用户名: 密码: 验证码:
SRM喉衬用炭/炭复合材料烧蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷管是固体火箭发动机(SRM)的一个关键部件,而喉衬是发动机喷管中工作环境最恶劣的部位。随着更大载荷、更大推力和更高燃气温度、更远射程SRM的发展,SRM对喉衬材料烧蚀性能提出了更高要求。炭/炭(C/C)复合材料具有轻质、高强、良好的烧蚀性能、优异的抗热震性能,以及性能的可设计性等特点,是理想的喉衬材料,已广泛应用于SRM喷管喉衬。本研究以SRM喷管喉衬用C/C复合材料为背景,采用电弧驻点烧蚀试验方法,系统研究了烧蚀条件、炭纤维预制体和基体炭类型及结构等对C/C复合材料烧蚀性能的影响,揭示了其烧蚀机理;结合武器型号用SRM喷管喉衬的研制,解剖分析了地面点火试验后C/C复合材料喉衬的烧蚀形貌,探讨了其烧蚀机理;在此基础上,开展了添加难熔金属碳化物和SiC表面涂层制备工艺及其烧蚀性能的研究,并对2种常用的考核C/C复合材料烧蚀性能的方法进行了评价。
     系统考察了电弧驻点烧蚀条件(驻点压强、总焓、烧蚀时间等)对C/C复合材料烧蚀性能的影响规律。3000℃左右的温度范围内,焓值(温度)越高,烧蚀越严重;烧蚀时间延长,烧蚀量增加明显;C/C复合材料的烧蚀性能对驻点压强十分敏感,压强提高一倍,烧蚀率成倍地增长。
     系统研究了C/C复合材料的本征烧蚀性能,揭示了各因素的影响规律。C/C复合材料平行方向的烧蚀性能优于垂直方向烧蚀性能。热解炭和树脂炭混合增密的C/C复合材料烧蚀性能优于纯树脂炭增密的C/C复合材料烧蚀性能;典型粗糙层结构的C/C材料烧蚀性能优于典型光滑层结构的材料烧蚀性能;热解炭沉积密度越高,烧蚀性能越好。随着穿刺密度的增加,细编穿刺结构C/C复合材料烧蚀性能提高。
     揭示了C/C复合材料的烧蚀机理,建立了烧蚀模型。C/C复合材料烧蚀分为热化学烧蚀和机械剥蚀两部分,机械剥蚀决定材料宏观烧蚀形貌,热化学烧蚀决定材料微观烧蚀形貌。C/C复合材料的烧蚀优先从界面、缺陷、孔隙处开始并向纵深发展,导致炭纤维与热解炭、热解炭内部、热解炭与树脂炭之间的界面分离,以及孔洞、缺陷的进一步增大。此外,因热应力等新生成的裂纹及固有的裂纹变宽,不断延伸、扩展,甚至彼此贯穿。在外界剪切力、涡旋分离力或内部热应力的作用下引起材料的机械剥蚀。
     结合武器型号用SRM喷管喉衬的研制,解剖分析了SRM地面点火试验后C/C复合材料喉衬的烧蚀形貌,阐明了其烧蚀机理;针刺整体毡结构的C/C复合材料喉衬整体性完好、烧蚀均匀、烧蚀率低,但由于z向纤维含量较少,z向强度较低,在喉部、接近喉部位置易产生层间裂纹;细编穿刺毡结构C/C复合材料具有良好的热性能和力学性能,且材料性能各向异性小,烧蚀性能较好。随着压强的升高,C/C复合材料喉衬的烧蚀率增加。C/C喉衬的烧蚀主要由热化学烧蚀和机械剥蚀两部分组成。颗粒的冲刷将加强对烧蚀材料的传热、改变材料的性质和强度甚至破坏材料的结构,加速热化学烧蚀。
     查明了烧蚀过程中WC改性C/C复合材料中WC发生的系列物理化学变化及其作用。WC改性C/C复合材料宏观和微观烧蚀形貌较C/C复合材料的烧蚀形貌的有较大变化。WC改性C/C复合材料的高温烧蚀包括:C/C复合材料中炭与烧蚀气流中氧化气氛的反应;WC的氧化及熔融;WC的熔化;WO_3和WC液膜的形成和剥蚀以及C/C复合材料的剥蚀。
     查明了SiC涂层对C/C复合材料烧蚀性能的作用机理。指出烧蚀过程中SiC氧化及SiO_2熔融,从而降低了C/C复合材料烧蚀率,改善了其烧蚀均匀性。
     比较研究了C/C复合材料烧蚀性能测试方法等离子体烧蚀试验方法,简单、价格低,但与实际环境偏差大,烧蚀率数值小,重复性差;可作为参考,定性地断定材料的烧蚀性能。电弧驻点烧蚀试验方法比较接近实际环境,可根据要求调节驻点温度、驻点压强和烧蚀时间;烧蚀率数值适中;系统可靠,数据可重复性好;能较好地模拟固体火箭发动机喷管喉衬的真实烧蚀情况,但相对SRM地面点火试验,其试验费用低,试验准备周期短、简单。
     研究所得结果为下一步低烧蚀率C/C喉衬材料的开发和应用奠定了基础。
Nozzle is one of the key components in Solid Rocket Motor (SRM) and throat is the most important part in nozzles for it works in the most serious conditions. With the development of SRM for more loads, huger propulsion, elevated temperature and farther shot, its working conditions becomes more and more severe. The requirements for nozzle materials are accordingly increased. Carbon/carbon (C/C) composites have superior characteristics of low density, high strength, excellent ablation property, good thermal shock resistance, designable characteristic and so on. These outstanding properties make them the essential candidate materials for high temperature applications, which is especially true for SRM throats.With the application background of C/C composites for SRM throat, influences of ablation conditions, reinforcements as well as types and structure of carbon matrix on ablation properties of C/C composites were investigated after arc stagnation ablation test and the ablation mechanism were discussed;Combine with preparation of SRM throats, ablation morphilogies of C/C throats were observed and their ablation mechanisms were discussed; Furthermore, C/C composites added with refractory carbide or with SiC coating were prepared, and their ablation behaviors and properties were analysized; In addition, the common used methods for testing ablation rates of C/C composites were evaluated.
     Effects of ablation conditions (stagnation pressure, enthalpy, and ablating time) on ablation properties of C/C composites were investigated. The results show that around 3000℃, the higher of the enthalpy (temperature), the more serious ablation of the composites; The longer the ablating time, the much loss of the ablation quantity; But among them, stagnation pressure has greater influence on the ablation property of C/C composites.
     The ablation properties of C/C composites were investigated with arc stagnation ablation test.The results show that ablation property of C/C composites of parallel ablation or with rough laminar carbon is respectively better than that of vertical ablation or with smooth laminar carbon. vertical ablation; In addition, the more of pyrolytic carbon or the increasing numbers of pierced carbon fibers, the better of ablation property.
     Ablation mechanism of C/C composites was discussed and ablation models were built. The ablation process of C/C composites is controlled by chemical erosion and mechanical denudation; and macro morphology is mainly caused by mechanical denudation, while micro morphology is mainly caused by chemical erosion. Ablation always tends to occur at interfaces, defects and pores and furtherly spread. Thus make the gaps at the interfaces, defects and pores enlarged. In addition, newly born cracks formed by thermal stress and inherent cracks will extend and transfix. Under the shearing force and swirl force of the ablation gas or thermal stress, the surfaces of C/C composites would be blown away and form orderly new ablation section cause mechanical denudation.
     Combining the development for SRM throat, C/C composite throats were discussed tothgether with their ablation mechianism. C/C throats with needled integrated carbon fiber performs have lower ablation rates and uniformed ablation surfaces. Because there are only a few fibers in Z direction, strength in Z direction is low, which is eay to cause a few cracks along carbon fiber layers at throat or the places close to throat; C/C throats with carbon fiber pierced performs have good thermal properties, mechanical properties, ablation properties, and small anisotropy; Besides, with the increasing of pressure in combustion chamber, ablation rate of C/C throat will increase. The ablation process of C/C throats includes chemical erosion and mechanical denudation. Erosion of particles will reinforce the transmition of heat, change or even destroy the structure of C/C composites and accelerate the chmical erosion process.
     Changes and function of WC in C/C composites during the ablation process were analysized. Not only macro morphology but also micro morphology of C/C composites with WC were quite different from those without; the ablation process of C/C composites with WC includes: oxidation of carbon fibers, carbon matrices and WC, melting of WC and WO_3, together with denudation of WC, WO_3 and C/C composites.
     Effect of SiC coating on ablation property of C/C composites was found. During the ablation process, SiC will be oxided and SiO_2 will be melt, therefore, SiC coating can low down the ablation rates of C/C composites and ameliorate their ablation surfaces.
     The testing methods for ablation properties of C/C composites were compared. The plasma ablation method is easy to operated, but its ablation conditions are quite different from real throat; Furthermore, the ablation rates are too small and the repetition testing results are bad, so it can only test ablation properties in a qualitative way; In arc stagnation ablation test, stagnation temperature, pressure and ablation time can be adjusted, its ablation rates are moderate and the ablation results can be repeated, thus it can model real throats better. In addition, compared with SRM fire test, it is much easier and cost much less.
     Those results will have meaningful worthiness for further development and applications of C/C composites with lower ablation rates.
引文
[1]邹林华.航空刹车用C/C复合材料的结构与性能.[博士学位论文].长沙:中南工业大学,1999.
    [2]Christ K.Huttinger K J.Carbon-fiber reinforced carbon composites with mesophase pitch,Carbon,1993,31(5):731.
    [3]Fitzer E.The future of carbon-carbon composites,Carbon,1987,25(2):163-169.
    [4]Paulmier T,Balat-Pichelin M,Queau D.Le,Struetural modification of carbon-carbon composites under high temperature and ion irradiation,Applied surface science,2005,243:376-393.
    [5]郭正,赵稼祥.炭/炭复合材料的研究与发展.宇航材料工艺,1995,(5):1-7.
    [6]韩杰才,赫晓东,杜善义,等.碳/碳复合材料研究的现状与发展(二),宇航材料工艺,1994,(5):6-11
    [7]李贺军,曾燮榕,李克智.我国炭/炭复合材料研究发展.炭素,2001,(4):8-13.
    [8]李贺军,罗瑞盈,杨峥.炭/炭复合材料在航空领域的应用研究现状,材料工程,1997,(8):8-10.
    [9]廖勋鸿,廖名华,王鑫秀,等.C/C复合材料在火箭发动机和飞机上的应用,炭素,2002(3):11-13.
    [10]颜月娥,黄启忠,邹林华,等.航空刹车用C/C复合材料的应用与发展,炭素技术,1996,11(3):13-17
    [11]Francois M,Joly J P,Kapsa P,etal.A temperature-programmed desorption and oxidation investigation of wear debris from carbon/carbon composite aircraft brakes,Carbon,2007,45(1):124-131
    [12]Katarzyna Peszynska-Bialczyk,Ken B.Anderson,T.Szymanski,Milan Krkoska,Peter Filip.Thermal analysis of bulk carbon-carbon composite and friction products derived from it during simulated aircraft braking,Carbon,2007,45(4):524-530
    [13]熊翔.炭/炭复合材料制动性能研究:[博士学位论文].长沙:中南大学,2004
    [14]Lacoste M,Lacombe A,Joyez P,etal.Carbon/Carbon extendible Nozzles.Acta Astronautica,2002,50(6):357-367
    [15]Havstad M A,Ferencz R M.Comparison of surface chemical kinetic models for ablative reentry of graphite.J Thermophysis Heat Transfer 2002,16:508-515.
    [16]Dino C.Improvement in composite tactical solid rocket motor technology.AAIA 90-1975.
    [17]全宏声.碳复合材料涡轮风扇叶片,材料工程,2002,(5):42-47.
    [18]肖志英,蒋建纯,周九宁.C/C复合材料在硅单晶生长炉中应用前景,第七届全国新型炭材料学术研究会论文集:531-534.
    [19]Kondo,Teruhisa(Osaka,JP),Ohta,Naoto(Kagawa,.FP),etal.Pyrolytic carbon coated carbon fiber reinforced carbon composite and useful as components for pulling single crystal apparatus,US 6,399,203,.June 4,2002.
    [20]候向辉,陈强,喻春红,等.碳/碳复合材料的生物相容性及其应用,功能材料,2000,3l(5):460-63.
    [21]吴琪琳,潘鼎.炭材料在医学领域的应用.材料导报,2003,17(8):54-56.
    [22]Henrich M,Ebert M,Scheibel Th,etal.Light weight brake materials for automotive and industrial applications.Eurocarbon 2000,1~(st)world conference on carbon,Berlin,2000,(2):941-942.
    [23]Huo X X,CUI hong,Ji A L,etal.The first frame of experiment of hith -speed train C/C compositebrake,Eurocarbon 2000,1~(st)world conference on carbon,Berlin,2000(2):941-942.
    [24]董师颜.固体火箭发动机原理.北京:北京理工大学出版社,1996
    [25]张宏安,叶定友,侯晓,等.固体发动机喷管出口凝相微粒粒度分布研究,固体火箭技术,2001,24(3):14-18.
    [26]张开春.喷管内型面烧蚀对发动机能量的影响.固体火箭技术,1997,20(3):26-28.
    [27]陈林泉,李岩芳,侯晓,等.喷管收敛段与喉部型面对喷管流量的影响.固体火箭技术,2002,25(1):10-12.
    [28]卢嘉德.固体火箭发动机复合材料技术的进展及应用前景.固体火箭技术.2001,24(1):46-52.
    [29]丘哲明.固体火箭发动机材料与工艺.北京:宇航出版社,1995.
    [30]Maisonneuve Y.Ablation of solid-fuel booster nozzle materials.Aerospace Science and Technology,1997,1(4):277-289.
    [31]宋学智,李长德,魏化震.固体火箭发动机喷管用烧蚀隔热材料研究进展,弹箭技术,1999(4):11-21.
    [32]苏君明.火箭喷管多晶石墨的研究.第18届炭·石墨学术会议论文,409-414.
    [33]冉宏星,崔红,郝志彪,等.几种喉衬材料断裂韧性的比较.新型炭材料,2002,17(1):30-35.
    [34]于翘.材料工艺(下):北京,宇航出版社,1993.
    [35]王零森.钨基复合材料自发汗冷却机理研究.中南矿冶学院学报,1983(1):8-15.
    [36]陈正求,李世英.钨铜复合材料材料的发展.钨钼科技,1984(3):7-18.
    [37]史可顺,林济福.生焦石墨的特性和显微结构,宇航材料工艺,1998,3(2):6-10.
    [38]何洪庆,周旭.石墨渗铜材料的烧蚀模型探索.固体火箭技术,1991(4):102-107.
    [39]孙百顺,喉衬用钨渗铜产品的质量控制.固体火箭技术,1993,75-79.
    [40]王书贤,陈林泉,苏君明,等.石墨渗铜喉衬材料的抗热震性能与烧蚀微观结构研究.科学技术与工程,2004,4(3):206-230
    [41]苏君明,石墨渗铜喉衬材料抗热震性能评价.新型炭材料,1998,13(3):21-25
    [42]陈林泉,王书贤,张胜勇,等.石墨渗铜喉衬材料烧蚀机理分析.固体火箭技术,2004,27(1):57-59
    [43]苏君明,陈林泉,王书贤,侯晓,李桂林.石墨渗铜喉衬的烧蚀特性.固体火箭技术,2004,27(1):69-73
    [44]陈军,王政时,董师颜.钨渗铜材料喷管在长时间续航下的沉积特性.兵工学报,2001,22(3):426-428
    [45]尹健,张红波,熊翔,等.针刺整体毡C/C复合材料整体喉衬烧蚀分析,中国有色金属学报,2006,16(9):1539-1544
    [46]宋允,任慕苏,孙晋良.碳/碳复合材料在推进系统上的应用.产业用纺织品,2000,1 8(6):39-42.
    [47]Roquere B H.Carbon/Carbon nozzle exit cones SEP's experience and developments.AIAA97-2647.
    [48]邱惠中,吴志红.国外航天材料的新进展.宇航材料工艺.1997(4):5-16.
    [49]Accout W T,Rittaxlli E.Segmented solid rocket motor for Ariane 5,AIAAS8-3318
    [50]OLE MCRRCR.Adane 5 solid rocket motor nozzle design.AIAA90-20883
    [51]Beanard H,Broquere.Carbon/carbon nozzle exit cones:SEP'S experience and development.AIAA97-2674
    [52]Boury B,Filipuzzi L.Sepcarb~(tm)materials for solid rocket booster nozzle composites,AIAA01-3438
    [53]霍肖旭,曾晓梅,刘红林.炭/炭复合材料及炭纤维增强塑料在固体火箭喷管上的应用.炭素技术,200 1(3):23-26.
    [54]Xiang Hua,Xu Yongdong,Zhang Litong,etal.Synthesis and microstructure of tantalum carbide and carbon composite by liquid precursor route.Scripta Materialia,2006,55(4):339-342
    [55]苏君明.C/C喉衬材料的研究与发展.炭素科技,2001,11(3):6-11.
    [56]左劲旅,张红波,熊翔,等.喉衬用C/C复合材料研究进展.炭素,2003(2):7-10.
    [57]崔红,苏君明,李瑞珍,等.添加难熔金属碳化物提高C/C复合材料抗烧蚀性能的研究.西北工业大学学报,2000,18(4):669-673.
    [58]崔红,李瑞珍,苏君明,等.多元基体抗烧蚀炭/炭复合材料的微观结构分析.固体火箭技术,2001,24(3):63-67.
    [59]黄海明,杜善义,施惠基.含钽(Ta)C/C复合材料烧蚀分析.复合材料学报,2003.20(6):13-16.
    [60]王俊山,党嘉立.混杂难熔金属C/C复合材料中金属与碳的反应初步研究.宇航材料工艺,2001(6):34-39.
    [61]王俊山,李仲平,敖明,等.掺杂难熔金属碳化物对炭/炭复合材料烧蚀微观结构的影响.新型炭材料,2005,20(2):97-102
    [62]闫志巧,熊翔,肖鹏,李江鸿,黄伯云.Ta有机溶剂热处理转变生成TaC 的过程.中国有色金属学报,2005,15(10):1538-1543
    [63]闫志巧,熊翔,肖鹏,等.液相浸渍C/C复合材料反应生成TaC的形貌及其形成机制.无机材料学报,2005,20(5):1195-1200
    [64]苏君明.高效高冲质比C/C喷管的应用与进展.新型碳材料,1996,11(3):18-23.
    [65]黄坚定,唐菊花.国外大型固体发动机喷管性能分析.固体火箭技术,1996,19(2):9-16.
    [66]Choury J J.Carbon/Carbon materials for nozzles of solid propellant rocket motors.AIAA76-609.
    [67]Canfeild A A.Braided carbon/carbon nozlle development,AIAA.89-1096.
    [68]Bussiere M.Ariane V solid rocket booster nozzle development status AIAA94-3063.
    [69]朱良杰,廖东娟.C/C复合材料在美国导弹上的应用.宇航材料工艺,1993(4):12一14.
    [70]谢志勇.多元耦合物理场CVI快速制备C/C复合材料及其结构、机理研究.[博士学位论文].长沙:中南大学,2005
    [71]贺福,王茂章.炭纤维基体复合材料.北京:科学出版社,1995
    [72]孙书强,钟伟芳,钱勤.花瓣铺层碳/碳材料火箭喷管扩张段模态分析.华中科技大学学报(自然科学版)。2003,31(3):102.104
    [73]Cullerter J L.The carbon/carbon story:from rocket propulsion to high-performance brake.Carbone Industrie.
    [74]Bernard H.Broquere.Carbon/carbon nozzle exit cones:SEWs experience and new developments,AIAA97-2674.
    [75]石晓斌,王金明,许正辉,等.多向C/C复合材料烧蚀表面粗糙度初步研究.宇航材料工艺,2004,(6):24-26.
    [76]Montauclon M.Novoltex texture for thermal-mostructural matedals.AIAA91-1848.
    [77]Cozart.stress analisses of a 3D braied composites ablative nozzle.40~(th)AIAA/ASCE/AHS/ASC structures,structural dynamics,and materials conference,AIAA/ASME/AHS adaptive structures forum,AIAA forum on non -deterministic approaches conference and exhibit,ST.Louis,Missouri/AIAA99-1277.
    [78]董维中,高铁锁,张巧芸.高超声速三维碳/碳烧蚀流场的数值研究,空气动力学学报,2000,19(4):388-394.
    [79]Venkat Rao M,Mahajan P,Mittal R K.Effect of architecture on mechanical properties of carbon/carbon composites,Composite Structures,2007(online).
    [80]韩杰才,张杰,杜善义.细编穿刺碳/碳复合材料超高温氧化机理研究,航空学报,1996,17(5):576-581.
    [81]熊杰.氢气对C/C复合材料中CVI热解炭显微结构影响的研究:[硕士学位论文],长沙:中南大学,2004.
    [82]Zhang W G,Hu Z J,Huttinger K J.Chemical vapor infiltration of carbon fiber felt:optimization of densification and carbon microstructure.Carbon,2002,40:2529-2545.
    [83]邹志强,汤中华,熊杰.用热梯度式CVD增密技术制造C/C复合材料刹车盘.新型炭材料,2002,2:22-26.
    [84]Vaidyaraman S,Lacky W J,Freeman G B,etal.Fabracation of carbon-carbon composites by forced flow-thermal gradient chemical vapor infiltration.Material research,1995,10(6):1369-1477.
    [85]Vaidyaraman S,Lacky W J,Freeman G B,ctal.Forced flow-thermal gradient chemical vapor infiltration(fCVI)for fabracation of carbon-carbon composites.Carbon,1995,33(6):I 193-1201.
    [86]张守阳,李贺军,孙军.LTCVI工艺中的致密化效率研究.材料工程,2001(9):44-46
    [87]李崇俊,马伯信.化学气相沉积/渗透技术综述.固体火箭技术.1999,22(1):54-58
    [88]李晔,黄启忠,朱东波,等.液相浸渍法制备C/C复合材料.炭素,2001(4):14-18
    [89]Boury D,Filipuzzi,SEP carbon tm materials for solid rocket booster nozzle components.37~(th)AIAA/ASME/SAE/ASEE Jiont propulsion confemce,Salt Lake City,Utah,AIAA01-3438
    [90]张福勤.航空刹车用C/C复合材料石墨化度的研究:[博士学位论文].长沙:中南大学,2002
    [91]张福勤,黄伯云,黄启忠,等.炭/炭复合材料的可石墨化度的研究.矿冶工程,2001,21(1):59-61
    [92]程鸿申.人造石墨的石墨化度的判断方法.炭素,1984,(3):31-38
    [93]陈蔚然.石墨化过程中的热力学和动力学分析.炭素,1982,(1):11-16
    [94]稻恒道夫,白石禾念,中沟实,等.刘洪波译.石墨化度的评价.炭素技术,1991,(5):1-7
    [95]Ko Tse-hao,Kuo Wen-shyong.Effect of carbon fabric type on the mechanical performance of 2D carbon/carbon composites.Polymer composites,1998,19(5):618-625
    [96]张福勤,黄启忠,黄伯云,等.炭布叠层/热解炭复合材料材料导热系数与石墨化度之间的关系.功能材料,2003,34(4):464-468
    [97]罗瑞盈,杨峥,李贺军.高温热处理对碳/碳复合材料摩擦磨损性能的影响.复合材料学报,1996,13(4):47-52
    [98]刘建军,苏君明,陈长乐.炭/炭复合材料烧蚀性能影响因素分析.炭素,2003,(2):15-19.
    [99]刘建军,李铁虎,郝志彪.喉衬热环境与碳/碳复合材料的烧蚀,宇航材料工艺,2005,(1):42-48.
    [100]匡松连,蔡建强,尚龙,等.碳纤维表面特性对防热材料烧蚀性能影响的研究.宇航材料工艺,2004(3):18-21.
    [101]许正辉.3D炭/炭材料用炭纤维年会,第二届全国新型炭材料学术研讨会论文集.
    [102]霍肖旭,刘红林,曾晓梅.碳纤维复合材料在固体火箭上的应用.高科技纤维与应用,2000,25(3):卜8.
    [103]Donald L,Schmidt Kenoethe,dewidson L.Scott theibert.SAMPE.1999,32(4):44-45.
    [104]贺福,王茂章.碳纤维及其复合材料.北京:科学出版社,1997:23-31.
    [105]Canfild A R.Braided carbon/carbon nozzle development,21~(st)AIAA/SAE/ASME/ASEE jiont propullsion conference,Brighhan city,Utah,AIAA-85-1096.
    [106]丘哲明.固体火箭发动机材料与工艺.北京:宇航出版社,1995:285-343.
    [107]Bahl OP.高密度C/C复合材料的发展.新型炭材料,1987,(1):53-55.
    [108]Gajiwala H M,Vaidya U K,Sodah S A,etal.Hybraidized resin matrix approach applied for development of carbon /carbon composites,39AIAA/ASME/ASCE/ASC structures,structural dynamics,and meterial conferences,Long Beach,VA,AIAA98-1902.
    [109]Donghwan Cho,Byung Ⅱ Yoon.Microstrctural interpretation of the effect of various matrices on the ablation properties of carbon-fiber-reinforced composites.Composites science and technology,2001.61:271-280.
    [110]冉宏星,崔红,郝志彪,等.炭基体结构状态对C/C复合材料抗烧蚀性能的影响.炭素2002.4:20-25.
    [111]Peebles JRLH,Meyer RA,Jortner J.Interfaces in polymer,ceramic and metal matrix composites.Elsevier Science Publishing Co.,1988:1-15.
    [112]何洪庆.固体火箭喷管烧蚀和传热的基本问题.推进技术,1993(3):22-28.
    [113]黄海明,杜善义,吴林志,等.C/C复合材料烧蚀性能分析.复合材料学报,2001,18(3):76-80.
    [114]胡荣朝.降低C/C喉衬烧蚀率的试验研究.中国宇航学会1998年联合推进会议会议论文,烟台,1998.9.
    [115]易法军,梁军,孟松鹤,等.防热复合材料的烧蚀机理与模型研究.固体火箭技术.2000,23(3):48-56.
    [116]易法军.碳基防热复合材料超高温性能与烧蚀性能:[学位论文].哈尔滨:哈尔滨工业大学,1997.
    [117]刘建军,苏君明,陈长乐.多向碳/碳复合材料的微观结构与烧蚀机理研究.第十届全国复合材料会议.上海,1998.10.
    [118]Xiong Xiang,Huang Baiyun,Li Jianghong,etal.Friction behaviors of carbon/carbon composites with different pyrolytic carbon textures,Carbon,2006,44(9),463-467.
    [119]崔红,苏君明,李瑞珍,等.添加难熔金属碳化物提高C/C复合材料抗烧蚀性能的研究.西北工业大学学报.2000,18(4):669-673.
    [120]何捍卫,周科朝,熊翔.C/C复合材料抗烧蚀TaC涂层的制备.稀有金属材料与工程,2004,33(5):490-493.
    [121]黄海明,杜善义,施惠基.C/TaC/C复合材料的烧蚀性能研究.航空兵器,2002(5):5-11.
    [122]王俊山,李仲平,敖明,等.掺杂难熔金属碳化物对炭/炭复合材料烧蚀微观结构的影响.新型炭材料,2005,20(2):97-102.
    [123]李国栋.C/C抗烧蚀TaC、TaC/SiC涂层的制备及其抗烧蚀机理:[博士学位论文]:长沙,中南大学,2005.
    [124]丘哲明.固体火箭发动机材料与工艺.北京:宇航出版社,1995
    [125]劳伦斯.E.麦克利思特,张嘉惠译.多向C/C复合材料,C/C复合材料译文集,1986.4.
    [126]Mering J,Maire J.Chem.and Phys.of Carbon.1970,6(2):125-132.
    [127]Franklin.RE.The structure of graphitic carbons.Actacrystallographica,1951,4:253-261.
    [128]魏全金.材料电子显微分析.北京:冶金工业出版社,1997,149-165.
    [129]Annual Book of ASTM Stardands(No.D2344-84,revised in 1989).Apparent interlaminar shear strength of parallel fiber composites by short-beam method.American Society for Testing and Materials,Philadelphia.PA 1989:55-58.
    [130]冶金工业部信息标准研究院标准研究部编.金属材料物理试验方法标准汇编(上).北京:中国标准出版社,1997.
    [131]中国航天工业总公司四院四十三所、029基地、七○八所.GJB323A-96.烧蚀材料烧蚀试验方法.北京:中国航天工业总公司.1997.
    [132]国义军,石卫波,石义雷,等.电弧加热器试验条件下端头烧蚀外形计算,空气动力学学报,2002,20(1):116-121.
    [133]黄海明.极端环境下碳基复合材料烧蚀研究:[学位论文].哈尔滨:哈 尔滨工业大学,2001
    [134]盛文育.DJ-21高压电弧加热器.中国气动力研究与发展中心超高速气动力研究所.1983.04.
    [135]吴宗淼.快速总压探针初步试验.中国气动力研究与发展中心超高速气动力研究所.1981.03
    [136]李鼎文.用扫描式零点量热计测量高压高焓射流中的驻点热流.中国气动力研究与发展中心超高速气动力研究所.1982.4
    [137]Nevin K H,Carrol F C.Feasibility of standard evalution procedures for ablation material.NASA CR-379,1996:49-68.
    [138]Yin Jian,Xiong Xiang,Zhang Hongbo,etal.Ablation performance of dual-matrix carbon/carbon composites,Carbon,2006,44(9):1690-1694.
    [139]Yin Jian,Xiong Xiang,Zhang Hong-bo,etal.Research on ablation morphologies of different types of carbon in C/C composites.Submit to Carbon
    [140]Bonghwan Cho,Yung Ⅱ Yoon.Microstructural interpretation of the effect of various matrices on the ablation performances of carbon fiber-reinforced composites.Composites science and technology.2001:271-280.
    [141]张巍,张博明,孟松鹤,等.细编穿刺碳/碳复合材料等离子火炬高温烧蚀性能研究,材料工程.2003(5):23-25.
    [142]炭素材料學會.新·炭素材料入門,(株)リァラィズ社,1998.
    [143]Georges Duffa,Gerard L.Vignoles,Jean-Marc Goyheneche,etal.Ablation of carbon-based materials:Investigation of roughness set-up from heterogeneous reactions.International Journal of Heat and Mass Transfer,2005,48(16):3387-3401.
    [144]Pierson H O,Lieberman M L.The chemical vapor deposition of carbon on carbon fibers.Carbon,1975,13(5):159-164.
    [145]Hiroshi Hatta,Ken Goto,Shinya Ikegaki,etal.Aly-Hassan and Hiroyuld Hamada.Tensile strength and fiber/matrix interfacial properties of 2D-and 3D-carbon/carbon composites.Journal of the European Ceramic Society,2005,25(4)1:535-542.
    [146]Donal L S.Unique applications of carbon /carbon composite materials.SAMPE Journal,1999,35(3):27-39.
    [147]Lieberman M L,Pierson H O.Effect of gasphase conditions on resultant matrix pyrocabons in carbon/carbon composites.Carbon,1974,12:233-241.
    [148]Lavenac J,Langlais F,FeA,ron O,etal.Mierostructure of the PyC matrix in carbon/carbon composites.Compos.Sci.Technol.,2001;61:339-345.
    [149]陈腾飞,龚伟平,刘根山,等.基体炭结构对炭/炭复合材料的界面结合强度的影响.矿冶工程,2004,24(1):77-79.
    [150]张福勤,黄伯云,黄启忠,等.C/C复合材料断口热解炭及其界面形貌SEM分析,矿冶工程,2002,22(3):93-95.
    [151]William Byron Avery.A study of the mcchianicalbehavior of a 2-D carbon-carbon composite:Doctor Dcsertation.Virginia:Virginia Polytechnic Institute and state University,1987.
    [152]王作良.喷管热防护的有限元数值分析:[硕士学位论文],哈尔滨:哈尔滨工程大学,2006.
    [153]黄海明,杜善义,吴林志,等.C/C复合材料烧蚀性能分析.复合材料学报,2001,18(3).8:76-80.
    [154]维尼茨基A.M著,王罗禹,于龙淮译.固体火箭发动机的结构与试验.北京:国防工业出版社,1985
    [155]郑亚等.固体火箭发动机传热学.北京:北京航空航天大学出版社,2005.
    [156]田四朋,唐国金,李道奎,等.固体火箭发动机喷管结构完整性分析.固体火箭技术,2005,28(3):180-183.
    [157]Song Gui-Ming,Zhou Yu,Wang Yu-jin.Effect of carbide particles on the ablation properties of tungsten composites Materials Characterization,2003,50:293-303.
    [158]Williams S D,Curry D M,Chao D C.Ablation analysis of the Shuttle orbiter oxidation rotected reinforced carbon--carbon,in:6th AIAA/ASME Jiont Thermophysics and Heat Transfer Conference,Colorado Springs CO,1994.
    [159]Zien T F.Thermal effects of particles on hypersonic ablation in:35th AIAA thermophysics conference,Anaheim,CA,2001.
    [160]Curry D M,Norman I,Chao D C,etal.Oxidation of hypervelocity impacted reinforeced carbon-carbon.In:33~(rd)themaophysics Conference,Norfolk,VA,1999.
    [161]汪志诚.热力学·统计物理.北京:高等教育出版社,1993.
    [162]韩杰才.多向碳/碳复合材料超高温力学性能与为结构演化:[博士学位论文],哈尔滨:哈尔滨工业大学,1992.
    [163]杨鸿.超声速湍流平板烧蚀试验技术研究:[硕士学位论文],长沙:国防科技大学,2005.
    [164]刘志刚,张巨生,韩杰才.碳基复合材料超高温热化学烧蚀产物分析.炭素,2005,(21):21-25.
    [165]肖育民,王克秀,虞企鹤.C/C材料的烧蚀机制分析,西北工业大学学报,1992,10(1):22-27.
    [166]Dimitrienko YU I.Thermal stresses and heat-mass transfer in ablating composite materials,International Journal of Heat and Mass Transfer,1995,38(1):139-146.
    [167]Han J C,He X D,Du S Y,Oxidation and ablation of 3D carbon-carbon composite at up to 3000 ℃.Carbon,1994,33(4):473-478.
    [168]张志成.高超声速气动热和热防护.北京:国防工业出版社,2003.
    [169]王伟,王德升.喷管扩张段绝热层的烧蚀计算.固体火箭技术,1999,22(3):16-19.
    [170]Ramesh Kumar R,Vinod G,Renjith S,etal.Thermo-structural analysis of composite structure,Materials Science and Engineering A,2005,412:66-70.
    [171]张吉瑞译.固体货架发动机设计基础.兵器工业部210研究所,1982.
    [172]Borie V.An Aerothermal mechanical analysis of carbon-carbon nozzle regression in solid-propellant rocket motors,AAIA-88-3346
    [173]Robert C.Bunker,Andrew Prince.Hybrid rocket motor nozzle material predictions and results.AIAA 28~(th)Joint propulsion conference and exhibit,Nashville TN,1992,6-8.
    [174]Gajiwala H M.,Vaidya U K,Sodah S A,etal.Hybridized resin matrix approach applied for development of carbon/carbon composites-I.Carbon,1998,36(7-8):903-912
    [175]Tong Qingfeng,Shi Jingli,Song Yongzhong,etal.Resistance to ablation of pitch-derived ZrC/C composites,Carbon,2004,42:2495-2500.
    [176]Schubert W D.Aspects of research and development in tungsten and tungsten.alloysInternational Journal of Refractory Metals and Hard Materials,1992,11(3):,151-157.
    [177]Luthin J,Linsmeier Ch.Influence of oxygen on the carbide formation on tungsten,Journal of Nuclear Materials.2001(290-293):121-125.
    [178]王俊山,李仲平,敖明,等.掺杂难熔金属碳化物对炭/炭复合材料烧蚀微观结构的影响.新型炭材料,2005,20(2):97-102.
    [179]黄海明,高锁文.含金属丝碳/碳复合材料的烧蚀产物.北京交通大学学报,2006,30(4):11-14.
    [180]Young-Jae Lee,Hyeok Jong Joo.Ablation characteristics of carbon fiber reinforced carbon(CFRC)composites in the presence of silicon carbide(SIC)coating.Surface and oatingsTechnology,2004,180-181(1):286-289.
    [181]He Hanwei,Zhou Kechao,Xiong Xiang,etal.Investigation on decomposition mechanism of tantalum ethylate precursor during formation of TaC on C/C composite material.Materials Letters,2006,60(28:3409-3412.
    [182]Chakraborty Niloy,Ficher Werner,Gupta Amit Das,etal.Performance of conventional CSZP-based ceramic coating on oxidation of carbon-carbon composites.Surface and Coatings Technology,2006,201(3-4):1152-1159.
    [183]王林山.RMI法制备C/C-SiC复合材料及其性能的研究:[硕士学位论文],长沙:中南大学,2003.
    [184]W.D.金格瑞著.清华大学无机非金属材料教研组翻译.陶瓷导论,北京:中国建筑工业出版社,1982.
    [185]汤素芳.C/C和C/C-UHTC复合材料烧蚀机理研究:[博士学位论文],沈阳:中国科学院金属研究所,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700