用户名: 密码: 验证码:
数控系统运动平稳性和轮廓精度控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着虚拟技术、云计算、物联网、云制造等新型技术以及高速切削和精密加工技术的迅速发展,先进制造技术对数控系统提出更高要求。为了满足先进制造技术的需求,本文综合运用多种交叉学科的先进理论和方法,围绕数控系统运动平稳性和轮廓精度控制等问题,主要从连续短线段轮廓加工技术、数控伺服控制系统模型辨识与建模技术、独立轴位置伺服控制技术和多轴联动位置伺服控制技术等方面展开研究。论文主要研究工作及取得的成果如下:
     (1)为减小数控系统连续短线轮廓加工过程中速度较大的波动,研究一种三次参数样条曲线局部平滑过渡方法,设计内接过渡法和外接过渡法两种过渡类型,在转接点附近插入两段或三段三次参数样条曲线进行局部处理,实现转接速度高平稳过渡;为解决嵌入式数控系统柔性加减速速度规划的实时性问题,提出一种简化快速的S形速度规划算法,实现连续短线段高平稳运动。通过仿真和加工实验,验证所提出的方法有效地提高连续短线段轮廓加工的运动平稳性和加工效率。
     (2)为提高系统模型的建模精度,综合运用支持向量机、粒度计算、系统辨识、免疫算法、微粒群算法等多种交叉学科的先进理论和方法,对数控伺服控制系统模型辨识与建模进行研究。采用二维搜索算法和支持向量机相结合的思想对数控伺服控制系统的模型结构进行辨识;为提高模型辨识精度,研究一种基于信息粒度支持向量机的辨识方法,对数控伺服控制系统的模型参数进行辨识;提出基于交叉变异功能的免疫微粒群优化算法对信息粒度支持向量机的参数进行优化,改善辨识效果。实验结果表明,所提出的方法可有效地提高系统的辨识精度。
     (3)为提高独立轴运动平稳性和运动精度,综合运用广义预测控制和模糊控制等理论方法,研究一种改进型广义预测控制和非线性自适应模糊控制相结合的复合模式控制策略。为减小独立轴运动速度波动、加速度波动和跟踪误差,改进广义预测控制的性能优化指标;提出一种自适应调整改进型广义预测控制参数的方法,提高系统的控制性能;为满足控制系统的实时性要求,提出一种简化计算模型求解控制输入量;为提高系统的抗干扰能力,提出一种自适应变结构参数的模糊控制算法。实验表明,所提出的创新性方法可有效提高数控系统独立轴运动平稳性和运动精度。
     (4)为提高多轴联动数控系统的运动平稳性和轮廓加工精度,研究一种多轴参数模型预测控制和非线性自适应模糊PID控制的复合模式控制方法,采用多轴参数模型预测控制方法对系统的线性模型进行控制,采用非线性自适应模糊PID控制对系统的非线性模型进行误差补偿控制。为提高模型计算效率,构建一种轮廓误差模型、速度误差模型和加速度误差模型;为提高多轴伺服控制系统的控制性能,提出一种性能优化指标,使系统的跟踪误差、轮廓误差、速度误差和加速度误差最小;为满足控制系统的实时性,设计一种简化的计算模型求解多轴参数模型预测控制增量;为提高多轴联动数控系统鲁棒性,提出一种非线性自适应模糊PID控制方法。实验结果表明,所提出的创新性成果可有效地提高多轴联动数控系统的运动平稳性和轮廓精度。
     (5)以数控雕铣机为机械平台,自主设计和研发相应的数控系统,并对本文所提出的连续短线段三次参数样条曲线过渡算法、简化快速的S形速度规划算法、数控伺服控制系统模型辨识与建模方法、独立轴位置伺服控制和多轴联动位置伺服控制方法等进行工程验证。实验结果表明,所提出的创新性方法具有良好的可行性和有效性。
With the development of virtual technology, cloud computing, the internet of things, cloudmanufacturing, high speed cutting, and precision machining technology, the advanced manufacturingtechnology puts higher request on CNC system. For meeting the requirement of the advancedmanufacturing technology, various interdisciplinary theories and methods are applied synthetically.By centering on motional smoothness and contouring error control of CNC system, the paperresearches about continuous micro line contour machining technology, model identification andmodeling technology of the servo control system, independent-axis position servo control technology,and multi-axis position servo control technology. The main research work and results of this paper areas follows:
     (1) For the issue of continuous micro line contour machining, the traditional method takes eachprogram segment of micro line as a unit to deal with the problems, which leads to lower turningvelocity of the connective points, causes losing motional smoothness, influences processing efficiency,and machining quality. To improve turning velocity, the transition method of cubic parametric splinecurve is presented. Two type of approach about inscribed transition and external transition aredesigned according to the characteristics of the transitional line, and realizes high smooth transition ofturning velocity according to gradual change characteristics of the parameters spline curve tangent.The calculation of traditional S-curve velocity planning algorithm is so complex, that cannot meetreal-time requirement of the embedded CNC system. To solve this problem, a simplified fast S-curveplanning algorithm is proposed, which realizes high smooth machining. The simulative andexperimental results verify the feasibility and validity of the proposed approach.
     (2) In order to improve the system modeling accuracy, various theories and methods ofinterdisciplinary are applying synthetically, such as support vector machine, granular computing,immune algorithm, particle swarm optimization algorithm, and genetic algorithm. The modelstructures of the CNC servo control system are identified with2-dimensional searching algorithmand support vector machine. In order to improve model identification accuracy, a method ofinformation granular support vector machine is proposed to identify the model parameter of theservo control system, and the immune particle swarm optimization algorithm with crossover andmutation operator is presented to improve identification effect. The experimental results show thatthe proposed method can effectively improve the accuracy of the system model.
     (3) In order to improve motional smoothness and precision of the independent axis, the compound mode control strategy of improved generalized predictive control and nonlinear adaptive fuzzy controlare proposed by using generalized predictive control and fuzzy control theory methodcomprehensively. To advance the control performance of the servo control system, a performanceoptimization index of generalized predictive control is improved. To improve the control performanceof the system, an algorithm that adaptively adjusts parameters of improved generalized predictivecontrol is put forward. To meet the requirement of real-time system, a simplified calculation model ispresented to solve control input. To improve anti-interference ability of the system, an adaptive fuzzycontrol algorithm of variable structure parameters is proposed, which adaptively adjusts fuzzyquantitative domain and fuzzy control rules. The experiments show that the proposed compoundcontrol strategy effectively improves the dynamic response ability, steady performance and robustnessof the independent-axis position servo control system, and enhances the independent-axis motionsmoothness and precision of CNC system.
     (4) Research about multi-axis position servo control technology. Contour error model, velocityerror model and acceleration error model are established. To improve motional smoothness andcontouring precision of the multi-axis CNC system, the compound mode control strategy, which baseson parameter model predictive control and nonlinear adaptive fuzzy PID control, is proposed. Toguarantee minimum contouring error, tracking error, velocity error, and acceleration error duringnumerical control machining, a performance optimization index is proposed. To solve the real-timeproblem of control system, a simplified calculation model is presented to solve control signal by usingthe idea of sliding filter. To strengthen the robustness of the multi-axis CNC system, a nonlinearadaptive fuzzy PID control method is presented. The experiments show that the proposed methodeffectively improves the control performance and robustness of the multi-axis position servo controlsystem, and enhances motion smoothness and contouring precision of CNC system.
     (5) The corresponding CNC system is independently designed and exploited with milling andcarved machine platform. The engineering verifications are implemented for cubic parametric splinecurve transition algorithm of continuous micro line contour machining, the model identification andmodeling of the servo control system, control methods of independent-axis position servo controlsystem, and control strategies of multi-axis position servo control system. Through data acquisitionand physical processing, the feasibility and effectiveness of the proposed methods are certified.
引文
[1]武秋俊,王建军.先进制造技术的现状与发展趋势.机械研究与应用,2006,19(6):6-7.
    [2]杨叔子,吴波,李斌.再论先进制造技术及其发展趋势.机械工程学报,2006,42(1):1-5.
    [3]周会娜,林滨,程应科.先进制造技术及其重点发展方向.精密制造与自动化,2006,168(4):9-13.
    [4]于海斌.物联网发展提升我国工业能力.中国制造业信息化,2010,12:26-27.
    [5]张霖,罗永亮,范文慧,等.云制造及相关先进制造模式分析.计算机集成制造系统,2011,17(3):458-466.
    [6]叶伟.数控系统纳米插补及控制研究,[博士学位论文].北京,北京交通大学.2010.
    [7]李佳特.最新数控和伺服技术.机械工人,2007,2:20-21.
    [8]刘又午,章青,赵小松.数控机床全误差模型和误差补偿技术的研究.制造技术与机床,2003,7:46-50.
    [9]胡国清.在多轴多通道数控机床中常用功能的开发应用.制造技术与机床,2004,11:107-111.
    [10]陈虎,于德海.数控技术全面支持高速复合机床精度的提升.世界制造技术与装备市场,2010,2:78-83.
    [11]宋春华.数控技术的现状及发展趋势.装备制造技术,2011,3:114-117.
    [12]中国机床工具工业协会数控系统分会.第六届中国数控机床展览会(CCMT2010)国产数控系统展品综述.世界制造技术与装备市场,2010,4:41-49.
    [13]陈蕾,谈峰,戴娟.数控机床的发展趋势.机械设计与制造,2005,9(9):175-176.
    [14]邹兆东,贺艳.数控系统发展趋势.机械研究与应用,2006,19(2):24-26.
    [15]李泉泉,何永义,刘锬.集成化数控系统的特点及关键技术.现代制造工程,2006,2:36-38.
    [16]刘江. FANUC0iC数控系统FSSB总线的参数设定.制造技术与机床,2009,3:157-159.
    [17]权宁辉,高军礼,宋海涛.基于SERCOS总线的高速数字通信接口软件设计.机床与液压,2011,39(11):77-80.
    [18]宋华振. Ethernet POWERLINK在机器控制领域的应用.中国仪器仪表,2011,3:44-47.
    [19]王磊,李木国,王静,等.基于EtherCAT协议现场级实时以太网控制系统研究.计算机工程与设计,2011,32(7):2294-2297.
    [20]云利军,孙鹤旭,雷兆明,等.基于Synqnet的网络化运动控制器研究.制造技术与机床,2006,2:40-43.
    [21]何方,徐秀敏,王志成,等.基于FPGA的M-Ⅲ智能从站接口卡的设计与实现.组合机床与自动化加工技术,2011,12(12):40-43.
    [22]顾嫣,张凤登,刘荣鹏. CANopen现场总线设备通信协议测试系统.计算机应用,2008,28(6):113-115.
    [23]王黎明,王明哲,陈双桥. PROFIBUS-DP现场总线协议优化.计算机应用,2008,28(12):13-16.
    [24]陈岚岚,邓海涛,戴瑜兴. DeviceNet现场总线应用层协议的实现.电气应用,2005,24(8):66-68.
    [25]邓子龙,刘峰,李维军. CCLink现场总线技术及在调和罐变频控制中的应用.机械设计与制造,2008,6:83-85.
    [26]姜斌,刘彦呈,孙凡金.基于Modbus/TCP的工业控制网络设计.低压电器,2007,13:30-33.
    [27] Wang TY, Hu SG, Zhao L. Research on control framework of open CNC system. The9thInternational Symposium on Advances in Abrasive Technology,大连,2009.
    [28]迟永琳,汤季安.全软件开放式数控系统—ServoWorks.电气时代,2003,4:57-58.
    [29]王学军.新一代世界标准机—NEXUS系列数控机床.航空制造技术,2005,8:38-41.
    [30]游有鹏,张礼兵,何均.高速高精度数控系统若干控制技术的原理分析和应用进展.航空制造技术,2010,11:60-63.
    [31] Altintas Y.Manufacturing automation: metal cutting mechanics, machine tool vibrations, andCNC design. LunDon: Cambridge University Press,2000.
    [32] Erkorknlaz K, Altintas Y. High speed CNC system design Part I: Jerk limited trajectorygeneration and quintic spline interpolation. International journal of Machine Tools&Manufacture,2001,41:1323-1345.
    [33] Zheng KJ, Cheng L. Adaptive S-curve acceleration/deceleration control method. Proceedings ofthe7th World Congress on Intelligent Control and Automation. Chongqing,2008:2752-2756.
    [34] Zhang LB, You YP, He J, et al. Velocity control method for continuous short line segmenthigh-speed machining based on transition of parametric spline. Advanced Materials ResearchVols.2010,97-101:2407-2411.
    [35] Dong JY, Ferreira PM, Stori JA. Feed-rate optimization with jerk constraints for generatingminimum-time trajectories. International Journal of Machine Tools&Manufacture,2007,47:1941-1955.
    [36] Xu RZ, Xie L, Li CX. Adaptive parametric interpolation scheme with limited acceleration andjerk values for NC machining. International Journal of Advanced Manufaturing Technology,2008,36:243-354.
    [37] Nam SH, Yang MY. A study on a generalized parametric interpolator with real-time jerk-limitedacceleration. CAD,2004,36:27-36.
    [38]石川,赵彤,叶佩青,等.数控系统S曲线加减速规划研究.中国机械工程,2007,18(12):1421-1425.
    [39]曹宇男,王田苗等.插补前S加减速在CNC前瞻中的应用.北京航空航天大学学报.2007,33(5):594-599.
    [40] You YP, He J. A parametric interpolator with smooth kinematic profiles for high speed machining.Key Engineering Materials,2006,315-316:169-173.
    [41]何均,游有鹏,陈浩,等. S形加减速的嵌套式前瞻快速算法.航空学报,2010,31(4):842-851.
    [42]郭新贵,李从心.一种新型柔性加减速算法.上海交通大学学报,2003,37(2):205-207.
    [43] Leng HB, Wu YJ, Pan XH. Research on flexible acceleration and deceleration method of NCSystem. International Technology and Innovation Conference. Hangzhou,2006:1953-1956.
    [44] Leng HB, Wu YJ, Pan XH. Research on cubic polynomial acceleration and deceleration controlmodel for high speed NC machining. Journal of Zhejiang University: Science A,2008,9(3),358-365.
    [45]冷洪滨,邬义杰,潘晓弘.三次多项式型微段高速自适应前瞻插补方法.机械工程学报,2009,45(6):73-79.
    [46]赵国勇.数控系统运动平滑处理、伺服控制及轮廓控制技术研究,[博士学位论文].辽宁大连:大连理工大,2006.
    [47]冷洪滨.高性能数控系统若干关键技术的研究,[博士学位论文].浙江杭州:浙江大学,2008.
    [48]王宇晗,肖凌剑,曾水生,等.小线段高速加工速度衔接数学模型.上海交通大学学报,2004,38(6):901-904.
    [49] Hu J, Xiao LJ, Wang YH, et al.An optimal feedrate model and solution algorithm for ahigh-speed machine of small line blocks with look-ahead.The International Journal of AdvancedManufaturing Technology,2006,28:930-935.
    [50]曹文钢,常秋香.一种具有前瞻功能的速度平滑算法.组合机床与自动化加工技术,2005,(9):56-58.
    [51]叶佩青,赵慎良.微小直线段的连续插补控制算法研究.中国机械工程,2004,15(15):1354-1356.
    [52] Ye P. Q, Shi C, Yang KM. Interpolation of continuous micro line segment trajectories based onlook-ahead algorithm in high-speed machining. International Journal of Advanced ManufaturingTechnology,2008,37:881-897.
    [53]张得礼,周来水.数控加工运动的平滑处理.航空学报,2006,27(1):125-130.
    [54]吕强,张辉,杨开明,等.数控连续加工中提高轨迹转接速度的方法研究.制造技术与机床,2008(7):79-83.
    [55]何均,游有鹏,陈浩.连续短线段空间圆弧转接与插补.航空学报,2010,31(5):1086-1092.
    [56] Li W, Liu YD, Yamazaki K. The design of a NURBS pre-interpolator for five-axis machining.The International Journal of Advanced Manufacturing Technology,(2008)36:927-935.
    [57] Wang JB, Yau HT. Real-time NURBS interpolator: application to short linear segments. TheInternational Journal Advanced Manufacturing Technology,2009,41:1169-1185.
    [58] Yau HT, Wang JB. Fast Bezier interpolator with real-time look-ahead function for high-accuracymachining. The International Journal of Machine Tools&Manufacture,2007,47(1):1518-1529.
    [59]任锟,傅建中,陈子辰.高速加工中速度前瞻控制新算法研究.浙江大学学报(工学版),2006,40(6):1985-1988.
    [60]张园,陈友东,黄荣瑛,等.高速加工中连续微小线段的前瞻自适应插补算法.机床与液压,2008,36(6):1-4.
    [61]金钊,林宝君,冀群心.数控系统中伺服系统位置前馈控制器的设计.测控技术,2010,29(8):65-71.
    [62]李宏胜,孙权,张建华,等.基于前馈控制的数控机床进给运动轮廓误差分析.组合机床与自动化加工技术,2010,2:9-11.
    [63]吴艳敏,关英姿,王福生,等.基于模糊自适应PID的转台位置控制系统设计.现代电子技术,2008,282(19):102-104.
    [64] Hace A, Jezernik. The open CNC controller for a cutting machine. Proceedings of the IEEEInternational Conference on Industrial Technology,2003,2:1231-1236.
    [65] Rami SH, Maraghy WH, Beheiry SM. On nonlinearity control of CNC feed drives. Transactionsof the Canadian Society for Mechanical Engineering,2006,30(1):63-80.
    [66] Wang D, Li C. Self-adaptive dynamic matrix control for high-speed machining servo control. TheInternational Journal of Advanced Manufacturing Technology,2003,21(10-11):733-738.
    [67] Kim, Euntai. Output feedback tracking control of MIMO systems using a fuzzy disturbanceobserver and its application to the speed control of a MP synchronous motor. IEEE Transactionson Fuzzy Systems,2005,13(6):725-741.
    [68] Lu YS, Cheng CM. Disturbance-observer-based repetitive control with sliding modes.IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2005,2:1360-1365.
    [69] Ramesh R, Mannan MA, Poo A. Tracking and contour error control in CNC servo systems. TheInternational Journal of Machine Tools&Manufacture,2005,45:301-326.
    [70]Shi YT, Chen CS, Lee AC. A novel cross-coupling control design for Bi-axis motion.International Journal of Machine Tools&Manufacture,2002,42:1539-1548.
    [71] Yeh SS, Hsu PL. Estimation of the contouring error for the cross-coupled control design.IEEE/ASME Transactions on Mechatronics,2002,7(1):44-51.
    [72] Yeh SS, Hsu PL. Analysis and design of integrated control for multi-axis motion systems. IEEETrans. On Control System Technology,2003,11(3):375-382.
    [73] Ye X, Chen, X, Li X. A cross-coupled path compensation algorithm for rapid prototyping andmanufacturing. The International Journal Advanced Manufacturing Technology,2002,20:39-43.
    [74] Chen CS, Fan YH, Tseng SP. Position command shaping control in a retrofitted milling machine.International Journal of Machine Tools&Manufacture,2006,46:293-303.
    [75] Zhong Q, Shi Y, Mo J. A linear cross-coupled control system for high-speed machining. TheInternational Journal Advanced Manufacturing Technology,2002,19:558-563.
    [76] Cheng YM, Chin JH. Machining contour errors as ensembles of cutting, feeding and machinestructure effects. International Journal of Machine Tools&Manufacture,2003,43:1001-1014.
    [77] Chen CL, Lin KC. Observer based contouring controller design of a biaxial stage system subjectto friction. IEEE Trans. On Control System Technology,2008,16(2):322-329.
    [78] Chiu GC, Tomizuka M. Contouring control of machine tool feed drive system: A task coordinateframe approach. IEEE Trans. On Control System Technology,2001,9:130-139.
    [79] Zhang DJ, Chen N, Li ZX. A unified contouring control in the task space. IEEE ConferenceIntelligent Robots and Systems,2005,1569-1574.
    [80] Zhang DJ, Chen N, Li ZX. Geometric contouring control on the smooth surface. IEEEConference Intelligent Robots and Systems,2006,50-55.
    [81] Uchiyama N, Sano S, Takagi S, et al. Toward synthesis of micro-nano-system, Part2. Precisioncontouring control of multi-axis feed drive systems.2007.
    [82] Cheng MY, Lee CC. Motion controller design for contour-following tasks based on real-timecontour error estimation. IEEE Trans. On Industrial Electronics.2007,54(3):1686-1695.
    [83] Cheng MY, Su KH. Contouring accuracy improvement using a tangential contouring controllerwith a fuzzy logic-based federate regulator. The International Journal Advanced ManufacturingTechnology,2009,41:75-85.
    [84] Su KH, Cheng MY. Contouring accuracy improvement using cross-coupled control and positionerror compensator. International Journal of Machine Tools&Manufacture,2008,48:1444-1453.
    [85] Peng CC, Chen CL. Biaxial contouring control with friction dynamics using a contour indexapproach. International Journal of Machine Tools&Manufacture,2007,47:1542-1555.
    [86] Chen SL, Liu HL, Ting SC. Contouring control of biaxial systems based on polar coordinates.IEEE/ASME Trans. ON Mechatronics,2002,7(3):329-345.
    [87] Hu J, Xian LJ, Wang YH, Wu ZY. An optimal feedrate model and solution algorithm forhigh-speed machining of small line blocks with look-ahead. International Journal of AdvancedManufacturing Technology,2006,28:930-935.
    [88] Bou M, Moisan A, Tounsi N. Productivity enhancement in dies and molds manufacturing by theuse of C1continuous tool path. International Journal of Machine Tools&Manufacture,2004,44(1):101-107.
    [89] Han GC, Kim D, Kim HG. A High Speed Machining Algorithm for CNC Machine Tools.IECON’99Proceedings, The25th Annual Conference of the IEEE,1999,3:1493-1497.
    [90] Luo FY, Zhou YF, Yin J. A universal velocity profile generation approach f or high-speedmachining of small line segments with look-ahead. International Journal of AdvancedManufacturing Technology,2007,35:505-518.
    [91] Altintas Y, Erkorkmaz K. Feedrate optimization for spline interpolation in high speed machinetools. CIRP Annals-Manufacturing Technology,2003,52(1):297-302.
    [92] Lin MT, Tsai MS, Yau HT. Development of a dynamics-based NURBS interpolator withreal-time look-ahead algorithm. International Journal of Machine Tools&Manufacture,2007,47:2246-2262.
    [93]吕强,张辉,杨开明,等.数控连续加工中提高轨迹段转接速度的方法研究.制造技术与机床,2008,7:79-83.
    [94]刘党辉,蔡远文,苏永芝,等.系统辨识方法及应用.北京:国防工业出版社,2010.
    [95]柏艳红,李小宁.一种气动位置伺服系统的辨识建模方法.南京理工大学学报,2007,31(6):710-714.
    [96]李彬,戴怡,石秀敏,等.扩充最小二乘法在数控机床伺服系统模型参数估计中的应用.机床与液压,2010,38(3):107-110.
    [97]许晓峰,王隆太.数控系统被控对象的模型辨识.机电产品开发与创新,2006,119(1):133-135.
    [98]李彬,戴怡.基于线性特征的机电系统辨识.天津工程师范学院学报,2010,20(2):10-12.
    [99]叶军.基于快速学习型神经网络的机器人运动学模型辨识及运动控制.计算机仿真,2002,19(5):62-64.
    [100]李耀明,沈兴全,孟庆-义,等.基于BP神经网络的数控机床误差辨识方法研究.中北大学学报(自然科学版),2009,30(6):574-578.
    [101]李曦,李斌,周云飞.数控加工中一种模型的模糊辨识算法的研究.中国制造业信息化,2003,32(6):111-114.
    [102]曹克强,胡良谋,张春山,等.支持向量机在电液伺服系统辨识建模中的应用.空军工程大学学报(自然科学版),2007,8(3):43-45.
    [103]王文栋,郭伟.基于的控制系统辨识建模研究.燃气涡轮试验与研究,2009,22(3):33-36.
    [104]杨理践,颜华.电容层析成像系统测量数据的归一化处理.仪器仪表学报,2002,23(3):229-232.
    [105] Luis M, Jose MS, Juan MA. Performance evaluation of open source multi agent platforms.Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multi agentSystems, Hakodate, Japan,2006.
    [106]肖云,王选宏.支持向量机理论及其在网络安全中的应用.西安:西安电子科技大学出版社,2011.
    [107]邓乃扬,田英杰.数据挖掘中的新方法—支持向量机.北京:科学出版社,2004.
    [108]苗夺谦,王国胤,刘清.粒计算:过去、现在与展望.北京:科学出版社,2007.
    [109]陈传明,俞庆英.粒度计算模型的研究.计算机技术与发展,2006,16(12):97-99.
    [110]田新梅,吴秀清,刘莉.大样本情况下的一种新的SVM迭代算法.计算机工程,2007,33(8):205-207.
    [111]冯一宁,邵元海,陈静,等.基于层次聚类的大样本加权支持向量机.计算机工程与设计,2009,30(1):175-178.
    [112] Li JM, Zhang B, Lin FZ. Training algorithms for support vector machines. Journal of TsinghuaUniversity,2003,43(1):120-124.
    [113] Platt JC, Sequential M. optimization a fast algorithm for training support vector machines.Advances in Kernel Methods Support Vector Learning, Cambridge: MIT Press,1998:185-208.
    [114] Keerchi S, Shevade S, Bhattcharyya C, et al. A fast iterative nearest point algorithm for supportmachine classifier design. IEEE Transactions on Neural Networks,2000,11(1):124-136.
    [115] Li DC, Fang YH. An algorithm to cluster data for efficient classification of support vectormachines. Expert Systems with Applications: An International Journal,2008,34(3):2013-2018.
    [116] Yang XW, Lin DY, Hao ZF, et al. A fast SVM training algorithm based on the set segmentationand K-means clustering. Progress in Natural Science,2003,13(10):750-755.
    [117] Ken D, Eder T. Particle swarm optimization. Proceedings of IEEE International Conference onNeural Networks. Piscateway, NJ: IEEE Service Center,1995, IV:1942–1948.
    [118] Par SP, Vraha TM. On the computation of all global minimizers through particle swarmoptimization. IEEE Transactionson Evolutionary Computation,2004,8(3):211–224.
    [119]陈幼平,张代林,艾武等.基于DSP的直线电机位置伺服控制策略研究.电机与控制学报,2006,10(1):61-65.
    [120] Comins P, Munro N. PID control: recent tuning methods and design to specification. IEEEProceeding: Control Theory Application,2002,149(1):46-53.
    [121]许强,贾正春,熊有伦.交流伺服系统最优位置控制.微电机,2000,33(2):18-20.
    [122]王军,肖建.永磁同步电动机自适应神经网络IP位置控制器.电机与控制学报,2005,9(6):525-528.
    [123]史晓娟.一种基于神经元离散滑模变结构的位置控制方法.仪器仪表学报.2008,29(7):1559-1562.
    [124]张文辉,齐乃明,尹洪亮.自适应神经变结构的机器人轨迹跟踪控制.控制与决策,2011,26(4):597-600.
    [125]王丽梅,武志涛,左涛.永磁直线电机自构式模糊神经网络控制器设计.电机与控制学报,2009,13(5):643-647.
    [126]苏义鑫,周祖德,陈幼平,等.位置跟踪系统的预测控制研究.中国机械工程,2001,12(12):1356-1359.
    [127]葛锁良,刘文慰.基于模糊控制的交流伺服系统的设计.东南大学学报,2003,33(9):154-157.
    [128]宫赤坤,华泽钊.基于模糊补偿的广义预测控制.吉林大学学报(工学版),2002,32(2):78-82.
    [129] Li HX, Miao ZH, Wang JY. Variable universe stable adaptive fuzzy control of nonlinear system.Science in China (Series E),2002,45(3):225-240.
    [130] Wang J, Si WJ, Li HY. Robust ISS-satisficing variable universe indirect fuzzy control forchaotic systems. Chaos Solitons&Fractals,2009,39:28-38.
    [131] Shan WW, Ma Y, Newcomb RW. Analog circuit implementation of a variable universe adaptivefuzzy logic controller. IEEE Transactions on Circuits and System-II: Express Briefs,2008,55(10):975-979.
    [132] Wang J, Qiao GD, Deng B. H∞Variable universe adaptive fuzzy control for chaotic system.Chaos Solitons&Fractals,2005,24:1075-1086.
    [133] Wang J, Qiao GD, Deng B. Observer-based robust adaptive variable universe fuzzy control forchaotic system. Chaos Solitons&Fractals,2005,23:1013-1032.
    [134] Zhang X, Zhu KY, Yang XY. Cross-coupled model predictive control for multi-axis coordinatedmotion system.2009International Conference on Advanced Computer Control,2009.
    [135] Ramesh R, Mannan MA, Poo AN. Tracking and contour error control in CNC servo systems.International Journal of Machine Tools&Manufacture2005,45:301-326.
    [136] Rew KH, Ha CW, Kim KS. A practically efficient method for motion control based onasymmetric velocity profile. International Journal of Machine Tools and Manufacture,2009,49:678–682.
    [137] Sencer B, Altintas Y, Croft E. Feed optimization for five-axis CNC machine tools with driveconstraints. International Journal of Machine Tools&Manufacture2008,48:733–745.
    [138] Altintas Y, Erkorkmaz K. Feedrate optimization for spline interpolation in high speed machinetools. Annals of CIRP,200352(1):297–302.
    [139] Zhang LB, You YP, He J. The transition algorithm based on parametric spline curve forhigh-speed machining of continuous short line segments. The International Journal AdvancedManufacturing Technology,2011,52:245–254.
    [140] Long YH, Wu W, Zhou ZD. Self-adjustment computing method for time-partition interpolationin motion trajectory control of CNC machine tools. The International Journal AdvancedManufacturing Technology,200836:558–569
    [141] Lin MT, Tsai MS, Yau HT. Development of a dynamics-based NURBS interpolator withreal-time look-ahead algorithm. International Journal of Machine Tools&Manufacture,2002,47:2246–2262.
    [142] Cheng MY, Su KH, Wang SF. Contour error reduction for free-form contour following tasks ofbiaxial motion control systems. Robotics and Computer-Integrated Manufacturing,2009,25:323–333.
    [143] Renton D, Elbestawi MA. High speed servo control of multi-axis machine tools. InternationalJournal of Machine Tools&Manufacture,2000,40:539–559.
    [144] Zhong Q, Shi Y, Mo J, Huang S. A linear cross-coupled control system for high-speedmachining. International Journal Advanced Manufacturing Technology,2002,19:558–563.
    [145] Cheng MY, Lee CC. Motion controller design for contour-following tasks based on real-timecontour error estimation. IEEE Transaction on Industrial Electronics,2007,54(3):1686-1697.
    [146] Koren Y. Cross-coupled biaxial computer for manufacturing systems. ASME Journal DynamicSystem, Measurement and Control,1980,102(4):265–272.
    [147]王丽梅,武志涛,孙宜标,等.直接驱动XY平台轮廓误差分析及法向交叉耦合控制.电机与控制学报,2010,14(9):63-68.
    [148] Yeh SS, Hsu PL. Analysis and design of integrated control for multi-axis motion systems. IEEETransactions on Control System Technology,2003,11:375–382.
    [149] Chiu GC, Tomizuka M. Contouring control of machine tool feed drive systems: A taskcoordinate frame approach. IEEE Transactions on Control Systems Technology,2001,(9):130-139.
    [150] Lo CC, Chung CY. Tangential-Contouring Controller for Biaxial Motion Control. ASME,Journal of Dynamic Systems, Measurement, and Control,1999,121:126-129.
    [151] Tang L, Robert G. Predictive contour control with adaptive feed rate. IEEE/ASME Transactionson Mechatronics,2011,99:1-11.
    [152]张今朝,刘国海,潘天红.多电机变频调速同步系统的多模型预测控制.控制与决策,2009,24(10):1489-1494.
    [153] Zhu KY, Chen BP. Cross-coupling design of generalized predictive control with referencemodels. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems andControl Engineering,2001,215(4):375–384.
    [154] ElKhalick A, Uchyiama N. Model predictive approach to precision contouring control for feeddrive systems. Journal of Computer Science,2010,6(8):844-851.
    [155] Peng CC, Chen CL. Biaxial contouring control with friction dynamics using a contour indexapproach. International Journal of Machine Tools&Manufacture,2007,47:1542–1555.
    [156] Cheng MY, Su KH, Wang SF. Contour error reduction for free-form contour following tasks ofbiaxial motion control systems. Robotics and Computer-Integrated Manufacturing,2009,25:323–333.
    [157] Su KH, Cheng MY. Contouring accuracy improvement using cross-coupled control and positionerror compensator. International Journal of Machine Tools&Manufacture,2008,48:1444–1453.
    [158] Cheng MY, Su KH. Contouring accuracy improvement using a tangential contouring controllerwith a fuzzy logic-based federate regulator. The International Journal of AdvancedManufacturing Technology,2009,41:75–85.
    [159] Erkorkmaz K, Yeung CH, Altintas Y. Virtual CNC system. Part II. High speed contouringapplication. International Journal of Machine Tools&Manufacture,2006,46:1124–1138.
    [160]刘涵,刘丁.基于支持向量机的参数自整定PID非线性系统控制.控制理论与应用,2008,25(3):468-474.
    [161]吕红丽,段培永,崔玉珍,等.新型模糊PID控制及在HVAC系统的应用.控制理论与应用,2009,26(11):1277-1281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700