用户名: 密码: 验证码:
重型数控车床静压推力轴承油膜控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静压推力轴承的性能优劣直接影响重型数控加工设备的加工质量和运行效率。如何提高静压推力轴承的刚度是目前非常迫切的任务之一。本文以油膜刚度作为研究内容,突出工程应用的特色,将理论、实验及应用密切结合起来,开发一种重型高刚度静压推力轴承主动控制系统。
     基于有限元分析数据,以重型数控车床C5116E-NC工作台为研究对象,分析了工件重量、工件高度、切削力对油膜位移的影响。研究结果表明在给定的切削力条件下,工件重量的变化影响倾覆力矩的分配形式,随着工件重量的减轻,油膜位移逐渐增大,特别是当工件重量小于最大工件重量的1/2时,使用最大切削力,则局部油膜压力无法建立;随着工件高度的增加,倾覆力矩增加,油膜位移增大。该研究定量给出了工件重量与颠覆力矩产生的油膜位移。基于Christensen随机粗糙表面模型,建立了稳态和摄动随机雷诺方程,考虑转动惯量和油液可压缩性研究了表面粗糙度对油膜性能的影响。研究结果表明,表面粗糙度对承载性能的影响可忽略,对稳态流量、动态刚度的影响显著。该项研究为静压推力轴承刚度的提高提供了前提条件。
     基于油膜特性影响因素分析,提出油腔流量分组控制的主动控制方案,选择电液位置伺服系统作为可控油腔流量调节机构,采用四组可控油腔调节和控制油膜,实现工作台的期望位姿;建立了电液伺服变量机构的数学模型及可控油腔流量模型。为确保模型的准确性,设计二维互不相关系统辨识激励信号,将四通道系统简化成四个单通道系统进行参数辨识。该研究为静压推力轴承油膜主动控制系统的设计与实现奠定了理论基础。
     将静压推力轴承油膜控制模型等效为工作台位姿控制模型,并对油膜控制的运动学及逆运动学进行了建模和求解。基于非线性时变的油膜控制系统对控制策略的要求,设计了自适应模糊PID复合控制作为静压推力轴承油膜控制策略,并采用模糊推理完成“切换”以实现了控制性能的明显改善,用描述函数法分析了推力轴承模糊控制系统稳定性;建立油膜控制策略仿真模型,进行了推力轴承工作台位姿仿真分析,结果表明,采用模糊PID复合控制,具有更快的动态响应特性,比常规模糊控制具有更小的超调、更高的稳态精度。该研究为静压推力轴承油膜主动控制策略的实现奠定了基础。
     基于xPC快速原型化技术,设计了油膜控制半物理仿真实验系统,实现油膜厚度位置闭环控制。采用闭环辨识法辨识了单通道油膜控制伺服系统(试验台)的模型,实验结果证明了参数辨识模型的合理性。分别对常规PID控制器、模糊控制器、模糊复合控制器建立单通道油膜控制半物理仿真模型,进行油膜控制策略半实物仿真实验,半实物仿真结果表明,复合控制器具有快速的上升时间,更好地提高了系统的抗干扰能力,且对被控对象参数变化有很强的适应能力。该研究为静压推力轴承油膜主动控制系统的研制提供了可靠的依据。
The performance of hydrostatic thrust bearing will directly impact the machining quality and operational efficiency of the heavy NC machining equipments. How to improve the stiffness of hydrostatic thrust bearing is one of the most urgent missions now. The oil film stiffness is the main research content and engineering application is the final goal in this dissertation, which combine closely the theory, experiment and application to develop a kind of active control system on hydrostatic thrust bearing to enhance bearing stiffness.
     The effects of workpiece weight, height and cutting force upon oil film displacement are analyzed based on finite element analysis data for worktable of heavy NC lathe C5116E-NC. The research results show that variation of workpiece weight impact on overturning moment distribution for given cutting force, oil film displacement will increase gradually as workpiece weight decreases, especially when workpiece weight is less than half of the maximum workpiece weight, local oil film pressure will not be built; the overturning moment and oil film displacement will increase as workpiece height increases. The oil film displacement produced by workpiece weight and overturning moment is given quantitatively in this study. Based on Christensen model, the Reynolds equations on steady-state and perturbed-state are built. The effect of surface roughness on oil film characteristics is analyzed taking into account the effect of fluid inertia and compressibility. The research results show that bearing surface roughness provide a neglected effect upon the load-carrying and a significant effect upon the steady lubricant flow rate, dynamic stiffness and damping coefficients. This work provides precondition of improving the hydrostatic thrust bearing stiffness.
     Based on analysis of effect factors on oil film property, an active control scheme on flow group of controlled chamber is proposed. The electro-hydraulic position servo system is selected as flow adjusting mechanism, which can regulate and control the oil film thickness of four groups controlled chambers to realize desired pose of the worktable. Mathematical models of electro-hydraulic servo variable flow mechanism and flow models of controlled chambers are built. A kind of second-dimension mutually non-correlative exciting signals is designed, which can simplify four-channel system into four single-channel systems for parameter identification. This work provides theoretical basis for designing and realizing oil film active control system of hydrostatic thrust bearing.
     Oil film control model of hydrostatic thrust bearing is equivalent to worktable pose control model; kinematics and inverse kinematics of oil film control are modeled and solved. Based on requirements for control strategy of non-line time-varying oil film system, a self-adaptive fuzzy PID hybrid controller is designed, a fuzzy switching mode is employed to improve obviously the control performance, and the fuzzy control system stability is analyzed using the describing function method. Oil film control strategy simulation model is built and worktable pose simulation is analyzed. The simulation results show that the rapidity of dynamic response and more little overshoot and more highly steady-state precision are attained for fuzzy PID hybrid controller. This work provides basis for realizing oil film active control strategy of hydrostatic thrust bearing.
     Hardware-in-loop simulation experiment system is developed to realize oil film position close-loop control based on xPC rapid control prototype technique. The model of single channel oil film control system (servo test bench) is identified by close-loop identification method, and reasonability of model is proved by experiment result. Hardware-in-loop simulation experiment of PID controller, fuzzy controller and fuzzy hybrid controller are carried out, and results show that hybrid controller provides quickly rising time and strongly anti-disturbance ability and adaptability for parameters change of plant controlled. This work provides reliable basis for developing oil film active control system of hydrostatic thrust bearing.
引文
[1]赵健.综论超精密加工技术的发展[J].机械研究与应用,2008,21(5):6-8.
    [2]刘俊利,刘伟.精密超精密加工技术在航天领域的应用与展望[J].航天制造技术,2008,(4):51-55.
    [3]张建明.现代超精密加工技术和装备的研究与发展[J].航空精密制造技术,2008,44(1):1-7.
    [4] OZASA T.Surface roughness and pressure effect on viscosity in elastohydrodynamic lubrication model of engine bearings (Friction)[J].Transactions of the Japan Society of Mechanical Engineers,Part C,2008,74(4):1034-1041.
    [5] NASA LEWIS RESEARCH CENTER.Fluid film bearing code development [R/OL].Government Funded Technical Reports:Research & Technology, 2005[2006-09-18].http://hdl.handle.net/123456789/14 92.
    [6] PARANJPE R S and HAN T.A transient thermo hydrodynamic analysis including mass conserving cavitations for dynamically load journal bearings[J].ASME Journal of Tribology,1995,117(3):368-378.
    [7] RADAKOVIC D J ,KHONSARI M M.Heat transfer in a thin-film flow in the presence of squeeze and shear thinning:application to piston rings [J].Journal of Heat Transfer,1997,119(2):249-257.
    [8] ZHOU Y,SAN ANDRES L,CHILDS D W.Thermo hydrodynamic analysis of process-liquid hydrostatic journal bearings in turbulent regime, Part II: numerical solution and results[J].Journal of Applied Mechanics ,1995,62(3):679-684.
    [9] SAN ANDRES L.A analysis of turbulent hydrostatic bearings with a barotropic cryogenic fluid [J].ASME J.Tribol,1992,114:755-764.
    [10] SAN ANDRES L.The effect of journal misalignment on the operation of a turbulent flow hydrostatic bearing[J].J.Tribol,1993,115(3):355-363.
    [11] SAN ANDRES L.Introduction to pump rotordynamics,In design and analysis of high speed pumps educational notes[R/OL].RTO-EN-AVT-143,Neuilly-sur-Seine,France:PHILLIPS LAB EDWARDS AFB CA, 2006.http://www.rto.nato.int/abstracts.asp.
    [12] ZHANG C,JASON X,CHENG H S.A study of dynamically loaded finite journal bearings in mixed lubrication using a transient thermo hydrodynamic analysis[J].Tribology Transactions,2000,43(3):459-464.
    [13] SHAH K,JOHNSON R E,CHERUKURI H P.Numerical investigations of various surface roughness parameters on the performance of profiled hydrostatic thrust bearing[C].Society of Tribologists and Lubrication Engineers.Proceedings of the World Tribology Congress III,Washington D C,United States,2005:37-38.
    [14] ARVIDSSON,Thomas.A hydrostatic thrust bearing system:US,4915510 [P/OL].1989-05-01[1990-04-10].http://www.patentstorm.us/patents /4915510/fulltext.html.
    [15] San Andres , Luis A.Two pad axially grooved hydrostatic bearing :European,EP,EP0669474[P/OL].1994-12-15[2000-05-17].http://www. freepatentsonline.com/EP0669474.html.
    [16] JOHNSON R E,MANRING N D.Sensitivity studies for the shallow-pocket geometry of a hydrostatic thrust bearing[C].ASME International Mechanical Engineering Congress and Exposition.The Fluid Power and Systems Technology Division FPST,Washington DC,2003:231-238.
    [17] WU A,CAI Z,MARCIO S.Model-based control of active tilting-pad bearings[J].IEEE/ASME,Transctions on mechatronics,2007,12(6):689-695.
    [18] CAI Z,QUEIROZ M S,KHONSARI M M.Adaptive control of active tilting-pad bearings[J].Journal of Sound and Vibration,2004,273(1-2):421-428.
    [19] LIU L X ,SPAKOVSZKY Z S.Effects of bearing stiffness anisotropy on hydrostatic micro gas journal bearing dynamic behavior [C].Proceedings of the ASME Turbo Expo,Reno-Tahoe,NV,United States:2005,4:679-688.
    [20] ROUVAS C,CHILDS D W.A parameter identification method for the rotor dynamic coefficient sofa high reynolds number hydrostatic bearing [J].J.Vib.Acoust.1993,115(3):264-270.
    [21] YOSHIMOTO S,ANNO Y,FUJIMURA M.Static Characteristics of a Rectangular Hydrostatic thrust bearing with a self-controlled restrictor employing a floating disk[J].J.Tribol,1993,115(2):307-311.
    [22] YOSHIAKI S.Study on externally pressurized gas bearings with infinite stiffness(lst Report)[J].Journal of the Japan Society of Precision Engineering,1994,60(7):1009-1013.
    [23] KEIICHI S.Study on externally pressurized gas bearings with infinite stiffness(2st Report)[J].Journal of the Japan Society of Precision Engineering,1996, 62(1):85-89.
    [24] NAKASHIMA K , TAKAFUJI K.Development of high stiffness hydrostatic thrust bearing by movable land[J].Transactions of the Japan Society of Mechanical Engineers,Part C,2002,68(4):1273-1278.
    [25] NAKASHIMA K,TAKAFUJI K.Static and dynamic performance of high stiffness hydrostatic thrust bearing by movable land[J].Transactions of the Japan Society of Mechanical Engineers,Part C,2005,71(11):3278-3284.
    [26]张君安.高刚度空气静压轴承研究[D].西安:西北工业大学,2006:8-14.
    [27] HORIKAWA O,OSADA H,SHIMOKOHBE A.An active air journal bearing [J].Journal of the Japan Society of Precision Engineering,1989,55(11):2063-2068.
    [28]中国轴承工业协会主网站.冈本工作机械推出可变静压轴承的研磨机[EB/OL].中国轴承行业网,新闻中心,行业新闻,2004-09-17[2004-09-17] http://www.cbia.com.cn.
    [29] MANFRED W,JAN H N ,MARKUS W.Development of Hydrostatic Bearings with Groove Structures [C].Initiatives of Precision Engineering at the Beginning of a Millennium 10th International Conference on Precision Engineering (ICPE),Yokohama,Japan,2001:534-538.
    [30] NAKAO Y,SAGESAKE Y.Diamond turning using water drive spindle [C].Towards Synthesis of Micro/Nanosystems,The 11th International Conference on Precision Engineering(ICPE),Tokyo,Japan,2006:157-161.
    [31] WANG X,YAMAGUCHI A.Characteristics of hydrostatic bearing/seal parts for water hydraulic pumps and motors . Part 1:Experiment and theory[J].Tribology International,2002,35(7):425-433.
    [32] JAYACHANDRA PRABHU T,GANESAN N.Finite element application to the study of hydrostatic thrust bearings[J].Wear,1984,97 (2):139-154.
    [33] JAYACHANDRA PRABHU T,GANESAN N.Characteristics of multipad hydrostatic thrust bearings under rotation[J].Wear,1984,93(2):219-231.
    [34] SHARMA S C,KUMAR V,JAIN S C et al.Study of slot-entry hydrostatic /hybrid journal bearing using the finite element method [J].Tribology International,1999,32(4):185-196.
    [35] SINGH C K,SINGH D V.Stiffness optimization of a variable restrictor-compensated hydrostatic thrust bearing[J].Wear,1977,44(2):223-230.
    [36] SHARMA S C,JAIN S C,BHARUKA D K.Influence of recess shape on the performance of a capillary compensated circular thrust pad hydrostatic bearing[J].Tribology International,2002,35(6):347-356.
    [37] SINGH N,SHARMA S C,REDDY S.Performance of membrane compensated multi-recess hydrostatic/hybrid flexible journal bearing system considering various recess shapes[J].Tribology International,2004,37(1):11-24.
    [38] GARG H C,SHARDA H B,KUMAR V.On the design and development of hybrid journal bearings:a review[J].Tribotest,2006,12(1):1-19.
    [39] TYABIN N V,YABLONSKII V O,YASHCHUK V M.Calculation of hydrostatic plastic medium-lubricated thrust bearings[J].Journal of Engineering Physics and Thermophysics,1992,63(3):949-952.
    [40] YABLONSKII V O,TYABIN N V,YASHCHUK V M.Effect of the rheological properties of a lubricant on the carrying capacity of hydrostatic bearings[J].Journal of Engineering Physics and Thermophysics,1993,64 (2):153-156.
    [41] YABLONSKII V O,TYABIN N V , YASHCHUK V M.Influence of theological properties of a lubricant on power consumption and heat transfer in a hydrostatic lubricating layer[J].Journal of Engineering Physics and Thermophysics,1994,67(5):1038-1041.
    [42] LYAMIN E V,MELENT S N,PRODANOV M E.Optimization and diagnosing of the vibration condition of controllable rotor systems[J]. Strength of Materials,1990,22(8):1227-1232.
    [43] GRABOVSKII V I.Optimum clearance of a gas hydrostatic thrust bearing with maximum load capacity [J].Fluid Dynamics,2000,35(4):525-533.
    [44] MELNIK V A.Heat generation at sealing junction of end seal rings [J].Chemical and Petroleum Engineering,2006,42(7):382-387.
    [45] AGROZKI P,LAM K B,BAHKALI E A.Nonlinear transient behavior ofa sliding system with frictionally excited thermoelastic instability [J].ASME Trans Journal of Tribology,2001,123 (5):699-708.
    [46] BOUZIDANE A , THOMAS M.Equivalent stiffness and damping investigation of a hydrostatic journal bearing[J].Tribology Transactions,2007,50(2):257-267.
    [47] BOUZIDANE A,THOMAS M and LAKIS A A.Nonlinear dynamic behavior of a rigid rotor supported by hydrostatic squeeze film dampers [J].J.Tribol,2008,130 (4):041102-041111.
    [48] BOUZIDANE A,THOMAS M.An electrorheological hydrostatic journal bearing for controlling rotor vibration[J].Computers and Structures, 2008,86 (3-5):463-472.
    [49] OSMAN T A,SAFAR Z S,MOKHTAR M O A.Design of Annular Recess Hydrostatic Thrust Bearing under Dynamic Loading[J] . Tribology International,1991,24(3):137-141.
    [50] OSMAN T A,DORID M , SAFAR Z S.Experimental assessment of hydrostatic thrust bearing [J].Tribology International,1996,29(3):233-239.
    [51] FILLON M and MONMOUSSEAU P.transient thermoelastic hydrodynamic behavior of tilting pad journal bearings[J].Revue Generale de Thermique, 1997,36 (6):433-441.
    [52] MONMOUSSEAU P , FILLON M.Frequency effects on the TEHD behaviorof a tilting-pad journal bearing under dynamic loading[J].Journal of Tribology,Transactions of the ASME,1999,121(2):321-329.
    [53] LUCA A,MARIO P.Hydrostatic journal bearing with coaxial floating sleeve[J].Mechanics Research Communications,2006,33(3):394-400.
    [54] CHRISTIAN B,CHRISTOPH B,MARKUS W.Simulation of dynamic effects on hydrostatic bearings and membrane restrictors[J].Production Engineeri ng,2007,1(4):415-420.
    [55] VAN B A,SEGAL A.Rubber supported hydrostatic thrust bearings with rigid bearing surfaces[J].Tribology International,1997,30(1):47-52.
    [56] GUO Z L,HIRANO T,KIRK R.Application of CFD analysis for rotating machinery.Part I:Hydrodynamic, hydrostatic bearings and squeeze film damper[J].Journal of engineering for gas turbines and power,2005,127(2):445-451.
    [57] CANBULUT F,SINANOLU C,YILDIRIM S.Neural network analysis of leakage oil quantity in the design of partially hydrostatic slipper bearings[J].Industrial Lubrication and Tribology,2004,56(4):231-243.
    [58] CANBULUT F,SINANOLU C,YILDIRIM S.Design of neural network model for analysing hydrostatic circular recessed bearings with axial piston pump slipper[J].Industrial Lubrication and Tribology,2004,56(5) : 288-299.
    [59] CANBULUT F,YILDIRIM S,SINANOLU C.Design of an Artificial Neural Network for Analysis of Frictional Power Loss of Hydrostatic Slipper Bearings[J].Tribology Letters,2004,17(4):887-899.
    [60] OLMAZ E S,OZTURK F.Optimisation of hydrostatic journal bearings with parameter variations based on thermodynamic effects[J].Industrial Lubrication and Tribology,2006,58(2):118-122.
    [61]刘大全.考虑温粘热效应的滑动轴承非线性油膜力模型研究及其应用[D].上海:复旦大学,2005:91-131.
    [62]郅刚锁,马希直,朱均.推力轴承油膜温度场的可视化研究[J].重型机械,2003,(2):11-14.
    [63]富彦丽,马希直,朱均.圆轴承三维温度场的研究[J].机械科学与技术,2002,21(5):711-713.
    [64]陈志澜,吕新广,朱均.三维传热对推力轴承温度分布影响的研究[J].西安交通大学学报,1998,32(12):63-65.
    [65]郭力,李波.不同油腔形状的高速动静压轴承研究[J].磨床与磨削,2000,(2):39-42.
    [66]葛治美,韩振兴,张恩和.航空发动机轴承腔热分析计算[J].航空动力学报,2005,20(3):483-486.
    [67]张建斌,池长青.浅腔阶梯液体动静压混合轴承温度场分析[J].北京航空航天大学学报,1997,23(3):390-394.
    [68]邓绪勇,舒大文,陈永星.球磨机滑动轴承温度场的有限元分析[J].机电工程技术,2007,36(3):59-61.
    [69]徐建宁,屈文涛,赵宁.止推滑动轴承的温度场和热变形分析[J].润滑与密封,2006,(8):120-121.
    [70]王晓力,温诗铸,桂长林.动载轴承的非稳态热流体动力润滑分析[J].清华大学学报:自然科学版,1999,39 (8):1-8.
    [71]王晓力,温诗铸,桂长林.计入表面粗糙效应的动载轴承的润滑分析[J].机械工程学报,2000,36(1):27-31.
    [72]刘智.基于分形理论的粗糙表而三维瞬态温度/压力/应力场数值模拟[D].福州:福州大学,2005:1-3.
    [73] LIN J R.Surface roughness effect on the dynamic stiffness and damping characteristics of compensated hydrostatic thrust bearings [J].International Journal of Machine Tools and Manufacture,2000,40(11):1671-1689.
    [74]刘基博,刘浪飞.球摩机开式静压轴承的液压参数计算和油腔结构优化探讨[J].矿山机械,2000,4(4):33-36.
    [75]丁叙生,李尧忠.不等封油边静压轴承的设计及应用[J].械机制造,1987, (2):12-13.
    [76]丁叙生.以主轴系统刚度与总功耗之比值为目标函数的液体静压轴承优化设计方法[J].南昌航空工业学院学报:自然科学版,2000,14(3):26-29.
    [77]丁叙生.有周向回油槽液体静压轴承的优化设计[J].机床与液压,2000,增刊:75-76.
    [78]丁叙生,唐寿刚.无周向回油液体静压轴承优化设计[J].制造技术与机床,2001, (1):25-27.
    [79]于春生,徐柄松,刘连杰.轧辊车床主轴不等面积油腔静压轴承优化设计[J].冶金设备,1997, (1):1-4.
    [80] CHE J M.Structure innovation on the hydrostatic journal bearing [J].Lubrication Engineering,2005, (3):102-104.
    [81]姜洪滨.直线振动台上液体静压轴承的优化设计及实验研究[D].鞍山:鞍山科技大学,2006:36-41.
    [82] LIU W,CHEN D R,PROKOPENKO V A.Optimal methods of the dynamic properties in a hydrostatic bearing system[J].Chinese Journal of Mechanical Engineering,2000,36(6):75-78,81.
    [83] LIU W,WU X J,PROKOPENKO V A.Nonlinear analyses of the dynamic properties of hydrostatic bearing systems[J].Tsinghua Science and Technology,2003,8(5):582-585.
    [84]丁叙生,陈斌武.液体静压轴承液阻可调式节流器的设计与应用[J].机床与液压,2003,2(2):151.
    [85]岑豫皖,Zhang N.一种新型主动轴承基本特性研究[J].华东冶金学院学报,1996,13(4):326-329.
    [86] NIE S L,HUANG G H,LI Y P.Tribological study on hydrostatic slipper bearing with annular orifice damper for water hydraulic axial piston motor[J].Tribology International,2006,39(11):1342-1354.
    [87] NIE S L,LI Z Y.Work principle and characteristic analyses of hydrostatic bearing[J].Chinese journal of mechanical engineering,2002, 15(2):162-166.
    [88] KANG Y,SHEN P C,CHANG Y P.Modified predictions of restriction coefficient and flow resistance for membrane-type restrictors in hydrostatic bearing by using regression[J].Tribology International,2007,40(9):1369-1380.
    [89]文振华,傅勤毅,李国顺.主动控制空气静压精密直移工作台系统的研究[J].华中科技大学学报,2001,(10):59-61.
    [90]齐乃明,刘暾,谭久彬.自主式静压气体轴承实现无穷刚度的条件分析[J].南京理工大学学报,2001,25(2):147-151.
    [91]葛卫平,齐乃明,刘墩.自主气体轴承控制系统分析及实验研究[J].摩擦学学报,2007,27(2):172-175.
    [92]祖海英.超高频液压振动器及静压轴承机理的研究[D].大庆:大庆石油学院,2005:23-25.
    [93]刘刚.大型球磨机静压轴承CAE技术应用研究[D].长春:吉林大学,2006:9-11.
    [94]庞志成.液体气体静压技术[M].黑龙江:黑龙江人民出版社,1981:4-50.
    [95] LIN S C,CHANG M F.A study on the effects of vibrations on the surface finish using a surface topography simulation model for turning [J].J.of Machine Tools&Manufacture,1998, 38(7):763-782.
    [96] CHRISTENSEN H.Stochastic models for hydrodynamic lubrication of rough surface[C].Proceedings-Institution of Mechanical Engineers, Trondheim, Norway,1970,184 (1):1013-1026.
    [97]姚永刚.关于变频液压调速系统的发展及应用综述[J].变频器世界,2006, (11):12-16.
    [98]吴锋,杨俊义,雷龙.某车载高炮液压自动调平控制系统[J].火炮发射与控制学报,2007, (1):67-71.
    [99]李洪人.液压控制系统[M].国防工业出版社,1990:15-30.
    [100]丁振乾.流体静压支承设计[M].上海:上海科学技术出版社,1989:7-18,238-240.
    [101]吴博.基于定量反馈理论的飞行模拟器运动平台控制系统研究[D].哈尔滨:哈尔滨工业大学,2007:30-33.
    [102]吴庆宪,丁勇,胡寿松.多维逆M序列及其在多变量系统辨识中的应用。数据采集与处理,2000,15(2):200-203.
    [103]应浩.关于模糊控制理论与应用的若干问题[J].自动化学报,2001,(7):591-593.
    [104] LI H X,GATLAND H B.A new methodology for designing a fuzzy logic controller[J].IEEE Trans.on Systems Man and Cybernetrcs,1994, (2):245-254.
    [105] RUBAAI A,CASTRO SITIRICHE M J,OFOLI A R.Design and implementation of parallel fuzzy PID controller for high-performance brushless motor drives:An integrated environment for rapid control prototyping[J].IEEE Transactions on Industry Applications,2008,44(4): 1090-1098.
    [106] WANG N,MENG X Y.Analytical structures and stability analysis of three-dimensional fuzzy controllers[C] . Institute of electrical and electronics engineers Inc.IEEE International Conference on Fuzzy Systems, Hong Kong,China,2008:64-69.
    [107] LI Z J,DENG Z C.Fuzzy sliding mode control of sliding-isolated buildings[J].Journal of Vibration and Shock,2008,27(9):111-115+138.
    [108] CHOI H H.Robust stabilization of uncertain fuzzy systems using variable structure system approach[J].IEEE Transactions on Fuzzy Systems,2008,16(3):15-724.
    [109] MAZINAN A H,SADATI N.Fuzzy multiple models predictive control of tubular heat exchanger[C].Institute of Electrical and Electronics Engineers Inc. IEEE International Conference on Fuzzy Systems,Hong Kong, China,2008:1845-1852.
    [110] SAEZ D,ZUNIGA R,CIPRIANO A.Adaptive hybrid predictive control for a combined cycle power plant optimization[J].International Journal of Adaptive Control and Signal Processing,2008,22(2):198-220.
    [111] CAO S G,RHEE N W,FENG G.Stability analysis of fuzzy controlsystems[J].IEEE Trans. on Systems Man and Cybernetics,1996,26 (1):201-204.
    [112] SUN Z Q.Controller design and stability analysis of time-continuous systems Based on a fuzzy state model[J].Acta Automatica Sinica ,1998,24(2):212-216.
    [113] WANG L X.Stable adaptive fuzzy control of nonlinear systems [J]. IEEE Transactions on Fuzzy Systems,1993,1(2):146-155.
    [114]张尚盈.液压驱动并联机器人力控制研究[D].哈尔滨:哈尔滨工业大学,2005:30-33,110-118.
    [115]李庆杨,莫孜中,祁力群.非线性方程组的数值解法[M].北京:科学出版社,1999:38-46.
    [116]谢慕君,葛文奇.基于混合模糊控制系统的稳定性分析[J].信息与控制,2000,29(3):241-247.
    [117] SHEN L D , ZHAO J F,HUANG Y.A study on a general rapid prototyping software based on distributed technology[J].International Journal of Industrial and Systems Engineering,2008,3(1):18-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700