用户名: 密码: 验证码:
热塑性聚合物(PVC, PPS)纳米复合材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国聚氯乙烯(PVC)产量占通用塑料的30%以上,PVC的阻燃、抑烟为国家强制性标准,但现有的阻燃抑烟添加剂很难达到要求。特种工程塑料之首的聚苯硫醚(PPS)是目前唯一可以熔融纺丝的高性能纤维,但其紫外光(UV)稳定性很差,在室外使用时纤维、薄膜等制品的外观和使用性能显著下降,但目前尚无合适的抗UV添加剂。PVC、PPS等热塑性聚合物分子结构上存在的弱键,导致在高温或UV作用下发生降解,严重影响了材料的加工和使用性能。
     本文通过热塑性聚合物(PVC、PPS)纳米复合材料的制备改进PVC材料的阻燃、抑烟性能和PPS材料的UV稳定性。
     首次采用层状纳米水滑石(HT)和纳米氧化锌(ZnO)作为复合添加剂(HT-ZnO),制备了PVC纳米复合阻燃抑烟材料。通过TEM、TGA和裂解-气-质色谱(Py-GC-MS)等方法系统研究了纳米HT-ZnO复合添加剂的组成、含量对PVC材料阻燃、抑烟和力学性能的影响。同时以纳米氧化铈(CeO_2)、氧化钛(TiO_2)为紫外光稳定剂制备了PPS纳米复合材料,通过SEM、FTIR、DSC、DMA等方法研究了纯PPS及其纳米复合材料UV老化过程中分子结构、结晶结构和力学性能的变化规律,探讨了纳米CeO_2、TiO_2对PPS UV老化和结晶动力学的影响。
     PVC纳米复合材料的阻燃、抑烟研究结果表明:当HT/ZnO为3:2时,复合添加剂在阻燃和抑烟性能上具有明显的协同效应。当HT/ZnO为3:2、HT-ZnO加入量为5%时,其在PVC中具有较好的分散性,软质PVC和建筑硬质PVC纳米复合材料均具有优异的阻燃、抑烟综合性能,极限氧指数比对照样提高了28-49%,烟密度等级比对照样下降了27-29%。软质PVC纳米复合材料的极限氧指数达到32.5%,烟密度等级达到70.1,这两项指标均达到GB8624-1997热塑性塑料难燃级材料(B_1)的要求;建筑硬质PVC纳米复合材料的开始发烟时间比对照样推近了15秒,最大烟密度下降了16%,极限氧指数达到64.0%,烟密度等级达到63.2,两项指标均明显优于国标。
     纳米HT-ZnO复合添加剂的抑烟机理为能量移除和可燃物减少两方面的协同效果。在能量移除方面包括两部分:一是纳米HT结构自身脱去层间水吸收的能量和羟基、碳酸根分解生成大量的水和二氧化碳吸收的能量;二是纳米HT受热分解后生成的金属氧化物参与PVC分解过程中的反应,吸收体系中的能量。在可燃物减少方面主要是ZnO加速了PVC脱去HCl的反应,并控制形成反式多烯结构,进而发生交联反应形成焦炭层,从而阻止苯等芳香族化合物的生成,降低可燃物的释放。能量移除和可燃物减少两方面的协同作用,使纳米HT-ZnO复合组分具有显著的阻燃抑烟效果。本阻燃抑烟机理对阻燃聚合物材料的研究具有重要的参考价值。
     PPS及其纳米复合材料的UV老化研究表明:PPS薄膜经过200小时光照后,薄膜表面的分子链明显降解,但交联反应不明显,薄膜的相对结晶度下降;纳米CeO_2对PPS的UV降解具有长效的抑制作用,在8%含量范围内抑制作用与纳米CeO_2含量成正比;纳米CeO_2也明显阻止了PPS因UV老化引起的结晶结构的变化。纳米TiO_2在200h的光照时间内可以很好地阻止PPS分子链的紫外光降解,但随着UV老化时间的增加,其作用明显下降。通过PPS材料UV老化过程中IR吸收峰与老化时间的变化关系曲线,确定了老化过程中新的吸收峰1418cm~(-1)是PPS光老化降解生成的低聚物的特征吸收峰。随着UV光照时间的延长,PPS及其纳米复合材料薄膜的储能模量均出现先增后减的趋势,纳米CeO_2、TiO_2对PPS材料UV老化后的力学性能影响不大。研究结果为PPS抗紫外添加剂的开发开辟了新的研究方向。
     PPS/纳米(CeO_2、TiO_2)复合材料的等温和非等温结晶动力学研究结果表明:PPS纳米复合材料在不同结晶温度的结晶过程均为异相成核,纳米CeO_2、TiO_2起到了明显的异相成核作用;PPS纳米复合材料的结晶活化能均小于纯PPS,随着纳米CeO_2、TiO_2含量的增加,结晶活化能降低。莫志深方程较好地描述了PPS纳米复合材料的非等温结晶过程,纳米CeO_2、TiO_2的加入粒子改变了PPS的结晶方式,加速了PPS的结晶速度,使PPS达到相同的相对结晶度所需的冷却速率较小。研究结果对制备PPS工程塑料和高性能纤维加工过程中的结构和性能控制具有重要的作用。
The yield of PVC occupies more than 30% market of general plastics. The flame retardance and smoke suppression of PVC are important assessed values in the state compulsory standard. However, it is difficult to reach the standard. Poly (phenylene sulfide) (PPS) is one of the most important engineering polymers. It is the only high performance fiber which can be made by melt spinning as well. The appearance and usage property of PPS fiber, film, etc. will be deteriorated in natural weather, during the UV irradiation period. There is any suitable UV-resistant additive as yet. For the weak bond in the molecular chain, some thermoplastic polymers such as PVC, PPS, etc. will be degraded in high temperature or UV radiation, which will lead to decline in proceeding and performance.
     The flame retardance and smoke suppression of PVC and UV stability of PPS were modified by thermoplastic polymer (PVC, PPS) nanocomposites prepared in this thesis.
     Layer nano-Hydrotalcite (HT) and nano-zinc dioxide (ZnO) (HT-ZnO) were used to improve flame retardant and smoke suppressant properties for PVC material for the first time. Flame retardant, smoke suppressant and mechanical properties of PVC were investigated by TEM, TGA and Py-GC-MS. PPS/nano-CeO_2 and PPS/nano-TiO_2 composites were prepared. The changes of molecular structure, crystallization and mechanical properties by UV radiation for PPS nanocomposites were investigated by SEM, FTIR, DSC, DMA. Isothermal crystallization kinetics and non-isothermal crystallization kinetics of PPS nanocomposites were described as well.
     The results indicated that nano-HT and nano-ZnO had an effective synergistic effect on the flame retardance and smoke suppression of PVC as their ratio is 3:2. As the ratio of HT/ZnO is 3:2, the nanocomposite loading 5% HT-ZnO, nano-particles are dispersed considerably, which makes slightly influence for mechanical property of PVC. Flexible PVC nanocomposite and structural rigid PVC nanocomposite exhibit good combination properties of flame retardance and smoke suppression, the limited oxygen index (LOI) increases 28-49%, and smoke density rank (SDR) decreases 27-29%, comparing with PVC. The LOI and SDR of flexible PVC nanocomposite are 32.5% and 70.1, respectively. The LOI and SDR of structural rigid PVC nanocomposite are 64.0% and 63.2, respectably. Smoke generating time of structural rigid is postponed 15s; the most smoke density decreases 16% as well. Flexible PVC and structural rigid PVC nanocomposites reach the flame retardence and smoke suppression standard.
     The mechanism of smoke suppression for nano HT-ZnO is the synergistic effect on the energy removal and combustible reduce. The energy removal contains two parts: one is that the nano-HT can release water as well as CO_2 during its thermal decomposition, which undergoes high heat absorption; the other is that the metal oxide (MO) from degraded nano-HT reacts with the compounds from decomposed PVC, which absorbs the heat. ZnO can effectively accelerate the decomposition of PVC to release HCl and control the spatial structures of the decomposed products to trans-conjugated polyene sequences, which form cross-linked structures by Diels-Alder reaction and Friedel-Crafts reaction. Combustible aromatic compounds cannot easily be released. This mechanism has significant reference value for flame retardant polymer materials.
     PPS has been degraded obviously in the film surface after 200h UV radiation, relative crystallinity decreases as well, but cross-link reaction can't be observed clearly. Nano-CeO_2 evidently retards the degradation of PPS by UV irradiation in whole time. The higher nano-CeO_2 content, the lower oligomers produced. Nano-CeO_2 prevents the crystal change of PPS caused by UV irradiation effectively. Nano-TiO_2 can effectively retards the degradation of PPS by UV irradiation within 200h UV radiation, but the retarded function decreases rapidly with the UV radiation time increasing. The peak of 1418cm~(-1) is made sure to be the absorbance of oligomer of PPS by the relationship of IR relative intensity and UV radiation time. The storages of PPS and nanocomposites film increases at first and decreases later as the UV radiation time increasing. The mechanical property is influenced slightly by nano-CeO_2 and nano-TiO_2. The results create a new field of PPS UV-resistant additives.
     Results showed that the crystallization of all nanocomposites is heterogeneous nucleation. Nano-CeO_2 and nano-TiO_2 are the effective nucleating agents. Crystallization activation energy of nanocomposites is lower than that of PPS. The crystallization activation energy decreases as the nano-particle content increasing. Non-isothermal crystallization processes of nanocomposites are properly described by Mo equation. The crystallization style of PPS is changed by nano-particle. The crystallization rate needed to get the relative crystallinity is lower for nanocomposite. compared to PPS. The results have important function in controlling crystallization and property of PPS engineering plastic and high performance fiber in the processing.
     Author Zhang Zhonghou(Materials Science and Engineering) Supervised by Prof. Zhu Meifang
引文
1.中蓝晨光化工研究院《塑料工业》编辑部.2006-2007年世界塑料工业进展[J].塑料工业,2008,36(3):1-22.
    2.廖正品.中国塑料制品行业发展趋势与市场分析[J].国外塑料,2008,26(4):22-30.
    3. Levchik, S.V. and Weil, E. D. Overview of the recent literature on flame retardancy and smoke suppression in PVC [J]. Polym. Adv. Technol. 2005, 16: 707-716.
    4. Sharma, S. K. and Saxena, N. K. Flame retardant and smoke suppressant protection for polyvinylchloride [J]. Fire Technol. 2004, 40: 385-398.
    5. Hawkins, R. T. Chemistry of the cure of poly (p-phenylene sulfide) [J]. Macromolccules, 1976,9:189-194.
    6. Das, P. K.; DesLauriers, P. J.; Fahey, D. R.; Wood, F. K. and Cornforth, F. J. Photodegradation and photostabilization of poly(p-phenylene sulfide). Part2. UV induced physicochemical changes [J]. Polym. Degrad. Stabil. 1995. 48: 11-23.
    7. Ryan, J. V.; Berry, A. D.; Anderson, M. L.; Long, J. W.; Stroud, R. M.; Cepak, V. M.; Browning, V. M.; Rolison, D. R. and Merzbacher C. I. Electronic connection to the interior of a mesoporous insulator with nanowires of crystalline RuO_2[J]. Nature 2000: 406, 169-172.
    8. Zhang, Q.; Chang Z.; Zhu, M.; Mo, X. and Chen, D. Electrospun carbon nanotube composite nanofibres with uniaxially aligned arrays [J]. Nanotechnology, 2007, 18(11): 115-116.
    9. Sasha S.; Dmitriy, A. D.; Geoffrey, H. B.; Dommett, K. M; Kohlhaas, E. J.; Zimney, E. A.; Stach, R. D.; Piner, S. T.; Nguyen, R. S. Graphene-based composite materials [J]. Nature 2006, 442: 282-286.
    10. Zhu, M.; Liu Y.; Sun, B.; Zhang, W.; Liu, X.; Yu, H.; Zhang, Y; Dirk, K.; Hans-Juergen. P. A. A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation [J]. Macromolecular Rapid Comm. 2006, 27(13): 1023-1028.
    11.Zhang,Q.;Tolga,A.;Jonathan,R.T.;Scott,B.M;Vladimir,B.;Nurmikko,A.V.Highly efficient resonant coupling of optical excitations in hybrid organic/inorganic semiconductor nanostructures[J].Nature Nanotechnology 2007,2:555-559.
    12.Ramanathan,T.;Abdala,A.A.;Stankovich,S.;Dikin,D.A.;Herrera-Alonso,M;Piner,R.D.;Adamson,D.H.;Schniepp,H.C;Chen,X.;Ruoff,R.S.;Nguyen,S.T.;Aksay,I.A.;Prud'Homme,R.K.;Brinson,L.C.Functionalized graphene sheets for polymer nanocomposites[J].Nature Nanotechnology,2008,3:327-331.
    13.Hussain,F.;Hojjati,M.;Okamoto,M.;Gorga,R.E.Review article:Polymer-matrix Nanocomposites,Processing,Manufacturing,and Application:An Overview[J].J.Compos.Mater.2006,40:1511-1575.
    14.Okamoto,M.Recent advances in polymer/layered silicate nanocomposites:an overview from science to technology[J].Mater.Sci.Technol.2006,22:756-779.
    15.Dzenis,Y.Spinning Continuous Fibers for Nano-technology[J].Science,2004,304:1917-1919.
    16.Scrosati,B.Nanomaterials:Paper powers battery breakthrough[J].Nature Nanotechnology,2007,2:598-599.
    17.Pike,R.D.;Starnes,.W.H.;Jr.Jeng,J.P.Low-yalent metals as reductive cross-linking agents:a new strategy for smoke suppression of poly (vinyl chloride)[J].Macromolecules,1997,30:6957-6965.
    18.Mohsen,M.;Mostafa,N.;Rashad,S.M.;Ayoub,A.;Salem,E.F.Nano-free volume characterization by positron annihilation lifetime technique in flame-retardant poly (vinyl chloride) after thermal treatment[J].Radiat.Phys.Chem.2007,76:153-156.
    19.Wu,W.;Qu,H.;Li,Z.;Yuan,H.Thermal Behavior and Flame Retardancy of Flexible Poly(vinyl chloride) Treated With Zinc Hydroxystannate and Zinc Stannate[J].J.Vinyl Addit.Techn.2008,DOI 10.1002/vnl.20123.
    20.Shen,K.K.;Kochesfahani,S.and Jouffret,F.Zinc borates as multifunctional polymer additives[J].Polym.Adv.Technol.2008,19:469-474.
    21.Coaker,A.W.Fire and flame retardants for PVC[J].J.Vinyl Addit.Techn.2003,9:108-115.
    22.Sinmazcelik,T.Natural weathering effects on the mechanical and surface properties of polyphenyiene sulfide (PPS) composites [J]. Mater. Design, 2006, 27:270-277.
    23.GB 8624-1997,建筑材料燃烧性能分级方法[S].北京:中国标准出版社,1997.
    24. Costa, L.; Goberti, P.; Paganetto, G; Camino, G; Sgarzi P. Thermal behaviour of chlorine-antimony fire-retardant systems [J]. Polym. Degrad. Stab. 1990, 30: 13-28.
    25. Cullis, C. F.; Hirchler, M. M. The combustion of organic polymers [M]. Clarendon Press: Oxford, 1981.
    26.王海,国占生,徐建中.SnO_2和SiO_2用于PVC的阻燃消烟及协同作用[J].中国塑料,2005,19(6):86-90.
    27.王建荣,唐小勇,欧育湘.锡酸锌对软聚氯乙烯的阻燃和抑烟作用[J].中国塑料,2003,17(4):76-78.
    28. Xu, J. Z.; Zhang, C.Y.; Qu, H. Q. Zinc hydroxystannate and zinc stannate as flameretardant agents for flexible poly (vinyl chloride) [J]. J. Appl. Polym. Sci. 2005. 98 (3): 1469-1475.
    29. Tian, C. M; Wang, H.; Ma, Z. G. Low-melting sulfate glasses as additives to semirigid PVC and their flame retardant and smoke suppressant properties [J]. J. Vinyl Addit. Techn. 2003, 9: 69-80.
    30.田春明,王海,郭花枝.低熔点硫酸盐对软质PVC的阻燃与消烟性能研究[J].中国塑料,2003,17(2):84-89.
    31. Starns Jr, W. H. and Edelson, D. Mechanistic aspects of the behavior of molybdenum(Ⅵ) oxide as a fire-retardant additive for poly(vinyl chloride).an interpretive review [J]. Macromolecules, 1979, 12:797-802.
    32. Carty, P. and White, S. Flammability studies on plasticised chlorinated poly(vinyl chloride) [J]. Polym. Degrad. Stab. 1999, 63: 455-463.
    36. William, C. A. Fire and Flame Retardants for PVC [J]. J. Vinyl Addit. Techn. 2003, 9:108-115.
    37. 郭栋,王建祺.八钼酸蜜胺、Cu_2O与Fe_2O_3对PVC协同抑烟作用的研究[J].高分子材料科学与工程,2001,17(3):87-91.
    38. Sharma, S. K. and Saxena, N. K. Flame retardant smoke suppressant protection for poly vinylchloride [J]. Fire Technol. 2004, 40(4):385 - 398.
    39. Griffin E. R. High molecular weight flexibilizers in low smoke flame retardant PVC compounds [J]. Society of Plastics Engineers Technical Papers, Conference Proceedings, 2000, (1):3357 - 3361.
    40. Ning, Y. and Guo, S. Flame-retardant and smoke-suppressant properties of zinc borate and aluminum trihydrate-filled rigid PVC [J]. Journal of Applied Polymer Science, 2000,77:3119-3127.
    41. Basfar, A. A. Effect of various combinations of flame-retardant fillers on flammability of radiation cross-linked poly(vinyl chloride) (PVC) [J]. Polym. Degrad. Stab. 2003, 82: 333-340.
    42. Pi, H.; Guo, S. and Ning, Y. Mechanochemical improvement of the flame-retardant and mechanical properties of zinc borate and zinc borate-aluminum trihydrate-filled poly(vinyl chloride) [J]. J. Appl. Polym. Sci. 2003; 89: 753-762.
    43. Kadakia, V; Brookman, R. S.; Patel, R.; Andries, J. C. and Cox, M. PCT Patent Application WO 04/058865, 2004.
    44. Thomas, N. L. Zinc compounds as flame retardants and smoke suppressants for rigid PVC [J]. Plast. Rubber Compos. 2003, 32: 413-419.
    45. Starnes Jr, W. H.; Pike, R. D.; Cole, J. R.; Doyal, A. S.; Kimlin, E. J.; Lee, J. T.; Murray, P. J.; Quinlan, R. A. and Zhang, J. Cone calorimetric study of copperpromoted smoke suppression and fire retardance of poly(vinyl chloride) [J]. Polym. Degrad. Stab. 2003, 82: 15-24.
    46. Moy, P. Y. and De Kleine, L. A. PCT Patent Application WO 04/000925, 2004.
    47. Moy, P. Y. and De Kleine, L. A. PCT Patent Application WO 04/099305, 2004.
    48. Xu, Z. P.; Saha, S. K.; Braterman, P. S. and D'Souza, N. The effect of Zn, Al layered double hydroxide on thermal decomposition of poly(vinyl chloride) [J]. Polym. Degrad. Stab.2006,91:3237-3244.
    49.黄宝晟,李峰,张慧.纳米双羟基复合金属氧化物的阻燃性能[J].应用化学,2002,19(1):71-75.
    50.Liang. Z. M.; Wan, C. Y. and Zhang, Y. PVC/ Montmorillonite Nanocomposites Based on a Thermally Stable, Rigid - Rod Aromatic Amine Modifier [J]. J. Appl. Polym. Sci. 2004, 92(1): 567-575.
    51.Suprakas, S. R. and Masami, O. Polymer/layered silicate nanocomposites: a review from preparation to processing [J]. Prog. Polym. Sci. 2003, 28(11): 1539-1641.
    52.Beyer, G. Organoclays as flame retardants for PVC [J], Polym. Adv. Technol. 2008, 19: 485-488.
    53.Macskasi, L. Polyphenylene sulfide--a successful high performance engineering plastic [J]. Progr. Rubber Plast. Technol. 2000, 16: 269-278.
    54.王德禧.聚苯硫醚的特性及应用[J].塑料,2002,31(2):34-38.
    55.肖为维,徐僖.聚苯硫醚纤维研究[J].高分子材料科学与工程,1993,9(2):103-108.
    56. Edmonds, J. T. US Patent 3 354 129, 1967.
    57. Cambell, Robert. W. US Patent 3 919 177,1975.
    58. Miles, J. M. US Patent 3783138, 1974.
    59. Edmonds, Jr. US Patent 4 324 886, 1982.
    60. Hiroshi, M. EP Patent 0527005A2, 1993.
    61. Zimmerman, D.A.; Koenig, J.L. and Ishida, H. Polymerization of poly (p-phenylene sulfide) from a cyclic precursor [J]. Polymer, 1996, 37:3111-3116.
    62. Wang, Y F. and Hay, A. S. Synthesis and novel free radical ring-opening polymerization of macrocyclic oligomers containing an aromatic sulfide linkage [J]. Macromolecules, 1995, 28:6371-6374.
    63. Zuwachsraten, G. Polyphenylene sulfide (PPS) [J]. Kunststoffe, 2004, 10:119-121.
    64.柴国梁.国内外工程塑料市场分析报告[M].2005,中国工程塑料工业协会,北京, 39-68.
    65. Bahadur, S. and Sunkara, C. Effect of transfer film structure, position and bonding on the tribiological behavior of polyphenylene sulfide filled with nano-particle of TiO_2, ZnO, CuO and SiC [J]. Wear, 2005, 258:1411-1421.
    66. Moulder C. J., Bahadur S. Studies on the tribological and transfer flim-counterface bond strength of polyphenylene sulfide filled with nanoscale alumina particles [J]. Wear, 2000, 237:261-273.
    67. Cho, M. H. and Bahadur, S. Study of the tribological synergistic effects in nano CuO-filled and fiber-reinforced polyphenylene sulfide composites [J]. Wear, 2005, 258: 835-845.
    68. Lu, D.; Mai, Y. W.; Robert, K. Y. and Li, L. Y. Impact strength and crystallization behavior of mano-SiOx/poly (phenylene sulfide)(PPS) composites with heat- treated PPS [J]. Macromol. Mater. Eng. 2003, 288:693-698.
    69.张文栓,罗运军,宋海香.纳米SiO_2改性聚苯硫醚力学性能的研究[J].工程塑料应用.2003,31(8):4-6.
    70.张而耕,王志文.PPS/SiO_2纳米复合涂层的制备和性能测试[J].机械工程塑料,2003,27(5):36-38.
    71.朱怀远,余兴海,倪秀元.聚苯硫醚/纳米二氧化硅复合材料的非等温结晶动力学及动态力学性能[J].功能高分子学报,2005,18(4):635-641.
    72.朱怀远,余兴海,倪秀元.聚苯硫醚及纳米二氧化硅复合材料的等温结晶动力学[J].高分子材料科学与工程,2006,22(6):102-105.
    73. Wang, X. J.; Tong, W. and Huang, H. M. Preparation and properties of nanocomposite of poly(phenylene sulfide)/calcium carbonate[J]. Polym. Bull. 2006, 57:953-962.
    74.龙盛如,黄锐,杨杰.纳米CaCO_3/PPS共混物流变性能的研究[J].航空材料学报,2004,24(2):36-39.
    75.周洪庆,沈晓冬,刘敏.PPS基纳米复合介质制备与性能研究[J].电子元件与材料,2003,22(8):7-9.
    76. Yang, J.; Xu, T.; Lu, A.; Zhang, Q.; Tan, H. and Fu, Q. Preparation and properties of poly(p-phenylene sulfide)/multiwall carbon nanotube composites obtained by melt compounding [J]. Compos. Sci. Technol. (2008), doi:10.1016/j.compscitech. 2008.08.030.
    77. Saitoa, T.; Okamoto, M.; Hiroi, R.; Yamamoto, M. and Shiroi, T. Poly(p-phenylene sulfide)-based nano-composite formation: Delamination of organically modified layered filler via solid-state processing [J]. Polymer 2007: 48, 4143-4151.
    78.魏延志,陈彦模,张瑜,朱美芳.稀土在高聚物改性中的应用[J].高分子材料科学与工程,2005,21(1):52-56.
    79. Zhu, M. R; Xing, Q.; He, H. K.; Zhang, Y.; Chen, Y. M. Preparation of PA6/nano titanium dioxide (TiO_2) composites and their spinnability. Macromolecular Symposia [M].2003, 210:251-261.
    80.何厚康,张瑜,吴文华,蒋翀,朱美芳,陈彦模.PA6/纳米TiO_2复合物的制备及成纤性能[J].高分子材料科学与工程,2004,20(6):214-217.
    81.兰开东,孙宾,董卫卫,张瑜,陈彦模,朱美芳.原位生成法合成PET/纳米TiO_2
    复合材料:Ⅰ复合树脂的结构和性能表征[J].功能材料,2004,35(suppl.):2657-2660.
    82.孙宾,兰开东,董卫卫,张瑜,陈彦模,朱美芳.原位生成法合成PET/纳米TiO_2复合材料:Ⅱ复合纤维的结构和性能研究[J].功能材料,2004,35(suppl.):2661-2664.
    83.Zhang, Z. H.; Zhu, M. R; Sun, B.; Zhang, Q. H.; Yan, C. and Fang, S. The effect of hydrotalcite and zinc oxide on smoke suppression of commercial rigid PVC [J]. Journal of Macromolecular Science, Part A, 2006, 43(11): 1807-1814.
    84.Wang M, Zhu MF, Sun B. A new nano-structured flame-retardant poly(ethylene terephthalate) [J]. J. Macromol. Sci. A, 2006, 43(11), 1867-1875.
    85.Zhang, Z. H.; Yan, C. M. and Zhu, M. F. Thermal degradation of flame retardant and smoke suppressant PVC modified by hydrotalcite and zinc oxide. ICAFPM 2005, Vol.1: 621-625.
    86.Wang, M.; Zhu, M. R and Huang, N. X. Hydro-talc as inorganic flame-retardant additives in PET polymers. ICAFPM 2005, Vol.2: 870-875.
    1. Lattimer, R. P. and Kroenke, W. J. The functional role of molybdenum trioxide as a smoke retarder additive in rigid poly (vinyl chloride) [J]. J. Appl. Polym. Sci. 1981, 26: 1191-1210.
    2. Wu, C. H.; Chang C.Y. and Hor, J. L. Two-stage prolysis model of PVC [J]. Can. J. Chem. Eng. 1994, 72, 644-650.
    3. Pike, R.D.; Starnes, W. H. Jr. and Jeng, J. P. Low-valent metals as reductive crosslinking agents: a new strategy for smoke suppression of poly (vinyl chloride) [J]. Macromolecules, 1997, 30: 6957-6965.
    4. Ning, Y. and Guo, S.Y. Flame-retardant and smoke-suppressant properties of zinc borate and aluminum trihydrate-filled rigid PVC [J]. J. Appl. Polym. Sci. 2000, 77:3119-3127.
    5. Coaker, A.W. Fire and flame retardants for PVC [J]. J. Vinyl Addit. Techn. 2003, 9: 108-115.
    6. Li, B. Influence of polymer additives on thermal decomposition and smoke emission of poly (vinyl chloride) [J]. Polym. Degrad. Stab. 2003, 82: 467-476.
    7. Sharma, S.K. and Saxena, N.K. Flame retardant and smoke suppressant protection for polyvinylchloride [J]. Fire Technol. 2004, 40: 385-398.
    8. Levchik, S.V. and Weil, E. D. Overview of the recent literature on flame retardancy and smoke suppression in PVC [J]. Polym. Adv. Technol. 2005, 16: 707-716.
    9. GB 8624-1997,建筑材料燃烧性能分级方法[S].北京:中国标准出版社,1997.
    10.黄子铮,谢春灼,曹碧琰.超微细水合氧化铝(ATH)阻燃消烟剂在硬PVC塑料中的应用研究[J].合成材料老化与应用,1998,(2):1-3.
    11.贾修伟,纳米阻燃技术[M].北京:化学工业出版社,2005:14-125.
    12.黄宝晟,李峰,张慧等.纳米双羟基复合金属氧化物的阻燃性能[J].应用化学,2002,(1):71-75.
    13. Van der ven, L.; Van Gmert, M. L. M. and Batenberg, L.F. On the action of hydrotalcite-like clay materials as stabilizers in polyvinylchloride [J]. Appl. Clay Sci. 2000, 17:25-34.
    14. Wang, X. D. and Zhang, Q. Effect of hydrotalcite on the thermal stability mechanical properties rheology and flame retardance of poly (vinyl chloride) [J]. Polym. Int. 2004, 53: 698-707.
    15.郑秀婷,吴大鸣,刘颖,朱复华.PVC/纳米水滑石复合材料抑烟性研究[J].中国塑料,2003,7(8):36-38.
    16.王辉,包永忠,黄志明.聚氯乙烯/纳米水滑石复合材料的形态与力学性能[J].高分 子学报,2005,10:693~697
    17.郑秀婷,吴大鸣,刘颖,朱复华.纳米双羟基复合金属氧化物(LDH)对聚氯乙烯阻燃抑烟研究[J].塑料,2004,33(3):62-66.
    18. Zhang, Q. and Lu, J. Studies on thermal stability and property of PVC filled with hydrotalcite [J]. Chem. Res. Chinese U, 2002, 18(4): 424-426.
    19. Braun, D. Developments in Polymer Degradation [M]. vol.3 Applied Science Publishers, London, 1981: 101-133.
    20. Starnes, W. H. Jr. Structural and mechanistic aspects of the degradation of poly (vinyl chloride) [J]. Prog. Polym. Sci. 2002, 27: 2133-2170.
    21. McNeill, I. C; Memetta, L. and Cole, W. J. A study of the products of PVC thermal degradation [J]. Polym. Degrad. Stab. 1995, 49: 181-191.
    1. Coaker, A.W. Fire and flame retardants for PVC. J. Vinyl Addit. Techn. 2003, 9: 108-115.
    2. Carty, P.; Metcalfe, E. and Annison, W. N. The optimization of the smoke suppressant and flame retardant properties of flexible PVC [J]. J. Appl. Polym. Sci. 1990,41:901-906.
    3. Costa, L.; Goberti, P.; Paganetto, G. and Camino, G. Thermal behaviour of chlorine-antimony fire-retardant system [J]. Polym. Degrad. Stab. 1990, 30: 13-28.
    4. O'Mara, M. M.; Ward, W.; Knechtges, D. P. and Meyer, R. J. Flame Retardant Polymeric Materials, vol.1 Marcel Dekker: New York, 1973: 193-273.
    5. Touchette, N. W. Handbook of Polyvinyl Chloride Formulating, Wiley: New York, 1993:275-276.
    6. Jakupca, M. R.; Harr, M. E. and Jennings, T. ANTEC Conf. Proceedings, Orlando, F.L., 2000, vol.3: 3083-3085.
    7. Li, B. A study of the thermal decomposition and smoke suppression of poly (vinyl chloride) treated with metal oxides using a cone calorimeter at a high incident heat flux [J]. Polym. Degrad. Stab. 2002, 78: 349-356.
    8. Tian, C. M.; Qu, H. Q.; Wu, W. H.; Guo, H. Z. and Xu, J. Z. Metal chelaes as flame retardants and smoke suppressants for flexible poly(vinyl chloride) [J]. J. Fire Sci. 2004,22:41-51.
    9. 黄小葳.阻燃抑烟剂对软聚氯乙烯材料燃烧性能的影响[J].现代化工,2005,(5):29-31.
    10. Carty. P. and White, S. Flammability studies on plasticized chlorited poly (vinyl chloride) [J]. Polym. Degrad. Stab. 1999, 63: 455-463.
    11. McHowe, A. W. and Kroenke, W. J. US Patent 4 053 453, 1977.
    12. Kroenke, W. J. Metal smoke retarders for poly (vinyl chloride) [J]. J. Appl. Polym. Sci. 1981,26:1167-1190.
    13. Li, B. and Wang, J. Q. A cone calorimetric study of flame retardance and smoke emission of PVC. 1. The effect of cuprous and molybdic oxide [J]. J. Fire Sci. 1997, 15:341-357.
    14.郭栋,王建棋.八钼酸密胺、Cu_2O与Fe_2O_3对PVC协同抑烟作用的研究[J].高分子材料科学与工程,2001,(3):87-90.
    15. Baggaley, R. G.; Hornsby, P. R. and Yahya, R. The influence of novel Zinc hydroxystannate-coated fillers on the fire properties of flexible PVC [J]. Fire Mater. 1997,21: 179-185.
    16.赵芸,段雪.镁基高抑烟纳米阻燃剂在高分子材料中的应用研究[J].塑料,2002,(4):57-63.
    17. Lin, Y. J.; Li, D. Q. and Evans, D. G. Modulating effect of Mg-Al-CO3 layered double hydroxides on the themal stability of PVC resin [J]. Polym. Degrad. Stab. 2005, 88: 286-293
    18.杜以波,何静,李峰.水滑石及柱撑水滑石的制备和表征[J].北京化工大学学报,1997,24:76-81.
    19. Cavani, F.; Trifiro, F. and Vaccari, A. Hydrotalcite-type anionic clays: preparation, properties and applications [J]. Catal.Todyay, 1991, 11: 173-301.
    20. Lattimer, R. P. and Kroenke, W. J. The functional role of molybdenum trioxide as a smoke retarder additive in rigid poly (vinyl chloride) [J]. J. Appl. Polym. Sci. 1981.26:1191-1210.
    1.杨丽庭,高俊刚,李燕芳,改性聚氯乙稀新材料[M],北京:化学工业出版社,2002:1-6.
    2. Levchik, S.V. and Weil, E. D. Overview of the recent literature on flame retardancy and smoke suppression in PVC [J]. Polym. Adv. Technol. 2005, 16: 707-716.
    3. Carty, P. Iron-containing compounds as flame retarding/smoke-suppressing additives for PVC [J]. Fire Mater. 1988, 12:109-113.
    4. Joseph, G. Mechanisms of flame retardancy and smoke suppression-a review [J]. J. Fire Sci. 1996, 14:426-442.
    5. Innes, J. D. and Cox, A.W. Smoke: test standard, mechanisms, suppressants [J]. J. Fire Sci. 1997, 15:227-239.
    6. Lu, L.F.; Price, D. and Milnes, G. J. GC/MS studies of ABS/CPVC blends [J].Polym. Degrad. Stab. 1999, 64: 601-603.
    7. Sharma, S. K. and Saxena, N. K. Flame retardant smoke suppressant protection for poly vinylchloride [J]. Fire Technol. 2004, 40: 385-398
    8. Ma, S. B.; Lu, J. and Gao, J. S. Study on the pyrolysis dechlorination of PVC waste [J]. Energ. Source, 2004, 26: 387-396.
    9. Menachem, L. Unsolved problem and unanswered questions in flame retardance of polymers [J]. Polym. Degrad. Stab. 2005, 88: 13-19.
    10. Behnisch, J.; Zimmermann, H. and Anders, H. The influence of tacticity on the thermal degradation of PVC [J]. Polym. Degrad. Stab. 1985, 13: 113-119.
    11.郑秀婷,刘颖,吴大鸣.层柱状双羟基纳米复合金属氧化物对聚氯乙烯的阻燃抑烟作用[J].塑料工业,2002,30(5):40-41.
    12.Van der ven, L.; Van Gmert, M. L. M. and Batenberg, L.F. On the action of hydrotalcite-like clay materials as stabilizers in polyvinylchloride [J]. Appl. Clay Sci. 2000, 17:25-34.
    13.McNeill, I. C; Memetta, L. and Cole, W. J. A study of the products of PVC thermal degradation [J]. Polym. Degrad. Stab. 1995, 49: 181-191.
    1. Starnes, W. H. Jr. Structural and mechanistic aspects of the thermal degradation of poly (vinyl chloride) [J]. Prog. Polym. Sci. 2002, 27: 2133-2170.
    2. Rogestedt, M. and Hjertberg, T. Effect of aluminium chloride on the thermal degradation of poly (vinyl chloride) [J]. Polym. Degrad. Stab. 1994, 45: 19-25.
    3. Turcsanyi, B.; Tudos, F.; Mrazek, Z. and Lukas, R. Thermal degradation of vinyl chloride/α-olefin copolymers [J]. Int. J. Polym. Mater. 1990, 13: 147-156.
    4.杨丽庭,高俊刚,李燕芳.改性聚氯乙稀新材料[M].北京,化学工业出版社,2002:37-41.
    5.钟世云,许乾慰,王公善.聚合物的降解与稳定,北京,化学工业出版社,2002:71-75.
    6. Levchik, S. V. and Weil, E. D. Overview of the recent literature on flame retardancy and smoke suppression in PVC [J]. Polym. Adv. Technol. 2005, 16: 707-716.
    7. Pike, R. D.; Starnes, W. H. Jr. and Jeng, J. P. Low-valent metals as reductive cross-linking agents: a new strategy for smoke suppression of poly (vinyl chloride) [J]. Macromolecules, 1997, 30: 6957-6965.
    8. Lattimer, R. P. and Kroenke, W. J. The functional role of molybdenum trioxide as a smoke-retardant additive in rigid PVC, 3th international symposium on PVC, Cleveland, USA, 1980: 10-15.
    9.欧育湘,吴俊浩,王建荣.聚氯乙稀的还原偶联抑烟剂[J].高分子材料科学与工程,2003,19(4):6-9.
    10.皮红,郭少云.过渡金属氧化物对PVC抑烟机理的ESCA研究[J].高分子材料科学与工程,2005,21(3):164-168.
    11.俞卫华,倪哲明,郭志强.LDHs材料制备技术研究进展[J].浙江工业大学学报,2004,32(3):306-310.
    12.郑秀婷,吴大鸣,刘颖,朱复华.PVC/纳米水滑石复合材料抑烟性研究[J].中国塑料,2003,7(8):36-38
    13.王岩,舒文晓,包永忠.聚氯乙烯水滑石纳米复合材料热稳定性和燃烧烟密度的研究[J].中国塑料,2007,21(3):40-43.
    14. Cavani, F; Trifiro, F. and Vaccari, A. Hydrotalcite-type anionic clay: preparation properties and application [J]. Catal. Today, 1991, 11: 173-301.
    15. Reichle, W. T. and Kang, S. Y. Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite) [J]. Solide State Ionics, 1986, 22: 135-141.
    1. Cebe, P. Review of recent developments in poly (phenylene sulfide) [J]. Polym. Compos. 1995,3/4:239-65.
    2. Macskasi, L. Polyphenylene sulfide-a successful high performance engineering plastic [J]. Progr. Rubber Plast. Technol. 2000, 16: 269-278.
    3. Srinivasan, R.; Ricci, N.; Carr, M. and Ferguson, D. Engineering polymers in nonwovens:Higher performing grades of ETPs, such as linear polyphenylene sulfide and polybutylene sulfide offer a wide range of options for nonwovens [J]. Nonwovens Industry, 2002, 12: 72-76.
    4. Xiao, W. and Xu, X. Morphology of fibers from polyphenylene sulfide and its liquid crystallinity [J]. Polym. Int. 1994, 34: 19-22.
    5. Cole, K. C; Noel, D. and Hechler, J.-J. Crystallinity in PPS-carbon composites: a study using diffuse reflection FT-IR spectroscopy and differential scanning calorimetry [J]. J. Appl. Polym. Sci. 1990, 39: 1887-1902.
    6. Tanthapanichakovn, W.; Hata, M.; Nitta, K.; Furuuchi, M. and Otani, Y. Mechanical degradation of filter polymer materials: polyphenylene sulfide [J]. Polym. Degrad. Stab. 2006, 91:2614-2621.
    7. Vives, V. C; Dix, J. S. and Brady, D. G. Polyphenylene sulfide (PPS) in harsh environments [J]. ACS. Symp. Ser. 1983, 299: 65-85.
    8. Das, P. K.; DesLauriers, P. J.; Fahey, D. R.; Wood F. K. and Cornforth, F. J. Photodegradation and photostabilization of poly(p-phenylene sulfide). 1. laser flash photolysis studies of model compounds [J]. Macromolecules, 1993, 26: 5024-5029.
    9. Das, P. K.; DesLauriers, P. J.; Fahey, D. R.; Wood F. K. and Cornforth, F. J. Photodegradation and photostabilization of poly(p-phenylene sulfide). Part 2. UV induced physicochemical changes [J]. Polym. Degrad. Stab. 1995, 48: 11-23.
    10. Das, P. K.; DesLauriers, P. J.; Fahey, D. R.; Wood F. K. and Cornforth, F. J. Photostabilization of poly(p-phenylene sulfide) [J]. Polym. Degrad. Stab. 1995, 48(1), 1-10.
    11. Osawa, Z.; Kuroda, S.; Kobayashi, S. and Tanabe, F. Photodegradation mechanisms of poly (p-phenylene sulfide) and its model compounds [J]. Polymer Durability, Polymer Durability: Degradation, Stabilization and Lifetime Prediction. American Chemical Society, 1996, 127-138.
    12. DesLauriers, P. J.; Gelbel, Jon F. and Das, P. K. Aspects of poly (p-phenylene sulfide) degradation and stabilization. Part 1. Influence of polymer and groups on exposure induced coloration [J]. Angew. Makromol. Chem.1997 247:45-59.
    13. Smmazcelik, T. Natural weathering effects on the mechanical and surface properties of polyphenylene sulfide (PPS) composites, Mater. Design, 2006, 27: 270-277.
    14. 王小康,唐电,张腾.纳米二氧化铈的研究现状[J].国外金属处理,2003,24(6):11-13.
    15. Lovinger, A. J.; Davis, D. D. and Padden, Jr. F. J. Kinetic analysis of the crystallization of poly (para-phenylene sulphide) [J]. Polymer, 1985, 26: 1595-1604.
    16. 杨杰,聚苯硫醚树脂及其应用[M].北京:化学工业出版社,2002,35-36.
    17. Zimmerman, D. A.; Koenig J. L. and Ishida, H. Infrared spectroscopic analysis of poly (p-phenylene sulfide) [J]. Spectrochim. Acta, Part A 1995, 51: 2397-2409.
    18. Piaggio, P.; Cuniberti, C; Dellepiane, G; Campani, E.; Gorini, G; Masetti, G; Novi, M. and Petrillo G Vibrational spctra and assignment of poly-(p-phenylene sulfide) and its oligomers[J].Spectrochim.Acta,Part A 1989,45:347-356.
    19.Weng,W.;Chen,G.and Wu,D.Crystallization kinetics and melting behavious of nylon6/foliate graphite nano-composites[J].Polymer 2003,44:8119~8132.
    20.Avrami,M.Kinetics of phase change.Ⅱ.transformation-time relations for random distribution of nuclei[J].J.Chem.Phys.1940,8:212-224.
    21.Liu,T.;Mo,Z.S.and Wang,S.Non-isothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone)[J],Polym.Eng.Sci.1997,37:568-575.
    1. Bahadur, S. and Sunkara, C. Effect of transfer flim structrure, coposition and bonding on the tribological behavior of polyphenylene sulfide filled with nano-particle of TiO_2, ZnO, CuO and SiC [J]. Wear, 2005, 258:1411-1421.
    2. Xian, G; Zhang, Z. and Friedrich, K. Tribological properties of micro- and nano-particles filled poly (etherimide) composites [J]. J. Appl. Polym. Sci. 2006, 101:1678-1686.
    3. Jeon, J. D.; Kim, M. J.; Chung, J. W. and Kwak, S. Y. Effects of the addition of TiO_2 nanoparticles for polymer electrolytes based on porous poly(vinylidene fluoride co-hexafluoropropylene)/poly(ethylene oxide-co-ethylene carbonate) membranes [J]. Nanotechnology 2005, 2: 581-584.
    4. Ma, D.; Hugener, T. A.; Siegel, R. W.; Christerson, A.; Martensson, E.; Onneby, C. and Schadler, L. Influence of nanoparticle surface modification on the electrical behaviour of polyethylene nanocomposites [J]. Nanotechnology, 2005, 16:724-731.
    5. Lin, J. C, Chang, L. C, Nien, M.H. and Ho, H.L. Mechanical behavior of various nanoparticle filled composites at low-velocity impact |J]. Composite Structures, 2006, 74: 30-60.
    6. Zhang, Z. and Yang, J. L. Creep Resistant Polymeric Nanocomposites [J]. Polymer, 2004,45:3481-3485.
    7. Mahfuz, H.; Islam, M. S.; Rangari, V. K. and Jeelani, S. Fabrication, synthesis and mechanical characterization of nanoparticles infused polyurethane foams [J]. Composites Part A, 2004, 35: 453-460.
    8. Uddin, M.; Mahfuz, H.; Saha, M.; Ragari, V.K. and Jeelani, S. Strain rate effects on nanophased polyurethane foams in: International SAMPE Symposium and Exhibition (Proceedings), 2004, 49, SAMPE 2004 Conference Proceedings - 2004: 2291-2304.
    9. Zhu, M. F.; Xing, Q.; He, H. K.; Zhang, Y. and Chen, Y. M. Preparation of PA6/nano titanium dioxide (TiO_2) composites and their spinnability [J]. Macromol. Symp. 2003, 210:251-261.
    10.孙宾,兰开东,董卫卫,张瑜,陈彦模,朱美芳.原位生成法合成PET/纳米TiO_2复合材料:Ⅱ复合纤维的结构和性能研究[J].功能材料,2004,35(suppl.)2661-2664.
    11.徐斌,钟明强,孙莉,项赛飞,徐立新.纳米TiO_2、钠米ZnO对聚丙烯抗紫外光老化及结晶性能的影响[J].高分子材料科学与工程,2007,23(1):137-140
    12.神保孝志[日].光电子学(Optical Electron Science)[M].北京:科学出版杜,2001.
    13. Zimmerman, D. A.; Koenig, J. L. and Ishida, H. Infrared spectroscopic analysis of poly(p-phenylene sulfide) [J]. Spectrochem. Acta A, 1995, 51: 2397-2409.
    14. Piaggio, P.; Cuniberti, C; Dellepiane, G; Campani, E.; Gorini, G; Masetti, G; Novi, M. and Petrillo, G. Vibrational spctra and assignment of poly-(p-phenylene sulfide) and its oligomers [J]. Spectrochem. Acta A, 1989, 45: 347-356.
    15.Pan, Z.; Savard, T. and Wicksted, J. P. Raman studies of crystalline and amorphous poly-(p-phenylene sulfide) flim [J]. J. Raman Spectrosc.1992, 23: 615-619.
    16.Joshi, S. G. and Radhakrishnan, S. Effect of curing on the internal structure of polyphenylene sulfide coating [J]. Thin Solid Films, 1986, 142: 213-226.
    17.Das P. K., DesLauriers P. J., Fahey D. R., Wood F. K. and Cornforth F., J. Photodegradation and photostabilization of poly(p-phenylene sulfide). Part2. UV induced physicochemical changes [J]. Polym. Degrad. Stab. 1995, 48: 11-23.
    18.林志丹,黄珍珍,麦堪成.纳米CaCO3/PP等温结晶动力学[J].高分子材料科学与工程,2005,21:236-243.
    19.Weng, W.; Chen, G. and Wu, D. Crystallization kinetics and melting behaviours of nylon6/foliate graphite nano-composites [J]. Polymer, 2003, 44: 8124-8132.
    20.Sheng, Q. Non-isothermal crystallization of HDPE/nano-SiO_2 composite [J]. J. Mater. Sci. 2003, 38:2299-2304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700