995, 55(3): 223-229.
    [88] Benedikt B, Kumosa M, Predecki P K. An evaluation of residual stresses in graphite/PMR-15 composites by X-ray diffraction. Acta Materialia, 2005, 53(17): 4531-4543.
    [89] 赵若飞,周晓东,戴干策.纤维增强聚合物基复合材料界面残余热应力研究.玻璃钢/复合材料,2000,4:25-28.
    [90] Parlevliet P P, Bersee H E N, Beukers A. Residual stresses in thermoplastic composites—A study of the literature—Part Ⅱ: Experimental techniques. Composites: Part A, 2007, 38(3): 651-665.
    [91] Parlevliet P P, Bersee H E N, Beukers A. Residual stresses in thermoplastic composites—A study of the literature—Part Ⅲ: Effects of thermal residual stresses. Composites: Part A, 2007, 38(6): 1581-1596.
    [92] Fiedler B, Hojo M, Ochiai S. The influence of thermal residual stresses on the transverse strength of CFRP using FEM. Composites Part A, 2002, 33(10): 1323-1326.
    [93] Fiedler B, Hojo M, Ochiai S et al. Finite-element modeling of initial matrix failute in CFRP under static transverse tensile load. Composite science and technology, 2001, 61(1): 95-105.
    [94] Rosso P, Varadi K. FE macro/micro analysis of thermal residual stresses and failure behavior under transverse tensile load of VE/CF-fibre bundle composites. Composite science and technology, 2006, 66(16): 3241-3253.
    [95] Chen P, Lu C, Yu Q. Influence of Fiber Wettability on the Interfacial Adhesion of Continuous Fiber Reinforced PPESK Composite. Journal of Applied Polymer Science, 2006, 102: 2544-2551.
    [96] Meng Y Z, Tjong S C, Hay A S. Morphology, rheological and thermal properties of the melt blends of poly(phthalazinone ether ketone sulfone) with liquid crystalline copolyester, Polymer, 1998, 39(10): 1845-1850.
    [97] http://www.cnpnm.com/.
    [98] 丁振峰,霍伟刚,王友年.射频电感性耦合等离子体调谐基片自偏压特性.核聚变与等离子体物理,2004,24(3):197-202.
    [99] Lee Y S, Lee B K. Surface properties of oxyfluorinated PAN-based carbon fibers. Carbon, 2002, 40(13): 2461-2468.
    [100] Park J M, Kim D S, Kong J W. Interfacial Adhesion and Microfailure Modes of Electrodeposited Carbon Fiber/Epoxy-PEI Composites by Microdroplet and Surface Wettability Tests. Colloid and Interface Science, 2002, 249(1): 62-77.
    [101] Gherlone M, Sciuva M D. Thermo-mechanics of undamaged and damaged multi layered composite plates: a sub-laminates finite element approach. Composite Structures, 2007, 81(1): 125-136.
    [102] Logan D L著.有限元方法基础教程.北京:电子工业出版社,2003.
    [103] 陈由旺,陈军.瞬态导热的计算机分析.技术教育学报,1997,8:23-27.
    [104] R.S.戴大,A.C.卢斯编著.方征平,沈烈译.高分子复合材料加工工程.北京:化学工业出版社,2004.
    [105] Chao C K, Chuang C T, Chang R C. Thermal stresses in a viscoelastic three-phase composite cylinder. Theoretical and Applied Fracture Mechanics, 2007, 48(3): 258-268
    [106] Shiah Y C, Chen Y H, Kuo W S. Analysis for the interlaminar stresses of thin layered composites subjected to thermal loads. Composites Science and Technology, 2007, 67(11-12): 2485-2492.
    [107] Lua J. Thermal-mechanical cell model for unbalanced plain weave woven fabric composites. Composites: Part A, 2007, 38(3): 1019-1037.
    [108] Parlevliet P P, Bersee H E N, Beukers A. Residual stresses in thermoplastic composites—A study of the literature—Part Ⅰ: Formation of residual stresses. Composites: Part A, 2006, 37(11): 1847-1857.
    [109] Tsai J L, Chi Y K. Investigating thermal residual stress effect on mechanical behaviors of fiber composites with different fiber arrays. Composites Part B, 2007(In Press).
    [110] Nickerson S, Steven J M, Welsh J S. Multi-continuum analysis of thermally induced matrix cracking. Engineering Fracture Mechanics, 2005, 72(12): 1993-2008.
    [111] 徐远杰.材料力学.武汉:武汉大学出版社,2002.
    [112] Tchoegl, N W. Failure Surfaces in Principal Stre Spaces. J. Polymer Sci. Part C Polymer symposia, 1971, 32: 239-267.
    [113] Theocaris P S, Philippidis T P. The Paraboloidal Failure Surface of Initially Anisotropic Elastic Solids. Journal of Reinforced Plastics and Composites, 1987, 6: 378-395.
    [114] Adams R D, Singh M M. The dynamic properties of fibre-reinforced polymers exposed to hot, wet conditions. Composites science and Technology, 1996, 56(8): 977-997.
    [115] Fjeidly A, Olsen T, Rysjedal J H et al. Influence of the fiber surface treatment and hot-wet environment on the mechanical behavior of carbon/epoxy composites. Composites Part A, 2001, 32(3-4): 373-378.
    [116] Seizer R, Friedrich K. Mechanical properties and failure behaviour of carbon fibre-reinforced polymer composites under the influence of moisture. Composites Part A, 1997, 28(6): 595-604
    [117] Zhao Q, Liu Y, Abel E W, Effect of temperature on the surface free energy of amorphous carbon films, J. Colloid and Interface Science, 2004, 280(6): 174-183.
    [118] Vlasveld D P N, Parlevliet P P, Bersee H E N. Fiber-matrix adhesion in glass-fiber'reinforced polyamide-6 silicate nanocomposites. Composites Part A, 2005, 36(1): 1-11.
    [119] Ye L, Akbar A K, Lawcock G. Effect of fibre/matrix adhesion of residual strength of notched composite laminates. Composites Part A, 1998(12), 29: 1525-1533
    [120] Weitzsacker C L, Xie M, Drzal L T, Using XPS to Investigate Fiber/Matrix Chemical Interactions in Carbon-fiber-reinforced Composites. SURFACE AND INTERFACE ANALYSIS, 1997, 25: 53-63.
    [121] 高禹,杨德庄,何世禹.真空热循环对M40J/环氧复合材料力学性能的影响.材料研究学报,2004,18(5):529-536.
    [122] O'Neill M, Hollaway L. A study of the thermal behaviour of carbon fibre-reinforced thermoplastic structures in geosynchronous equatorial orbit. Composites, 1992, 23(5): 347-353
    [123] Gourichon B, Binetruy C, Krawczak P. A new numerical procedure to predict dynamic void content in liquid composite molding. Composites Part A, 2006, 37(11): 1961-1969.
    [124] Ruiz E, Achim V, Soukane S et al. Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites. Composites Science and Technology, 2006, 66(3-4): 475-486.
    [125] Hu J L, Liu Y, Shao X M. Study on void formation in multi-layer woven fabrics. Composites Part A, 2004, 35(5): 595-603.
    [126] Turner D Z, Hjelmstad K D, LaFave J M. Three-dimensional flow visualization experiment of an RTM injection for a GFRP cuff mold. Composite Structures. 2006, 76(4): 352-361.
    [127] Kang M K, Lee W I H, Thomas Hahn. Formation of microvoids during resin-transfer molding process, Composites Part A, 2000, 60(12-13): 2427-2434.
    [128] Varna J, Joffe R, Berglund L A et al. Effect of voids on failure mechanisms in RTM laminates. Composites Science and Technology, 1995, 53(2): 241-249.
    [129] Jang J, Yang H J. The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites. Journal of Materials Science, 2000, 35: 2297-2303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700