用户名: 密码: 验证码:
基于生态足迹方法的中国森林碳汇效益研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林作为一种重要的可再生资源,是整个陆地生态系统的主体,在全球生态系统中发挥着举足轻重的作用。它不仅能够产生巨大的直接经济效益,也具有更加巨大的生态服务价值。从1997年以来,森林服务价值的评估成为森林生态和林业经济研究的热点之一。在评价森林多种效益的诸多方法中,价值尺度是其中重要的方法之一。但由于经济评价方法带有很大的主观性,很多间接效益不能进入市场,价值尺度的评价差异较大,难以取得一致认可。
     在诸多森林生态效益中,森林的碳汇效益是最重要的效益之一,本文将以土地为尺度评价可持续发展程度的生态足迹方法引入到度量森林碳汇效益中来,在充分利用前人研究成果的基础上,对我国省级层面的化石能源的碳足迹及其生态占用、森林碳汇等进行了实际测算,基于测算的生态盈余与赤字建立化石能源的碳源与森林碳汇之间的交易市场。这一研究不仅拓展了目前森林碳汇研究的方法,也对构建我国碳汇交易市场提供了借鉴与参考。
     论文在系统整理前人研究的基础上,对森林提供化石能源用地的效益进行了系统分析与研究。在理论方面,本文对生态足迹方法进行了改进,将森林碳汇效益作为-种生态承载能力纳入其中进行测算。在实践层面上,按照方精云等人的研究成果,以陆地植被吸收30%的CO:作为计算基础,计算了中国各省级区域的化石能源消耗和森林碳汇、提供化石能源碳排放用地的结果,通过研究得到以下结论:第一,我国化石能源在总能源消耗中所占比重较高,各省区化石能源消耗量差异显著;第二,我国森林面积和森林覆盖率持续增长,森林蓄积和生物量需要进一步提高;第三,化石能源占用在六项生态土地占用中是最严重的,是生态足迹中最关键的部分。森林则是陆地植被中碳汇能力最强的,生态承载力占所有植被的近90%;第四,仅考虑化石能源碳排放的情况下,全国的人均化石能源生态占用与供给基本平衡,但各省区人均化石能源生态足迹差异显著;第五,中国的社会发展与化石能源消耗、森林资源的分布区域之间存在一定差异;第六,森林具有较高的碳汇价值,化石能源足迹研究对碳交易市场建设具有积极贡献。
     本论文研究的内容,从理论L具有创新性,将森林生态价值中的碳汇效益作为重要的生态承载力加入到生态足迹方法中,有利于从更加科学的角度观察社会经济发展与生态环境之间的关系,有利于在实践中进行科学规划。同时对于认识森林的碳汇效益,提高林业的地位具有十分重要的积极意义。
Forest plays a considerably important role in the global ecosystem which constitutes the main part of terrestrial ecosystem. As an important renewable resource, forest brings us tremendous direct economic benefits, while creating even greater ecological service value. Since1997, the assessment of forest's ecological service value has been one of the hotspot issues in the fields of both forest ecology and forestry economics. Among the numerous tools for assessing forest's various benefits, the value-scale method is a crucial one. Due to the fact that value-scale method is very subjective, many indirect values can not be counted into the market, as well as the caused divergent assessing results, the value-scale method is not widely accepted.
     The carbon sink benefit is one of the most important benefits among forest's many ecological benefits. In this study, the author will apply the ecological footprint method into the assessment of the forest's carbon sink benefit which allows us to assess the land with the criterion of the land's sustainable development. Based on the previous research results in this field, this study will calculate the carbon footprints of the fossil energy in different provinces as well as their ecological occupation and forest carbon sink, which will help build the market between fossil energy and forest carbon sink on basis of the evaluated ecological surplus or deficit. Not only does this study explore the ways of researching on current forest carbon sink, but also provides a reference for the construction of China's carbon sink market.
     On the basis of previous researches, this paper conducts a systematic analysis and research on forest's benefits of providing fossil energy. Theoretically, this paper improves the ecological footprint method. It takes forest's carbon sink benefit as its ecological carrying capacity. Realistically, this research calculates the fossil energy consumption, forest carbon sink and carbon emission land for fossil energy in different provinces based on Jingyun Fang's achievement, that is, calculated with30%of the total carbon dioxide absorbed by vegetation. Some conclusions can be drawn:first, in China, fossil energy takes a high proportion in total energy consumption, and there are huge differences of fossil energy consumption among provinces. Second, as forest area and forest coverage in China are constantly growing, forest accumulation and biomass need to be increased as well. Third, among all six ecological land occupations, fossil energy occupation is the most serious one, also the crucial part of ecological footprint. And among the terrestrial vegetation, forest has the strongest carbon sink capacity of all, which carries90%of the ecological capacity of all the vegetation. Fourth, taking only the carbon emissions of fossil energy into consideration, the average fossil energy occupation and supply are kept in balance over the country, but among provinces the average fossil energy ecological footprints differ from each other. Fifth, social development varies in areas with different distribution of fossil energy consumption and forest resources. Sixth, forest has a high value of carbon sink, and the study on fossil energy footprint contributes to the development of carbon market.
     Above all, this dissertation is theoretically creative, which takes forest carbon sink benefit as an important ecological capacity when evaluating forest's ecological value. By adopting the ecological footprint method, the relationship between social economic development and eco-environment is better understood from a scientific perspective, and a more reasonable plan could be make in practice. Moreover, it has great significance in understanding forest carbon sink benefits, thus improving the status of forestry.
引文
1. 《中央森林生态效益补偿基金制度》,2004年12月10日
    2. 白钰,曾辉,李贵才,等.基于宏观贸易调整方法的国家生态足迹模型[J].生态学报,2009,29(9):4827-4835.
    3. 白钰,曾辉,梁尧钦,等.城市生态足迹计算中温室气体环境责任的区域分配法[J].中国环境科学2009-29.
    4. 蔡志坚.森林碳补偿贸易市场及其在中国发展的相关问题研究.世界林业研究,2005,18(4): 7-10.
    5. 曹新向.旅游地生态安全评价模型及实证研究———基于生态足迹模型的分析[J].经济地理,2006,26(6):1062-1066.
    6.陈冬冬,高旺盛,陈源泉.生态足迹分析方法研究进展[J].应用生态学报,2006,17(10):1983-198
    7. 陈根长.林业的历史性转变与碳交换机制的建立[J].林业经济问题,2005,25(1):1-6.
    8.丹尼尔·戴比.农业领域温室气体减排:考虑碳汇下的减排空间[C]//第三届国际甲烷&氧化亚氮减排技术大会,北京,2003.
    9.方精云,陈安平.中国森林植被碳库的动态变化及其意义.植物学报,2001,43(9):967-973.
    10.方精云.1998-2000年中国陆地植被碳汇的估算,中国科学D辑:地球科学,2007,37(6):804-812.
    11.方精云.北半球中高纬度的森林碳库可能远小于上前的估算.植物生态学报,2000,24(5):635-638.
    12.费世民等.关于森林生态效益补偿问题的探讨[J].林业科学,2004,40(4):172.
    13.耿元波,董云社,孟维奇.陆地碳循环研究进展.地理科学进展,2000,19(4):297~306.
    14.顾晓薇,李广军,王青,等.绿色大学建设中的生态足迹[J].环境科学,2005,26(4):200-204.
    15.顾晓薇,王青,王军,等.国家生态压力与生态利用效率研究[J].资源科学,2007,29(1):142-146.
    16.郭李萍,林而达.减缓全球变暖与温室气体吸收汇研究进展[J].地球科学进展,1999,14(4):384-390.
    17.黄选瑞.关于环境再生产过程中利益分配问题的探讨[J].中国人口·资源与环境,2001,11(3):101-107.
    18.雷玲等.我国森林生态效益补偿问题的思考[J].西北林学院学报.2004,19(2):138-141.
    19.李广军,顾晓薇,王青,等.沈阳市高校生态足迹和生态效率研究[J].资源科学,2005,27(6):140-145.
    20.李怒云,宋维明,章升东.中国林业碳汇管理现状与展望.绿色中国,2008(3):23-26.
    21.李怒云等.中国造林再造林碳汇项目的优先发展区域与选择与评价.林业科学,2007:43(7);5-9.
    22.李文华.森林生态效益补偿的研究现状与展望[J].自然资源学报,2006,21(5):678.
    23.李文华.探索建立中国式生态补偿机制[J].环境保护.2006(10):1-5.
    24.李文华等.森林生态补偿机制若干重点问题研究[J].中国人口·资源与环境,2007,17(2):13-18.
    25.李意德,方精云.尖峰岭热带山地雨林生态系统碳平衡的初步研究.生态学报,1998(4):37 1-378.
    26.林德荣,李智勇,支玲.森林碳汇市场的演进及展望[J].世界林业研究,2005,18(2):1-5.
    27.林德容等.森林碳汇市场的演进及展望.世界林业研究.2005:18(1);1-5.
    28.刘风朝,刘源远,潘雄锋.中国经济增长和能源消费的动态特征[J].资源科学,2007,29(5):63-68.
    29.刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献.生态学报,2000,20(5):733-740.
    30.刘某承,李文华.基于净初级生产力的中国生态足迹均衡因子测算[J].自然资源学报,2009,24(9):1550-1559.
    31.刘宇辉,彭希哲.中国历年生态足迹计算与发展可持续性评价[J].生态学报,2004,24(10):2257-2262.
    32.刘子刚,湿地生态系统碳储存和温室气体排放研究[J].地理科学.2004,(24)5.
    33.马学慧,吕宪国,杨青等.三江平原沼泽地碳循环初探[J].地理科学,1996,16(4):323~330.
    34.毛显强等.生态补偿理论探讨[J].中国人口·资源与环境,2002,12(4):38-41.
    35.毛子军.森林生态系统碳平衡估测方法及其研究进展.植物生态学报,2002(6):731-738.
    36.梅雪英,张修峰.长江口典型湿地植被储碳、固碳功能研究——以崇明东滩芦苇带为例[J].中国生态农业学报,2008,15(2):1 96-201.
    37.聂道平,徐德应,王兵.全球碳循环与森林关系的研究——问题与进展.世界林业研究,1997(5):34-40.
    38.宁哲等.建立森林生态效益补偿区效机制[J].中国林业经济.2006(5):9-13.
    39.彭建,吴健生,蒋依依,等.生态足迹分析应用于区域可持续发展生态评价的缺陷[J].生态学报,2006,26(8):2716-2722.
    40.期方恺等:生态足迹理论在能源消费评价中的缺陷与改进探讨1019.
    41.尚海洋,马忠,焦文献,等.甘肃省城镇不同收入水平群体家庭生态足迹计算[J].自然资源学报,2006,21(3):408-416.
    42.尚红云,蒋萍.中国能源消耗变动影响因素的结构分解[J].资源科学,2009,31(2):214-223.
    43.苏筠,成升魁,谢高地.大城市居民生活消费的生态占用初探——对北京、上海的案例研究[J].资源科学,2001,23(6):24-28.
    44.孙丽英等.在我国开展林业碳汇项目的利弊分析.生态科学.2005:24(1);42-45.
    45.陶波,葛全胜等.陆地生态系统碳循环研究进展.地理研究,2001,20:564-575.
    46.汀业勖,赵十洞.陆地碳循环研究中的模型方法.应用生态学报,1998,9(6):658~665.
    47.王灿.中国实施清洁发展机制的潜力分析.中国环境科学.2005:25(3);310-314.
    48.王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分布特征探讨.地理科学进展[J],1999,18(3):238-243.
    49.王晓明,许玉,钱翌,等.土地开发整理的生态足迹评价———以浙江省淳安县为例[J].水土保持研究,2006,13(3):192-194,197.
    50.王效科,冯宗伟.中国森林生态系统中之物固定大气碳的潜力.生态学杂志,2000,19(4):72-74.
    51.王雪梅,张志强,熊永兰.国际生态足迹研究态势的文献计量分析[J].地球科学进展,2007,22(8):872-878.
    52.王作全等.关于生态补偿机制基本法律问题研究[J].中国人口·资源与环境,2006,16(1):101-107.
    53.韦静,曾维华.生态承载力约束下的区域可持续发展的动态模拟——以博鳌特别规划区为例[J].中国环境科学,2009,29(3):330-336.
    54.温作民.森林生态税的政策设计与政策效应[J].世界林业研究,200002,(4):15-20.
    55.翁伯琦,王毅祥,黄毅斌等,福建省生态足迹和生态承载力的动态变化.应用生态学报,2006:17(11):2153-2157.
    56.吴水荣等.森林生态效益补偿政策进展与经济分析[J].林业经济,2001(4):20-23.
    57.谢高地,鲁春霞,甄霖,等.生态赤字下非再生资源对生态空间的替代作用[J].资源科学,2006,28(5):2-7.6 期方 恺等:生态足迹理论在能源消费评价中的缺陷与改进探讨1021.
    58.谢鸿宇,陈贤生,林凯荣,等.基于碳循环的化石能源及电方生态足迹[J].生态学报,2008,28(4):1729-1735
    59.徐新良,曹明奎,李克让.中国森林生态系统植被碳储量时空动态变化研究.地理科学进展,2007,26(6):1-10.
    60.徐中民,程国栋,张志强.生态足迹方法的的理论解析.中国人口·资源与环境,2006;16(6):73-78.
    61.徐中民,张志强,程国栋,等.中国1999年生态足迹计算与发展能力分析[J].应用生态学报,2003,14(2):280-285.
    62.徐中民,张志强,程国栋.甘肃省1998年生态足迹计算与分析[J].地理学报,2000,55(5):607-616.
    63.岳东霞,马金辉,巩杰等.中国西北地区基于GIS的生态承载力定量评价与空间格局[J].州大学学报(自然科学版);2009;45(6):68—75.
    64.张芳,徐伟锋,李光明等.上海市2003年阻击与生态承载力分析.同济大学学报(自然科学版),2006;34(1):80-84.
    65.张丽君.可持续发展指标体系建设的国际进展.国土资源情报,2004(4):11.
    66.张强,韩永翎,宋连春.全球气候变化及其影响因素研究进展综述.地球科学进展,2005,20(9):990-998.
    67.张小全等.森林、林业活动与温室气体的减排增汇.林业科学.2005:41(6):150-156.
    68.张颖.北京是生态足迹变化和对可持续发展的影响研究.中国地质大学学报(社会科学版),2006;6(4):47-55.
    69.张兆响,廖先玲,王晓松.中国煤炭消费与经济增区的变结构协整分析[J].资源科学,2008,30(9):1282-1289.
    70.张志强,徐中民,程国栋,等.中国西部12省(区市)的生态足迹[J].地理学报,2001,56(5):599-610
    71.张志强,徐中民,程国栋.生态足迹的概念及计算模型.生态经济,2000;10:8-10.
    72.张志灶,徐中民,程国栋等中国西北12省(区市)的生态足迹.地理学报,2001;56(5):599-611.
    73.赵敏,周广胜.基于森林资源清查资料的生物量估算模式及其发展趋势.应用生态学报,2004,15(8):1468-1472.
    74.赵敏,周广胜.中国北方林生产力变化趋势及其影响因子分析.西北植物学报,2005,25(3):466-471.
    75.赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析.地理科学,2004,24(1):50-54.
    76.中华人民共和国国家林业局.全国森林资源统计(2004—2008).北京:中国林业出版社,2009.
    77.中华人民共和国林业部.全国森林资源统计(1973—1976).北京:中国林业出版社,1977.
    78.中华人民共和国林业部.全国森林资源统计(1977—1981).北京:中国林业出版社,1982.
    79.中华人民共和国林业部.全国森林资源统计(1984—1988).北京:中国林业出版社,1989.
    80.中华人民共和国林业部.全国森林资源统计(1989—1993).北京:中国林业出版社,1994.
    81.中华人民共和国林业部.全国森林资源统计(1994—1998).北京:中国林业出版社,2000.
    82.中华人民共和国林业部.全国森林资源统计(1999—2003).北京:中国林业出版社,2005.
    83.周广胜,张新进.自然植被净第一性生产力方法初探[J].植物生态学报,1995,19(3):193-200.
    84.周伟,米红.中国碳排放:国际比较与减排战略.资源科学。2010,32(8):1570-1577.
    85.朱勤,彭希哲,陆志明,等.中国能源消费碳排放变化的因素分解及实证分析[J].资源科学,2009,3 1(12):2072-2079.
    86.朱永杰,岳瑞锋.中国林地提供化石能源用地的定量研究[J].林业科学,2008,44(9):20-25.
    87. Ang,BW.Decomposition analysis for policymaking in energy:Which is the preferred method?[J].Energy Policy,2004,32:1131-1139.
    88. Barrett J, Simmon C. An ecological footprint of theUK:Providing a tool tomeasure the sustainability of local authorities [EB/OL]. http://www.york.ac.uk/inst/sei/ecofootprint, 2003-07-10/2009-10-05.
    89. Barrett J, VallackH, JonesA,et al. A material flow analysis and ecological footprint ofYork: Technical report [EB/OL]. http://www.york.ac.uk/inst/sei/ecofootprint,2003-07-10 /2009-10-05.
    90. BicknellK B, BallR J, CullenR,etal. Newmethodology for the ecological footprintwith an application to theNew Zeal-and economy [J].EcologicalEconomics,1998,27(2):149-160.
    91. Birdsey RA, Plantinga AG, Heath LS.1993. Past and prospective carbon storage in United States forests. For Rco Man,59:33-40.
    92. Browne D, O'Regan B, MolesR. Use of carbon footprinting to explore alternative householdwaste policy scenarios in an Irish city-region [J].ResourcesConservation and Recycling,2009,54(2): 113-122.
    93. Cacho O, Hean R and Wise R."Carbon-accounting methods and reforestation incentives", working paper,46thAnnual Conference of the Australian Agricultural and Resource Economics Society, Canberra, ACT,2002.
    94. Caise P, Trans P P, Trolier M. A large northern hemisphereterristrial CO2sink indicated by the13C/12C ratio of atmosphericCO2[J]. Science,1995,269:1098-1101.
    95. Chen C Z, Lin Z S. Multiple timescale analysis and factor analysis of energy ecological footprint growth in China 1953-2006 [J].EnergyPolicy,2008,36(5):1666-1678.
    96. Costanza,R.,d'Arge,R.,deGroot,R.,1997:"The Value of the World's Ecosystem Services and Nature", Nature 387:253-260, May 15.
    97. Daily G C,et al. Nature's Services:Societal Dependence on Nature Ecosystems [M]. San Francisco: Island Press,1997.
    98. Davison EA, Acherman I L. Change in Soil Carbon Inventions Following Cultivation of Previously Untilled Soils [J]. Biogeochemistry,1993,20:161-193.
    99. Detwiler R P,Hall C S.Tropical forests and the global carbon cycle.Science,1988,239:42-47.
    100. FalkowskiP, ScholesR J, BoyleE,etal. The global carbon cycle:A testofourknowledge ofearth as a system [J].Sci-ence,2000,290:291-296.
    101.FangJY, Chan ZP, Peng CH, et al,2001. Change in biomass carbon storage in China between 1949 and 1998, Science,292:2320-2322.
    102. Field,CB,BehrenfeldJT,RandersonP,etal.Primary roduction of the biosphere:integrating Terrestrial and Oceanic component.Science,1998,281:237-240.
    103. G ssling S, Hansson CB, H rstmeierO,etal. Ecological footprintanalysis as a tool to assess tourism sustainability [J]. Ecological Economics,2002,43(2-3):199-211.
    104. Goulden M L, Munger J W, Fan S M, et al. Exchange of Carbon Dioxide by a Deciduous forest: response to interannual climate variability. Science, 1996, 271:1756-1578.
    105. Gunderson CA, NorbyRJ, WullschlegerSD. FoliarGasExchange Response ofTwo DeciduousHardwoods duringThree Years of Growth in Elevated CO2: No Loss of Photosynthesis Enhancement [J]. Plant, Cell and Environment, 1993, 16: 797-807.
    106. Harmon ME, Ferrell WK, Franklin J F. Effects on Carbon Storage of Conversion of Old-Growth Forests to Young Forests [J]. Science, 1990, 247: 699-702.
    107. Harrison K, BroeckerW. AStrategy for Estimatingthc Impactingof CO2 Fertilization on Soil Carbon Storage [J]. Global Biogeochemical Cycle,1993, 7(1): 69-80.
    108. Hartwick JM. NaturalResources, NationalAceounting andEeonomic Deprivation [C]. J. PublicEcon. , Hansson, C-B,1990, 43: 291-304.
    109.Hay W W, Emanuel Soeding Robert M D,ChristopherNW. The Eate Cenozoic uplift-climate change paradox [J].International Journal of Earth Sciences, 2002, 91: 746-774.
    110.Heimann M. Review of the current global carbon cycle and the prediction given by Arrhenius and Hogbum[J]. AMBIO-A Journal of the Human Environment, 1997, 26 (1): 17-24.
    111.Houghton R A. The annual net flux of carbon to the atmosphere from changes in land use 1850-1990 [J].Tellus, 1999,51(2): 298-313.
    112. Houghton R A.Land-use change and the carbon cycle.Global Change Biology, 1995,1:275-287.
    113. HubacekK, Giljum S. Applying physical input-outputanalysis to estimate land appropriation (ecological footprints) of in-ternational trade activities [J].EcologicalEconomics, 2003, 44(1): 137-151.
    114. IGBP Terrestrial Carbon Working Group. The Terrestrial Carbon Cycle:Implications for the Kyoto Protocol [J]. Science, 1998, 280: 1393-1934.
    115. IPCC. Climate Change 2001: the Scientific Basis[R]. Combridgc, Newyork: Combridge University Press, 2001.
    116. Jansson , Folke C, Rockstrm J,et al. Linking freshwater Hows and ecosystem services appropriated by people: The case study of the Baltic Sea drainage basin [J].Ecosystems, 1999, 2(4): 351-366.
    117. Jasson AM, Zucchetto J. Energy, Economic and EcologicalRelationships forGotland, Sweden: A RegionalSystem Study[C]. Stockholm: SwedishNaturalScience Research Counci.l 1978.
    118. Jiun-Jiun Ferng. Toward a scenario analysis framework for energy footprints [J].EcologicalEconomics, 2002, 40(l):53-69.
    119. Kauppi PE, Mielikinen K, Kunsela K. 1992. Biomass and carbon budget of European forests, 1991 to 1990. Science, 256:70-74.
    120. Kauppi PE, Mielikinen K, Kunsela K. 1992. Biomass and carbon budget of European forests, 1991 to 1990. Science, 256:70-74.
    121.LcnzenM, Murray SA. A modified ecological footprintmethod and its application toAustralia [J].Ecological Econom-1020自然资源学报25卷ics,2001, 37(2): 229-255.
    122. Manfred Lenzen, Shauna A. Murray, A modified Ecological Footprint Method and its application to Australia Ecological Economics 37(2001):229-255

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700