用户名: 密码: 验证码:
炼油厂含硫高盐碱渣废水的生物处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对炼油厂油品精制过程中产生的液态烃和催化汽油碱渣废水,采用生物技术进行处理,并且利用空气氧化法对液态烃废碱液进行脱毒,此外,还采用硝化反硝化技术对催化汽油废碱液进行无害化处理。
     本课题采用了SBR反应器对液态烃废碱液的生物处理过程进行了研究。在处理模拟废水时,控制反应条件如下:温度为30±2℃、进水pH值在7.0-8.5之间、曝气量为0.3L/min,对活性污泥成功进行了驯化,污泥的耐盐性能良好,对硫化物和有机物的降解效果稳定。在S2-负荷为0.1kg/(m3.d),系统的溶解氧充足的条件下,硫化物基本全部转化为SO42-,硫化物去除率达到100%。
     液态烃废碱液中硫化物浓度为9180mg/L, COD浓度为63300mg/L,其碱度超过300000mg/L, TDS超过230000mg/L,其B/C<0.1,可生化性较差。GC-MS结果表明其主要有机成分为含硫有机化合物,组分超过了85%。
     在SBR反应器中,控制反应器温度为30±2℃、保持系统中DO充足,在进水TDS浓度为40g/L、进水pH值为10.5的条件下,以液态烃废碱液为处理对象,对活性污泥成功进行了驯化,污泥的耐盐碱性能良好。总硫负荷为0.9kgS/(m3-d)时,硫化物的去除率接近100%, COD的去除率为83.8%。S2-主要转化为S042-,转化率为96%。进一步研究发现,SBR反应器对稀释3倍的废碱液处理效果比较稳定,此时污泥负荷应保持在0.75-1.15kgCOD/kgMLVSS·d之间。在废碱液稀释3倍进水条件下,总硫负荷为1.5kgS/(m3·d)时,含硫化合物的去除率保持在99%以上,出水中检测不出硫化物,S2-氧化为S042-的转化率下降,出水中夹杂大量单质S。
     以Monod修正方程和Haldane方程对废碱液的生物降解数据进行拟合,得到生物降解液态烃碱渣的动力学方程,其中难降解物质S。为454mg/L.结合两种模型可以看到,废碱液中存在一定量的难生物降解物质,而且废碱液浓度过高会明显抑制微生物的活性。
     采取空气氧化-生物处理法对合成废水及液态烃废碱液进行了脱毒研究。实验发现空气氧化-生物处理法可以有效的提高S2-转化为S042-的氧化率,从而降低单质硫的生成率。此外,两步法还可以有效的缩短反应时间,提高反应负荷。
     对催化汽油废碱液的性质进行了分析,发现其COD浓度为370000mg/L,军发酚含量达到118000mg/L,同时也具备很高的碱度和TDS,可生化性较差。GC-MS结果表明废碱液中主要的成分为酚类化合物,占有机组分的比例达到76.9%,此外还含有20.1%的含硫有机物。
     采取SBR工艺对催化汽油废碱液进行处理。经中和-萃取预处理后废碱液中COD浓度从370000mg/L下降到10500mg/L,酚的含量降低99.9%,B/C从小于0.1上升到0.4,具备较好的可生化性。利用SBR反应器对萃取后的废碱液进行生物处理,发现采用工业污泥的SBR-2系统的处理效果要明显好于采用市政污泥的SBR-1系统。
     此外,采用A/O反应器考察以废碱液为单一碳源时A/O工艺对废碱液及氨氮废水的处理效果。研究发现以废碱液为碳源的处理效果稳定,废碱液中主要有机物均得到降解,出水NH3-N浓度低于检测限。为保证出水质量,废碱液的投加量与进水氨氮的浓度之比应为5。
Liquid hydrocarbon and catalytic gasoline spent caustic generated in the oil refining process of refinery were researched in this article with biological treatment method, liquid hydrocarbon spent caustic was detoxificated with air oxidation method, and the catalytic gasoline spent caustic was also disposed harmlessly by the use of nitrification and denitrification technology.
     In this research, SBR reactor was adopted to study the biological treatment process of liquid hydrocarbon spent caustic.When the reaction condition was kept at the temperature of30℃, the pH value between7.0to8.5, and the aeration of0.3L/min in the simulated wastewater processing, the activated sludge was domesticated successfully, it achieved a good performance on salt-tolerance, and had a stable effect on the degradation of sulfide and organic matter. When the S2-load was0.1kg/(m3·d), and there was enough dissolved oxygen in the system, the sulfide were all converted to SO42-basically, and the removal rate of sulfide arrived at100%.
     In the liquid hydrocarbon spent caustic, the sulfide concentration was9180mg/L, COD concentration was63300mg/L, alkalinity exceed300000mg/L, TDS was over230000mg/L, the B/C was below0.1, and it had poor biodegradability. GC-MS results showed that the main organic component of the spent caustic was sulfidic organic compound, and its rate exceeded85%.
     In the experiment, the SBR reactor was controlled at temperature of30℃and kept with enough DO. When the influent TDS concentration was40g/L, and the influent pH value was10.5, liquid hydrocarbon spent caustic was researched as treatment objection. The activated sludge was domesticated successfully, and it had a good performance under halo-alkaline conditions. When the total sulfur load was0.9kgS/(m3·d), the sulfide removal efficiency arrived at about100%, and the COD removal rate was83.8%. S2-were mainly converted to SO42-, and the conversion rate was96%. Further studies showed that the SBR reactor had a relatively stable effect on the treatment of spent caustic diluted three times, and the sludge load should be kept between0.75-1.15kgCOD/kgMLVSS·d. When the influence was three times-diluted spent caustic, and the total sulfur load was1.5kgS/(m3·d). the removal efficiency of sulfur compounds were always above99%, there was not any sulfide detected in the effluent, the oxidation rate of S2-to SO42-declined, and there were a lot of elemental S mixed in the effluent.
     The kinetic equation of liquid hydrocarbon caustic sludge biodegradation was obtainned by fitting the biodegradation data of spent caustic with the Monod correction equation and Haldane equation, and it showed that the Sn was454mg/L. It could be seen from the combination of these two models that there were a certain amount of substances which were diffcult to be biodegradable in the spent caustic, and the excessive concentration of spent caustic would inhibit microbial activity significantly.
     In this study, the toxicity-reduction research of synthetic wastewater and liquid hydrocarbon spent caustic were carried out with air oxidation-biological treatment method. It was found that the air oxidation-biological treatment method could effectively increase the oxidation rate of S2-to SO42-, and thereby reduce the generation rate of elemental sulfur. In addition, the two-step method could also effectively shorten the reaction time, and improve the reaction load.
     The characteristics of catalytic gasoline spent caustic was studied in this study, and it was found that its COD concentration was370000mg/L, volatile phenol content arrived at118000mg/L, the alkalinity and TDS were very high, and the biodegradability was poor. GC-MS results showed that the main component of spent caustic was phenolic compounds, wich take76.9%of all the organic components, and the additional20.1%were sulfidic organic compounds.
     SBR process was taken to make treatment to catalytic gasoline spent caustic. After the pretreatment, COD removal efficiency of spent caustic was over97%, phenol content decreased by99.9%, and B/C rose to0.4which showed good biodegradability. After the biological treatment to pretreated spent caustic in SBR reactor, it was found that the effect of SBR-2system which take industrial sludge was abviously better than that of SBR-1system which use municipal sludge.
     In addition, the effect of A/O process to spent caustic and ammonia wastewater which made spent caustic as the only carbon source was investigated with A/O reactor. The results showed that the treatment effect of the process which make spent caustic as the only carbon source was quite stable, the main organic matter in the spent caustic were all degradated. and the effluent NH3-N concentration was below the detection limit. In order to ensure the quality of effluent, the proportion of spent caustic to the concentration of the influent ammonia should be5.
引文
[1]Alnaizy, R., et al. Economic analysis for wet oxidation processes for the treatment of mixed refinery spent caustic[J]. Environmental Progress,2008,27:295-351.
    [2]韩建华.炼油厂含硫碱渣处理工艺[J].石油化工环境保护,2000,8:34-39.
    [3]Kolhatkar, A., Sublette, K.L. Biotreatment of refinery spent sulfidic caustic by specialized cultures and acclimated activated sludge[J]. Appl. Biochem.&Biotechnol.1996,57/58: 945-957.
    [4]Bagarinao, T. Sulfide as an environmental factor and toxicant:tolerance and adaptations in aquatic organisms[J]. Aquatic Toxicology,1992,24:21-62.
    [5]Reiffenstein, R.J., Hulbert, W.C., Roth, S.H. Toxicology of hydrogen sulfide[J]. Annual Review of Pharmacology and Toxicology,1992,32:109-134.
    [6]Gonza'lez-Sa'nchez, A., Revah, S. The effect of chemical oxidation on the biological sulfide oxidation by an alkaliphilic sulfoxidizing bacterial consortium[J]. Enzyme and Microbial Technology,2007,40:292-298.
    [7]郑慈斗.浓缩-焚烧法治理有机废碱液的方法:中国,1045278[P].1992-12-02.
    [8]Luck F. Wet air oxidation:past, present and future[J]. Catalysis Today,1999,53:81-91.
    [9]Tania M S, Clayton B M. Wet Air Oxidation of Refinery Spent Caustic:A Refinery Case Study[C]. NRPA Conference, San Antonio,2000:1-12.
    [10]Clande E E, Robert J L, Bruce L B. Wet air oxidation of ethylene plant spent caustic[C]. American Institute of Chemical Engineers Sixth Annual Ethylene Producers Conference, 1994:1-11.
    [11]邵李华,韩建华,邓德刚.湿式氧化工艺处理乙烯废碱液的开工运行[J].石油化工环境保护,2004,27(2):56-58.
    [12]项美丽.湿式氧化法处理炼化废碱液[J].工业水处理,2004,24(12):62-63.
    [13]季良.湿式氧化技术处理炼油厂碱渣废水[J].交通环保,2004,25(5):42-44.
    [14]孙珮石,杨英等.湿式催化氧化处理炼油碱渣废水试验研究[J].水处理技术,2005,31(1):46-49.
    [15]吴爱明,程婷,薛玉贵等.二氧化锰为催化剂催化湿式氧化处理高浓度炼油碱渣废水[J].杭州化工,2007,37(1):24-27.
    [16]J.Atwater. Low temperature aqueous phase catalytic oxidation of phenol [J]. Chemosphere,1997,34(1):203-212.
    [17]Leibenburg, C. Wet Oxidation of Acetic Acid Catalyzed by Doped Ceria[J]. Applied Catalysis B:Environmental,1996,11:19-35.
    [18]杜江,刘晓榆等.低压湿式空气氧化法处理乙烯废碱液[J].石化技术与应用,2005, 23(5):374-376.
    [19]蔡红梅.低温湿式空气氧化法处理废碱液的研究[J].化工环保,2002,22(1):1-7.
    [20]Metcalf, E., Eddy, H.P. Wastewater Engineering:Treatment, Disposal, and Reuse. McGraw-Hill, New York,1991.
    [21]Olmos A., Olguin P., Fajardo C., Razo E., Monroy O. Physicochemical characterization of spent caustic from the OXIMER process and sour waters from Mexican oil refineries[J]. Energy & Fuels,2004,18:302-304.
    [22]Pinzon Pardo A.L., Brdjanovic D., et al. Modelling of an oil refinery wastewater treatment plant[J]. Environmental Technology,2007,28:1273-1284.
    [23]Nielsen, P.H.,1985. Oxidation of sulfide and thiosulfate and storage of sulfur granules in Thiothrix from activated sludge[J]. Water Science and Technology,1985,17:167-181.
    [24]Sipma, J., Svitelskaya, A., Van, der., Mark., B., Pol, LWH., Lettinga, G., Buisman, CJN., and Janssen, AJH.. Potentials of biological oxidation processes for the treatment of spent sulfidic caustics containing thiols[J]. Water Research,2004,38:4331-4340.
    [25]Van den Bosch P.L.F., Buisman C.J.N., Janssen A.J.H. Sulfide oxidation under halo-alkaline conditions in a fed-batch bioreactor[J]. Biotechnology and Bioengineering, 2007,97(5):1053-1063.
    [26]Sorokin D.Y., Kuenen J.G.. Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes[J]. FEMS Microbiology Reviews,2005,29:685-702.
    [27]谢文玉,钟理,陈建军,廖艳,钟华文.隔离曝气生物滤池预处理炼油废碱水[J].高校化学工程学报,2008,22(3):484-490.
    [28]谢文玉,钟理,陈建军,钟华文.用循环曝气生物滤池工艺处理炼油碱渣废水[J].化工学报,2008,59(1):214-220.
    [29]包焕忠,曹国强,王丽.高效生物强化技术在治理炼油碱渣废水中的应用[J].工业用水与废水,2008,39(3):76-80.
    [30]赵华,曹青青.炼油厂碱液降解茵的选育和降解性能研究[J].石油炼制与化工,2009,40(7):64-68.
    [31]Saravanane R. Treatment of anti-osmotic drug based pharmaceutical affluent in an upflow anaerobic fluidized bed system[J]. Water Management,2001,21:563-568.
    [32]Saravanane R. Bioaugmentation and treatment of cephalexin drug-based pharmaceutical effluent in an upflow anaerobic fluidized bed system[J]. Bioresource Technology,2001,76: 279-281.
    [33]罗国维.杨丹菁.林世光.投菌接触氧化法处理洁霉素废水的机理研究环境科学[J].1994,15(6):20-32.
    [34]曾丽璇.罗国维.优势菌处理印染废水工艺及脱色机理研究环境科学进展[J].1999,7(2):92-96.
    [35]贾省芬,刘志培,杨惠芳.厌氧-好氧投菌法处理印染废水[J].环境科学,1992,13(5):20-24.
    [36]Boon N, Verstraete W, Steven D S. Bioaugmentation as a tool to protect the structure and function of an activated sludge microbial community against a 3-Chloroaniline shock load[J].Appl Environ Microbiol,2003,69(3):1511-1520.
    [37]王璟,张志杰,孙先锋,姜少亭.应用生物强化技术处理焦化废水降解有机物[J].城市环境和城市生态,2000,13(6):42-44.
    [38]Gregory, Kelvin B. Bioaugmentation of Fe(0) for the Remediation of Chlorinated Aliphatic Hydrocarbons [J]. Environmental Eng&Sci.,2000,17(3):169-181.
    [39]Patureau, D. Combined phosphate and nitrogen removal in a sequencing batch reactor using the aerobic denitrifier, microvirgula aero-denitrificans[J]. Water Research,2001,35(1): 189-197.
    [40]Boucbez, T. Successful and unsuccessful bioaugmentation experiments monitored by fluorescent in situ hybridization[J]. Water Science&Technology,2000,41(12):61-68.
    [41]卞华松,张仲燕.冷冻固定化优势菌群处理含甲醛苯酚废水[J].环境科学,1998,19(2):39-42.
    [42]S Aldrett. Microbial degredation of crude oil in marine environments tested in a flask experiment[J]. Oceanographic Literature Review,1998,45(3):543-544.
    [43]刘菊荣.炼化企业碱渣资源化综合利用[D].西安石油大学,2004.
    [44]唐娜,殷杰.石油碱渣CO2中和法处理工艺[J].石油学报(石油加工),2011,27(2):224-229.
    [45]刘月娥,丁成立,闵梨园.炼油厂碱渣的综合利用[J].水处理技术,2005,31(5):80-82.
    [46]刘正,龚小芝,宋惠琴,等.一种炼油精制过程产生的废碱液的处理方法:中国,1958468[P],2007-05-09.
    [47]唐晓东,杨世珧.含有机硫废碱液的综合利用[J].化工环保,1999,19(5):294-297.
    [48]赵仁兴,杜静,阎西銮,等.RH大孔吸附树脂处理炼油厂碱渣废水的研究[J].化工环保,1995,15(1):11-17.
    [49]刘忠生,周旗,王新.应用混合-澄清槽萃取炼油厂碱渣中和酸性水工艺研究[J].石油化工环境保护,2003,26(4):15-18.
    [50]Yanbo Zhou, Feng Gao, Yin Zhao. Jun Lu. Study on the extraction kinetics of phenolic compounds from petroleum refinery waste lye[J]. Journal of Saudi Chemical Society,2011.
    [51]高锋,杨青松.周彦波,赵胤,鲁军.林大泉.络合萃取法回收高浓度含酚废水中的酚类化合物Ⅰ:炼油厂汽油洗涤废碱渣中高浓度酚的回收[J].炼油技术与工程,2011,41(3):12-17.
    [52]Panswad T. Anan C. Impact of high chloride wastewater on anaerobic/anoxic/aerobic process without inoculation of chloride acclimated seeds[J]. Water Research,1999,33(5): 1165-1172.
    [53]Stewart MJ, Ludwig HF, Kearns WH. Effects of varying salinity on the extended aeration process[J]. Water Pollut&Control Fed.,1962,34:1161-1177.
    [54]Kincannon D F, Gaudy A F. Response of biological waste treatment systems to changes in salt concentration[J]. BioTec & BioEng.,1968,10:483-496.
    [55]Kugelman I J, McCarty P L. Cation toxicity and stimulation in anaerobic waste treatment[J]. Water Pollution Control Federation,1965,37:97.
    [56]Burnett W E. The effect of salinity variations on the activated sludge process[J]. Wat. Sew. Works,1974,121:37-38.
    [57]Ludzack F J, Noran P K. Tolerance ofhigh salinities by conventional wastewater treatment process[J]. Water Pollution Control Federation,1965,37:1404-1416.
    [58]Yucel T R. The effect of inorganic salts Oil the activated sludge process performance [J]. Water Research,1989,23:99-104.
    [59]Estrella A M, Cristina M, Marlene R. Anaerobic treatment of fishery wastewater using a marinesediment inoculums[J]. Water Research,1997,31(9):2147-2160.
    [60]Ahmet Uygur. Specific nutrient removal rates in saline wastewater treatment using sequencing batch reactor[J]. Process Biochem,2006,41(1):61-66.
    [61]P Artiga. G Garcia, Toriello R, et al. Use of a hybrid membrane hioreactor for the treatment of saline wastewater from a fish canning factory[J]. Desalination,2008,221: 518-525.
    [62]Fathi A, Sonia K, Slim L, Sami S. Performances of an activated sludge process for the treatment of fish processing saline wastewater[J]. Desalination,2009,246:389-396.
    [63]P Campoa, W Platten, Makram T, et al. Aerobic biodegradation of amines in industrial saline wastewaters[J]. Chemosphere,2011,85(7):1199-1203.
    [64]Gholamreza Moussavi, Behnam Barikbin, Mary am Mahmoudi. The removal of high concentrations of phenol from saline wastewater using aerobic granular SBR[J]. Chemical Engineering Journal,2010,158:498-504.
    [65]Kapdan I K. Erten B. Anaerohic treatment of saline wastewater by Halanaerobium lacusrosei[J]. Process Biochemistry,2007,42(3):449-453.
    [66]Sohair I. Abou-Elela. Mohamed M. Kamel. M E Fawzy. Biological treatment of saline wastewater using a salt-tolerant microorganism[J]. Desalination,2010,250(1):1-5.
    [67]吴婉娥,葛红光.张克峰.废水生物处理技术[M].北京:化学工业出版社,2003.
    [68]刘春,黄霞,王慧.基因工程菌生物强化MBR工艺处理阿特拉津试验研究[J].微生物学通报,2007,34(1):10-14.
    [69]M P Suarez. H S Rifai. Modeling natural attenuation of total BTEX and benzene plumes with different kinetics. Groundwater Monitoring & Remediation,2004,24(3):53-58.
    [70]徐亚同.废水的硝化作用[J].环境科学进展,1994,2(3):44-49.
    [71]沈耀良,王宝贞.废水生物处理新技术-理论与应用[M].北京:中国环境科学出版社,1999.
    [72]杜赦林.软性填料膜法A/O脱氮系统处理晴纶废水[J].给水排水,1996,22(6):23-25.
    [73]张自杰.排水工程[M].北京:中国建筑工业出版社,2000.
    [74]Ventosa A, Nieto J J, Oren A. Biology of moderately halophilic aerobic bacteria[J]. Microbiology and Molecular Biology Reviews,1998,62:504-544.
    [75]Liao B Q, Allen D G, Droppo, et al. Surface properties of sludge and their role in biofloeculation and settleabilily[J]. Wat Res.,2001,35(2):339-350.
    [76]Be Jin, Wilan B M, Paul Lant. A comprehensive insight into floe characteristics and theirimpact on compressibility and settleability of activated sludge[J]. Chem. Eng.,2003,95: 221-234.
    [77]Wilen B M, Be Jill, Paul Lant. The influence of key chemical constituents in activated sludge on surface and flocculating properties[J]. Wat. Res.,2003,37(9):2127-2139.
    [78]王红武,李晓岩,赵庆样.胞外聚合物对活性污泥沉降和絮凝性能的影响研究[J].中国安全科学学报,2003,13(9):31-34.
    [79]Magara Y, Numbu S, Utosawa K. Biochemical and physical properties of an activated sludge on settling characteristics [J]. Wat. Res.,1986,10(1):71-77.
    [80]Dignac M F. Chemical descfipfion of extraeellular polymers:implication on activated sludge floe stria[J]. Wat. Sci & Tech,1998,38(8):45-55.
    [81]周健,龙腾锐,苗利利.胞外聚合物EPS对活性污泥沉降性能的影响研究[J].环境科学学报,2004,24(4):613-618.
    [82]Buisman C J N, Uspeert P, Janssen A, et al. Kinetics of chemical and biological sulphide oxidation in aqueous solutions[J]. Water Research,1990,24(5):667-671.
    [83]Stefess G C, et al. Factors influencing elemental sulfur production from sulfideor thiosulafte by autotrophic thiboacilli[J]. Forum Microbiology,1989,12:92-101.
    [84]Janssen, A J H, Sleyster R, et al. Biological sulphide oxidation in a fed-batch reactor[J]. Biotechnology and Bioengineering,1995,47:327-333.
    [85]Kuenen J G, Robertson L A. The use of natural bacterial populations for the treatment of sulfur containing wastewater[J]. Biodegradmion,1992,3:239-254.
    [86]Visser J M. Robertson L A. Van-Verseveld H W. et al. Sulfur production by Obligately Chemolithoautotrophic Thiobacillus Species[J]. Applied and Environmental Microbiology, 1997,63(6):2300-2305.
    [87]Steudel R. Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes[J]. Industrial&Engineering Chemistry Research,1996,35:1417-1423.
    [88]Janssen A J H, Lens P N L, Stans A J M, et al. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification[J]. Science of the Total Environment,2009,40(7):1333-1343.
    [89]Cees, Buisman J N, et al. Optimization of sulphur prodution in a biotechnological sulphide-removing reactor[J]. Biotechnology and Bioengineering,1990,35:50-56.
    [90]Sergioalca Natara, et al. Hydrogen Sulfide Oxidation by a Microbial Consortiumin a recirculation Reactor System:Sulfur Formation under Oxygen Limitation and Removal of Phenols[J]. Environ SciTechnol,2004,38:918-923.
    [91]Henze M.污水生物与化学处理技术[M].国家城市给水排水工程技术研究中心,译,北京:中国建筑工业出版社,1999.
    [92]Haldane, JBS Enzymes. MIT Press, Cambridge,1965, p.84.
    [93]覃晶晶.污水处理中Monod方程的简化及其线性化方程[J].市政技术,2006,24(2):75-80.
    [94]Ghafari S, Hasan M, Aroua M K. Bio-electrochemical removal of nitrate from water and wastewater--a review[J]. Bioresource Technology,2008,99(10):3965-3974.
    [95]Shrimali M, Singh K P. New methods of nitrate removal from water[J]. Environmental Pollution,2001,1(12):351-359.
    [96]Van den Bosch, P L F, Buisman, Janssen A J H. Sulfide oxidation under halo-alkaline conditions in a fedbatchbioreactor[J]. Biotechnology and Bioengineering,2007,97(5): 1053-1063.
    [97]de Graaff M. Bijmans MFM, Abbas B, et al. Biological treatment of refinery spent caustics under halo-alkaline conditions[J]. Bioresource Technology,2011,102:7257-7264.
    [98]Chen K Y, Morris J C. Kinetics of oxidation of aqueous sulfide by oxygen[J]. Environmental Science and Technology,1972,6:529-537.
    [99]O'Brien D J, Birkner F B. Kinetics of oxygenation of reduced sulfur species in aqueous solution[J]. Environmental Science & Technology,1977,11:1114-1120.
    [100]Nielsen A H, Vollertsen J, Hvived-Jacobsen T. Determination of kinetics and stoichiometry of chemical sulfide oxidation on wastewater of sewer networks[J]. Environmental Science & Technology,2003,37:3853-3858.
    [101]Marco de Graaff, Johannes B M, Klok, et al. Application of a 2-step process for the biological treatment of sulfidic spent caustics[J]. Water research,2012,46:723-730.
    [102]戴猷元等.络合萃取法与生物法处理含酚废水技术经济比较[J].中国环境科学1998,18(4):293-297.
    [103]Kennedy L J, Vijaya J J. Kayalvizhi K. Adsorption of phenol from aqueous solutions usingmesoporous carbon prepared by two-stage process[J]. Chemical Engineering Journal, 2007,132(1-3):279-287.
    [104]Kujawski W, Warzawski A, Ratajczak W. Removal of phenol from wastewater by different separation techniques[J]. Desalination,2004,163(1-3):287-296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700