用户名: 密码: 验证码:
阻尼动力减振镗杆动态特性仿真与优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深孔加工由于其特殊的加工环境,使镗杆杆体的尺寸和形状都要受到一定的限制,造成镗杆的刚度较低,特别是在镗杆的长径比较大的情况下,镗杆的刚度会更小,导致切削中振动加剧,严重影响加工质量,甚至使加工无法正常进行。如何减小深孔加工过程中的振动已成为迫待解决的问题。
     本文在总结了国内外对减振镗杆的减振技术、结构设计、试验方法和减振效果分析的基础上,利用多柔体动力学仿真技术对阻尼动力减振镗杆系统进行建模、仿真、优化研究,并根据仿真优化结果进行阻尼动力减振镗杆的实际设计和研制,其主要研究内容如下:
     在阻尼动力减振镗杆结构特点和减振特性研究基础上,利用材料力学和振动力学,推导镗杆的等效刚度和等效质量的计算公式,建立阻尼动力减振镗杆的数学简化模型,并分析镗杆减振系统的减振原理及振动特性,为镗杆减振系统的进一步研究提供理论依据。
     利用ADAMS和ANSYS软件对阻尼动力减振镗杆进行多柔体动力学仿真,通过理论结果与仿真结果对比验证模型的正确性。利用ADAMS软件的振动模块分析减振系统中环形橡胶径向刚度系数和阻尼液等效粘性阻尼系数对镗杆动态特性的影响。对阻尼动力减振镗杆多柔体动力学模型进行频域内优化分析,得出了减振系统各参数的最优值。通过优化后仿真分析发现系统频域最大响应值降为优化前三分之一,系统的抗振性能得到明显改善。
     利用ANSYS软件建立环形橡胶有限元参数化模型,通过函数逼近和梯度寻优的优化算法实现环形橡胶径向刚度与各设计参数之间的快速换算。分析内外圆柱面半径与轴向长度对环形橡胶径向刚度的影响,为环形橡胶的设计提供依据。利用流体力学相关知识,推导出阻尼动力减振镗杆中阻尼液等效粘度阻尼系数与运动粘度之间的估算公式,为实际设计中阻尼液的选用提供依据。
     为了验证理论计算和仿真结果的正确性,采用SA-78型双通道FFT信号分析仪在CW6163型普通车床上对阻尼动力减振镗杆进行振动特性实验。通过实验发现实验值和仿真值吻合较好,验证所建立仿真模型的正确性。普通镗杆与阻尼动力减振镗杆的实际加工对比实验表明阻尼动力减振镗杆的抗振性得到了大幅提高。
     通过对阻尼动力减振镗杆设计与动态特性仿真研究,给出阻尼动力减振镗杆系统的优化设计方案,为镗杆的设计和研制奠定了基础,为镗杆减振技术的研究提供了新的分析方法。
The size and shape of the boring bar are restricted because of the special machining condition in the deep-hole turning. This produces the low stiffness of the boring bar which will become lower especially with large length to diameter ratio. The vibration in the cutting will be aggravated and the machining quality will be badly affected. More dramatically, the machining can not be on the rails due to the lower stiffness. How to reduce the vibration in the deep-hole turning has become an urgent problem.
     In this thesis, based on the summary of vibration technology, structural design, test methods and vibration absorption effect analysis at home and abroad of vibration absorption boring bar, the simulation model of the dynamical vibration absorption boring bar with damping is established, simulated and optimized by using the flexible multi-body dynamics simulation technique. On the basis of the simulation results, the dynamical vibration absorption boring bar with damping has been designed and manufactured. The main content of this thesis includes the following parts:
     Based on the research of structural features and vibration absorption characteristics of dynamical vibration absorption boring bar with damping, the knowledge of mechanics of materials and mechanics of vibration is used to derive the formula of the equivalent stiffness and equivalent mass of boring bar, establish the simplified mathematical model, and analyze the vibration absorption principle and vibration characteristics of the dynamical vibration absorption boring bar with damping. This provides the theoretical basis for further study on vibration absorption system of boring bar.
     The software of ADAMS and ANSYS is used to build up the flexible multi- body dynamics simulation model of the dynamical vibration absorption boring bar with damping. And the comparison between theoretical results and simulation results verifies the validity of the model. The influence of the radial stiffness coefficient of rubber brushes and the equivalent viscous damping coefficient of damping fluid on the vibration system is discussed by using the vibration analyses module of ADAMS. The flexible multi-body dynamics model of the dynamical vibration absorption boring bar with damping has been simulated, optimized and analyzed in frequency domain. And optimized parameters are obtained finally. Simulation analysis of optimized system shows the maximal frequency response value of the system reduces to one-third of that of original system. And the vibration resistance of the system is vastly improved.
     The finite element model of rubber bush is built up by using the software of ANSYS. Fast conversion between the radial Stiffness and design parameters of rubber bush is achieved with function approximation and gradient optimization algorithm. The influence of inner and outer radii and axial length on the radial stiffness of rubber bush is analyzed, which provides guidance for the design of the rubber bush. Based on the knowledge of fluid dynamics, an estimated formula between the equivalent viscosity coefficient and the movement viscosity coefficient of damping fluid is given. This provides guidance for the selection of damping fluid.
     In order to verify the correctness of theoretical calculation and simulation results, 2ch FFT analyzer SA-78 is used to test the vibration characteristic of the dynamical vibration absorption boring bar with damping on lathe CW6163. Experiments show that experimental values and simulation values are in good agreement, which verifies the correctness of the simulation model. The comparative test of the common boring bar and the dynamical vibration absorption boring bar with damping in actual boring processing indicates that the vibration resistance of the bar is vastly improved.
     Through design and dynamic characteristics simulation of the dynamical vibration absorption boring bar with damping, the optimization design proposal of it is given, which lays the foundation for the design and development of boring bar and provides a new analysis method for the research on the vibration technology of boring bar.
引文
[1]TASKESEN A,MENDI F.Deformation analysis of boring bars using analytical and finite element approaches[J].Strojniski Vestnik/Journal of Mechanical Engineering,2006,52(3):161-169
    [2]MORADI H,AKHTIARI-NEJAD F B,Movahhedy M R.Tuneable vibration absorber design to suppress vibrations:An application in boring manufacturing process[J].Journal of Sound and Vibration,2007,318(1-2):93-108
    [3]宏伟,罗红波,郭华琛,王丽.减振镗杆的动态特性分析[J].工具技术,2007,42(3):52-54
    [4]WECK M,HENNES N,KRELL M.Spindle and toolsystems with high damping[J].CIRP Annals- Manufacturing Technology,1999,48(1):297-302
    [5]EMBRY J A,SMITH S W.System identification for boring bar chatter control[C].Proceedings of the 14th Biennial ASME Design Technical Conference on Mechanical Vibration and Noise,Design and Manufacturing,1993,61:199-207
    [6]KLEIN R G,NACHTIGAL C L.The application of active control to improve boring bar performance[J].Transactions of the ASME.Series G,Journal of Dynamic Systems,Measurement and Control,1975,97(2):179-183
    [7]HEINRICH U.Stable environment[boring stability][J].Cutting Tool Engineering,2005,57(12):42-50
    [8]王振成,高明宪,魏金营.深孔镗削振动研究[J].水利电力机械,2002,24(1):55-57
    [9]O'NEAL G P,PASEK Z J,MIN B K.Integrated structure/control design of micro-positioner for boring bar tool insert[C].Proceedings of SPIE - The International Society for Optical Engineering,2000,3985:560-571
    [10]应模华.偏心微调镗杆的设计和计算[J].南昌大学学报:工科版,1990,12(4):69-77
    [11]TREGO A;EASTMAN P F.Reduced boring bar vibrations using damped composite structures[C].Proceedings of the 1995 ASME Design Engineering Technical Conference.Part A-1,1995,84(3):305-310
    [12]王明红,章宗城,唐勤生.机械加工工艺系统振动与新型阻尼镗杆[J].上海工程技术大学学报,2003,17(4):264-267
    [13]张云.镗杆减振器[J].铁道机车车辆工人,1993(10):31
    [14]屈维德,唐恒龄.机械振动手册[M].北京:机械工业出版社,2000:759-762
    [15]BAKER J R,ROUCH K E.Stability analysis of boring bars with asymmetry[J].Machining Science and Technology,2002,6(1):81-95
    [16]郑西安,许鸿飞.机夹高比重合金镗杆的应用[J].工具技术,1991,25(11):46-47
    [17]李海田.高密度材料镗杆在组合机床上的应用[J].组合机床与自动化加工技术,1996(12):45-46
    [18]高则烈.钨基重合金制造深孔镗杆[J].工具技术,1995,29(2):15-17
    [19]肖吴.整体硬质合金镗杆[J].工具技术,1987(1):40
    [20]章宗诚.日本三菱公司新型高阻尼抗振FSCL型镗杆[J].工具技术,2000,(5):40
    [21]ANDREN L,HAKANSSON L,CLAESSON I.Performance evaluation of active vibration control of boring operations using different active boring bars[C].Proceedings of the Tenth International Congress on Sound and Vibration,Stockholm Sweden,2003:3749-3756
    [22]TEWANI S G.,WALCOTT B L,ROUCH K E.Active optimal vibration control using dynamic absorber[C].Proceedings of the 1991 IEEE International Conference on Robotics and Automation,1991,2:1182-1187
    [23]张杰斌,张湧.减振原理在镗杆上的应用[J].机械工人.冷加工,2004(11):30-32
    [24]WONG B W,WALCOTT B L,ROUCH K E.Active vibration control via electromagnetic dynamic absorbers[C].Proceedings of the 1995 IEEE Conference on Control Applications,1995:868-874
    [25]TANAKA H,OBATA F.Active chatter suppression of slender boring bar using piezoelectric actuators[J].JSME International Journal,Series C:Dynamics,Control,Robotics,Design and Manufacturing,1994,37(3):601-606
    [26]O'NEAL G P,MIN B K.Integrated structural/control design of micropositioner for boring bar tool insert[J].Journal of Intelligent Material Systems and Structures,2001,12(9):617-627
    [27]刘春颖.镗杆振动的主动最优控制仿真研究[D].吉林:吉林大学硕士论文,2005:2-5
    [28]BROWNING D R,GOLIOTO I,THOMPSON N B.Active chatter control system for long-overhang boring bars[C].Proceedings of SPIE-The International Societv for Optical Engineering.1997.3044:270-280
    [29]孔天荣,梅德庆,陈子辰.磁流变智能镗杆的切削颤振抑制机理研究[J].浙江大学学报:工学版,2006,42(6):1005-1009
    [30]REDMOND J M,BARNEY P,SMITH D.Development of an active boring bar for increased chatter immunity[C].Proceedings of SPIE - The International Society for Optical Engineering,1997,3044:295-306
    [31]AKESSON H,SMIRNOVA T.On the development of a simple and robust active control system for boring bar vibration in industry[J].International Journal of Acoustics and Vibrations,2007,12(4):139-152
    [32]CHIU W M,CHAN K W.Design and testing of piezoelectric actuatorcontrolled boring bar for active compensation of cutting force induced errors [J].International Journal of Production Economics,1997,51(1-2):135-148
    [33]BARNEY P,REDMOND J,SMITH D.Characteristics of self-sensing actuation for active control[C].Proceedings of the 1997 15th International Modal Analysis Conference,IMAC.Part 2(of2),1997,1:739-744
    [34]齐涤非.镗削加工中的冲击式减振器减振性能研究[J].湘潭矿业学院学报,1999,14(2):70-74
    [35]IWATA K,MORIWAKI T,UENO S.Analysis of dynamic characteristics of boring bar with impact damper[J].Memoirs of the Faculty of Engineering,Kobe University,1981,27:85-94
    [36]YIM J H,CHO S Y,SEO Y J.Vibration damping analysis of the laminated composite sandwich cantilever beam inserted with viscoelastic layer[C].Proceedings of the 2002 International Conference on Noise and Vibration Engineering,ISMA,Leuven Belgium,2002:2299-2305
    [37]SZUBA P,ZOU Q.Optimization of Hollow Cantilevered Boring Bar Stiffness[J].Machining Science and Technology,2005,9(3):325-343
    [38]赵永成.精镗孔液膜阻尼系统仿真及工作可靠性分析[J].大连铁道学院学报,2003,24(1):24-26
    [39]马秋成,韩利芬,罗益宁,聂松辉.细长刀杆的结构分析[J].机械设计,2002,(4):44-46
    [40]王世龙,王丽娜.提高镗杆刚度的一种措施[J].吉林工学院学报,1999,20(2):62-64
    [41]李启堂,胡荣生.动力吸振器在镗杆中的应用[J].工具技术,1997,31(11):19-21
    [42]MEI C.Active regenerative chatter suppression during boring manufacturing process.Robotics and Computer-Integrated Manufacturing[J].2005,21(2):153-158
    [43]DESANGHERE G,VANSEVENANT E.Adaptive tuned vibration absorber[C].Proceedings of the 9th International Modal Analysis Conference Part 2(of2),1991,2:1347-1352
    [44]RIVIN E I.Structural optimization of cantilever mechanical elements[J].Journal of Vibration,Acoustics,Stress,and Reliability in Design,1986,108(4):427-433
    [45]PRATT J R,NAYFEH A H.Boring-bar chatter control using a two-axes active vibration absorber scheme[J].Proceedings of the 1997 National Conference on Noise Control Engineering,NOISE-CON.Part 2(of 2),1997,2:313-324
    [46]PRATT J,NAYFEH A H.Boring bar chatter control[C].Proceedings of the 1998 16th International Modal Analysis Conference,IMAC.Part 1(of 2),1998,1:215-223
    [47]PRATT J R,NAYFEN,A H.Smart structures for chatter control [C].Smart Structures and Materials 1998:Smart Structures and Integrated Systems,1998,3329:161-172
    [48]PRATT J,NAYFEH A H.Active vibration control for chatter suppression[C].Proceedings of the 1997 38th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Part 4(of4),1997,1,:623-633
    [49]俯拾.用特殊钛合金制作的带油孔镗杆[J].工具技术,1994,28(8): 13
    [50]NAGANO S,TAKAYUKI K.Development of a composite boring bar[J].Composite Structures,1997,38(1-4):531-539
    [51]LEE D G,HWANG H Y,KIM J K.Design and manufacture of a carbon fiber epoxy rotating boring bar[J].Composite Structures,2003,60(1):115-124
    [52]ANDREN L,HAKANSSON L,BRANDT A.Identification of Dynamic Properties of Boring Bar Vibrations in a Continuous Boring Operation[J].Mechanical Systems and Signal Processing,2004,18(4):869-901
    [53]吴能章,周利平.一种新型复合材料镗刀杆的建模与有限元分析.西华大学学报,2005,24(5):22-24
    [54]何将三.层复合阻尼镗杆的动力学分析[J].中国有色金属学报,1995,5(3):144-148
    [55]ADKINS C A,HUANG Z.Active vibration control using an electromagnetic absorber with two degrees of freedom[C].Proceedings of the 1996 IEEE SOUTHEASTCON Conference,1996:175-178
    [56]TEWANI S G,ROUCH K E,WALCOTT,B L.Finite element analysis of a boring bar using an active dynamic absorber for active vibration control[J].American Society of Mechanical Engineers,Aerospace Division (Publication) AD,1991(24):179-188
    [57]ANON.Design and test tool integration[J].Auto Technology,2004,4(6):54-55
    [58]MORADI H,BAKHTIARI-NEJAD F,MOVAHHEDI M R.A tunable vibration absorber design to suppress chatter in boring manufacturing process[J].ASME International Mechanical Engineering Congress and Exposition,Proceedings,2008,9:1943-1950
    [59]BEAUCHAMP Y,THOMAS M.Investigation of cutting parameter effects on surface roughness in lathe boring operation by use of a full factorial design[J].Computers and Industrial Engineering,1996,31(3-4):645-651
    [60]WANG M,FEI R Y.Improvement of machining stability using a tunablestiffness boring bar containing an electrorheological fluid[J].Smart Materials and Structures,1999,8(4):511-514
    [61]WANG M,FEI R Y.On-line chatter detection and control in boring based on an electrorheological fluid[J].Mechatronics,2001,11(7):779-792
    [62]WANG M,FEI R Y.The machining stability analysis for boring thin walled hollow workpieces[C].Prog.Mach.Technol.Proc.Seventh Int.Conf.Prog.Mach.Technol.ICPMT,2004:491-495
    [63]WANG M,FEI,R.Chatter suppression based on nonlinear vibration characteristic of electrorheological fluids[J].International Journal of Machine Tools and Manufacture,1999,39(12):1925-1934
    [64]王民,费仁元,杨建武.应用电流变材料改变镗杆动态特性的研究[J].中国机械工程,1999,10(12):1351-1353
    [65]MATSUBARA T;YAMAOTO H;MIZUMOTO H.Chatter suppression by using piezoelectric active damper[C].Advances in Design Automation -1989,1989,18-2:79-83
    [66]TEWANI S G,SWITZER T C.Active control of machine tool chatter for a boring bar:experimental result[C].Proceedings of the 14th Biennial ASME Design Technical Conference on Mechanical Vibration and Noise,1993,61:103-115
    [67]TEWANI S G,SWITZER T C.Active vibration control using an active dynamic absorber:Experimental results[C].Winter Annual Meeting of the American Society of Mechanical.Engineers,1992,42:133-140
    [68]CHIU W M,GAO D,LAM F W.Improvement of machining accurcy of cantilever boring bar system using piezoelectric actuator[J].Transactions of Nanjing University of Aeronautics & Astronau,1998,15(1):54-58
    [69]CHIU W M,LAM F W,GAO D.An overhung boring bar servo system for on-line correction of machining errors[J].Journal of Materials Processing Technology,2002,122(2-3):286-292
    [70]TEWANI S G,ROUCH K E.Finite element analysis of a boring bar using an active dynamic absorber for active vibration control[C].Winter Annual Meeting of the American Society of Mechanical Engineers,1991,24:179-188
    [71]TEWANI S G,ROUCH K E.Study of cutting process stability of a boring bar with active dynamic absorber[J].Int.J.Mach.Tools Manufact,1995,35(1):91-108
    [72]冀春荣,施引祁,张治安.削扁镗杆与阻尼减振在深孔加工中的应用[J].西安工业学院学报,1994,14(2):115-119
    [73]王世龙,孙伟,王菊.实验用“削扁镗杆”结构的改进[J].吉林工学院学报:自然科学版,1996,17(1):11-14
    [74]马建勋,黎征.冲击块式减振镗杆与镗杆变形量的测试[J].长安大学学报:自然科学版,1990,10(4):29-36
    [75]胡李波,王民,李刚.动力减振镗杆的减振性能研究[J].机械设计与制造,2009,25(1):131-133
    [76]张红卫,吴伏家.一种新型抗振镗杆的结构设计[J].机械工程与自动化,2007(5):75-79
    [77]陈刚,李再华.大型电机主轴内孔加工的镗杆设计及ANSYS静态分析[J].机械工程师,2006(10):87-89
    [78]李启堂,胡荣生.减小镗杆颤振的方法[J].机械开发,1998(1):22-24
    [79]郭永生,黄宝岑,王尚武.深孔镗床镗杆直径的计算[J].机械工艺师,1997(12):24
    [80]张志军,吴希平.深孔加工镗杆的结构模态对切削颤振的影响机[J].械设计与制造,1991(6):42-46
    [81]张克东.减振刀杆的研制与开发.长春理工大学(硕士论文),2003:35-37
    [82]张志军,阎明印,唐日福.减振镗杆中动力减振器动态特性的研究与测试[J].沈阳工业学院学报,1997,16(1):64-68
    [83]谭振义.一种多功能调节镗杆设计[J].机械设计与制造,2006(5):30-31
    [84]张:艺俊.一种能保证加工要求的镗杆结构[J].机械制造,2001,39(3):46-47
    [85]张之俊.一种能保证高精度加工要求的镗杆结构[J].内燃机,2003(3):16-17
    [86]J.维滕伯格著、谢传锋译.多刚体系统动力学[M].北京:北京航空学院出版社,1986:5-10
    [87]HILLER M,LEITNER J.Integration of dynamic simulation in strength and fatigue analysis of transmissions[J].VDI Berichte,2002,2(1665):691-703
    [88]JAMES C,SCHAAF J,THOMPSON F L.System Concept Development with Virtual Prototyping[C].Proceeding of the 1997 Winter Simulation Conference,1997:941-947
    [89]PRATT J R,NAYFEN,A H.Design and modeling for chatter control[C].Nonlinear Dynamics,1999,19(1):49-69
    [90]ZHANG J W,LIU Y Q.Research on simulation and test of the nonlinear responses for the hydraulic shock absorber.Journal of Dong Hua University(English Edition),2003,20(4):98-102
    [91]张胜利.Pro/E、ADAMS与ANSYS在机械系统设计中的联合运用[J].机械设计与制造,2005,(11):143-145
    [92]郑建荣.ADAMS--虚拟样机技术入门与提高[M].北京:机械工业出版社,2002:1-3
    [93]侯红玲,赵永强,魏伟锋.基于ADAMS和ANSYS的动力学仿真分析[J].现代机械,2005,(4):62-63
    [94]程海涛,王成国,钱立新.考虑车体柔性的货车动力学仿真[J].铁道学报,2000,22(6):40-45
    [95]刘俊,林砺宗,刘小平..ADAMS柔性体运动仿真分析研究及运用[J].现代制造工程,2004,(5):53-55
    [96]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002:28-32
    [97]徐勤文,刘轶强,李再华.大型电机主轴内孔加工的镗杆模态分析[J].机械工程与自动化,2006(4):71-73
    [98]刘正士,唐述培,刘玉,陈晓东.一种精密可调镗杆动态特性的实验研究[J].合肥工业大学学报:自然科学版,1994,17(4):78-83
    [99]黄文廉,袁人炜,徐传寰等.考虑主系统阻尼的减振镗杆设计与实践[J].安徽工学院学报,1991,10(2):45-53
    [100]KOGANTI R K P,LATINOVIC V N,AHMED A K W.Frequency analysis of cutting tool-boring bar in deep-hole machining[C].Proceedings of the 11 th International Modal Analysis Conference,1993,1923(2):934-940
    [101]KUSTER F.Considerations to optimize the dynamic behaviour of boring bars[C].Proceedings of the 9th International Modal Analysis Conference Part 1(of 2),1991,1:5-11
    [102]程昌钧,朱媛媛.弹性力学[M].上海:上海大学出版社,2005:58-66
    [103]HORTON J M,GOVER M J C and TUPHOLME G E.Stiffness of Rubber Bush Mountings Subjected to Radial Loading[J].Rubber Chemistry and Technology.2000,73(2):253-264619-633
    [104]龚署光.ANSYS基础应用及范例解析[M].北京:机械工业出版社,2004:105-108
    [105]ADKINS J E and GENT A N.Load-deflexion Relations of Rubber Bush Mountings[J].BritJ Appl Phys.1954,20,354-358
    [106]孔珑.流体力学Ⅱ[M].北京:高等教育出版社,2003:105-108
    [107]赵学端.粘性流体力学[M].北京:机械工业出版社,1983:97-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700