用户名: 密码: 验证码:
磷酸银光催化剂的固定化及降解水中有机污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化技术应用于水处理的研究在近些年受到越来越广泛的关注。Ag_3PO_4光催化剂是近些年最新发现的一种在可见光下具有非常强的光催化能力的催化剂。Ag_3PO_4光催化剂可以吸收波长小于520nm的太阳光,并且在可见光下的量子产率高达90%以上,它在可见光光催化方面具有巨大的潜力。
     光催化剂在光催化降解水中有机物的利用中,主要集中在悬浮态和固定态这两种形式上。悬浮态的利用是将光催化剂均匀地分散在溶液中,此时光催化剂具有较大的比表面积,可以充分地提高光催化的活性。特别是纳米级的光催化剂,由于临界尺寸效应、界面效应和量子尺寸效应等特性,纳米光催化剂表现出了较优异的催化性能。但同时也造成了一个问题:固液分离催化剂是比较困难的,从而限制了光催化技术在水处理中的实际应用。光催化剂固定在载体上,比如玻璃或金属板等,从而制成固载型的催化剂,虽然可以实现光催化剂和反应体系的固液分离,但一般光催化剂的比表面积小,从而导致光催化效率的降低。
     因此,本文以在可见光下具有非常强活性的Ag_3PO_4为基础光催化剂,对其固定化,循环再利用做了研究。提出了Ag_3PO_4复合磁性光催化剂以及Ag_3PO_4光电极,旨在提高在可见光下的光催化效率,以及增强Ag_3PO_4光催化剂的循环可利用性。制得了Ag_3PO_4复合磁性光催化剂Fe_3O_4@Ag_3PO_4,在对其表征以及光催化性能的研究中发现,其在模拟太阳光下具有较强的活性;在循环再利用的实验中发现在外加磁场的作用下可以实现快速的固液分离,但是光催化性能从第二次的循环实验开始有明显的降低。针对Fe_3O_4@Ag_3PO_4复合光催化剂在循环实验中光催化性能降低的问题,提出了AgCl修饰的Fe_3O_4@Ag_3PO_4复合光催化剂(Fe_3O_4@Ag_3PO_4/AgCl)。对其光催化性能的研究中发现,在模拟太阳光下对亚甲基蓝(MB)以及除草剂氯磺隆(ChS)具有较强的光催化降解能力,60分钟的光催化降解可以将其降解95%以上。并且在循环使用5次之后,其催化活性没有明显的降低。制备的磷酸银光电阳极具有较强的光电协同效应,降解ChS的速率是单独使用电化学催化氧化和单独光催化降解速率之和的7.4倍。
Heterogeneous photocatalysis is considered a cost-effective method degradevarious hazardous organic contaminants in water because pollutants can be oxidizedquickly and non-selectively. Ag_3PO_4is a semiconductor used in photocatalyticapplications, which can use visible light to rapidly decompose organic contaminantsin aqueous solution.
     To enhance the photocatalytic performance of photocatalysts, micro-andnano-scale particles with large surface areas have been developed. A large surfacearea provides an increased proportion of active sites, which could improve thephotocatalytic performance. In addition, smaller particles could shorten the distancethat electrons and holes migrate from the bulk material to active sites. However,separation and recovery of micro-and nano-scale photocatalysts is very difficult andexpensive. To solve these problems, many researchers have immobilized catalysts onsupporting materials such as glass, aluminosilicate, silicone sealant, activated carbonand cotton. However, a considerable decrease in photocatalytic efficiency andselectivity is generally observed because catalyst immobilization decreases the activesurface area-to volume.
     Recently, magnetic core-shell photocatalysts composed of a magnetic core andphotocatalytic shell have attracted great interest. Composite magnetic photocatalystscan be readily separated under an applied magnetic field. However, most of thecore-shell photocatalysts reported to date are TiO2-based materials. The aim of thepresent research is to develop a novel magnetically recoverable core-shellphotocatalyst with a magnetite (Fe_3O_4) core and Ag_3PO_4/AgCl shell. The ability ofthe photocatalyst to photocatalytic degradation of methylene blue (MB) and itsrecyclability are investigated. The composite photocatalyst can be easily recovered bya magnet, and was reused five times without any appreciable reduction inphotocatalytic efficiency. This work presents a new method of producingmultifunctional composite photocatalytic nanosystems with both enhancedphotocatalytic activity for dye decomposition and magnetically separable recyclability.Combined EO and PEC showed7.4times higher degradation efficiencythan the sum of individual EO and PC.
引文
Abe, R., H. Takami, N. Murakami and B. Ohtani (2008). Pristine Simple Oxides as Visible LightDriven Photocatalysts: Highly Efficient Decomposition of Organic Compounds overPlatinum-Loaded Tungsten Oxide. Journal of the American Chemical Society130(25):7780-7781.
    An, T., Y. Xiong, G. Li, C. Zha and X. Zhu (2002). Synergetic Effect in Degradation of Formic AcidUsing a New Photoelectrochemical Reactor. Journal of Photochemistry and Photobiology A:Chemistry152(1–3):155-165.
    An, T., W. Zhang, X. Xiao, G. Sheng, J. Fu and X. Zhu (2004). Photoelectrocatalytic Degradation ofQuinoline with a Novel Three-Dimensional Electrode-Packed Bed Photocatalytic Reactor.Journal of Photochemistry and Photobiology A: Chemistry161(2-3):233-242.
    Arai, T., M. Horiguchi, M. Yanagida, T. Gunji, H. Sugihara and K. Sayama (2008). CompleteOxidation of Acetaldehyde and Toluene over a Pd/Wo3Photocatalyst under Fluorescent-orVisible-Light Irradiation. Chemical Communications(43):5565-5567.
    Aramendía, M. A., V. Borau, J. C. Colmenares, A. Marinas, J. M. Marinas, J. A. Navío and F. J. Urbano(2008). Modification of the Photocatalytic Activity of Pd/TiO2and Zn/TiO2Systems throughDifferent Oxidative and Reductive Calcination Treatments. Applied Catalysis B:Environmental80(1-2):88-97.
    Baran, W., E. Adamek, A. Sobczak and A. Makowski (2009). Photocatalytic Degradation of SulfaDrugs with TiO2, Fe Salts and TiO2/FeCl3in Aquatic Environment—Kinetics and DegradationPathway. Applied Catalysis B: Environmental90(3-4):516-525.
    Belessi, V., D. Lambropoulou, I. Konstantinou, R. Zboril, J. Tucek, D. Jancik, T. Albanis and D.Petridis (2009). Structure and Photocatalytic Performance of Magnetically Separable TitaniaPhotocatalysts for the Degradation of Propachlor. Applied Catalysis B-Environmental87(3-4):181-189.
    Berger, T., T. Lana-Villarreal, D. Monllor-Satoca and R. Gez (2006). Charge Transfer ReductiveDoping of Nanostructured TiO2Thin Films as a Way to Improve Their PhotoelectrocatalyticPerformance. Electrochemistry Communications8(11):1713-1718.
    Bi, Y., S. Ouyang, J. Cao and J. Ye (2011). Facile Synthesis of Rhombic Dodecahedral AgX/Ag3PO4(X=Cl, Br, I) Heterocrystals with Enhanced Photocatalytic Properties and Stabilities. PhysicalChemistry Chemical Physics13(21):10071-10075.
    Bi, Y., S. Ouyang, N. Umezawa, J. Cao and J. Ye (2011). Facet Effect of Single-CrystallineAg3PO4sub-Microcrystals on Photocatalytic Properties. Journal of the American ChemicalSociety133(17):6490-6492.
    Chatzisymeon, E., A. Dimou, D. Mantzavinos and A. Katsaounis (2009). Electrochemical Oxidation ofModel Compounds and Olive Mill Wastewater over Dsa Electrodes:1. The Case of Ti/IrO2Anode. Journal of Hazardous Materials167(1-3):268-274.
    Chen, L. C., Y. C. Ho, W. S. Guo, C. M. Huang and T. C. Pan (2009). Enhanced Visible Light-InducedPhotoelectrocatalytic Degradation of Phenol by Carbon Nanotube-Doped Tio2Electrodes.Electrochimica Acta54(15):3884-3891.
    Chen, S., Q. Yue, B. Gao and X. Xu (2010). Equilibrium and Kinetic Adsorption Study of theAdsorptive Removal of Cr(Vi) Using Modified Wheat Residue. Journal Of Colloid andInterface Science349(1):256-264.
    Cheng, X. F., W. H. Leng, D. P. Liu, J. Q. Zhang and C. N. Cao (2007). Enhanced PhotoelectrocatalyticPerformance of Zn-Doped WO3Photocatalysts for Nitrite Ions Degradation under VisibleLight. Chemosphere68(10):1976-1984.
    Chong, M. N., B. Jin, C. W. K. Chow and C. Saint (2010). Recent Developments in PhotocatalyticWater Treatment Technology: A Review. Water Research44(10):2997-3027.
    Coleman, H. M., B. R. Eggins, J. A. Byrne, F. L. Palmer and E. King (2000). PhotocatalyticDegradation of17-[Beta]-Oestradiol on Immobilised TiO2. Applied Catalysis B:Environmental24(1): L1-L5.
    Fierro, S. and C. Comninellis (2010). Kinetic Study of Formic Acid Oxidation on Ti/IrO2ElectrodesPrepared Using the Spin Coating Deposition Technique. Electrochimica Acta55(23):7067-7073.
    Fresno, F., C. Guillard, J. Coronado, J. Chovelon, D. Tudela, J. Soria and J. Herrmann (2005).Photocatalytic Degradation of a Sulfonylurea Herbicide over Pure and Tin-Doped TioPhotocatalysts. Journal of Photochemistry and Photobiology A: Chemistry173(1):13-20.
    Fu, Y. and X. Wang (2011). Magnetically Separable ZnFe2O4-Graphene Catalyst and Its HighPhotocatalytic Performance under Visible Light Irradiation. Industrial&EngineeringChemistry Research50(12):7210-7218.
    Furube, A., T. Asahi, H. Masuhara, H. Yamashita and M. Anpo (2001). Direct Observation of aPicosecond Charge Separation Process in Photoexcited Platinum-Loaded TiO2Particles byFemtosecond Diffuse Reflectance Spectroscopy. Chemical Physics Letters336(5–6):424-430.
    Gad-Allah, T. A., K. Fujimura, S. Kato, S. Satokawa and T. Kojima (2008). Preparation andCharacterization of Magnetically Separable Photocatalyst (TiO2/SiO2/Fe3O4): Effect of CarbonCoating and Calcination Temperature. Journal of Hazardous Materials154(1-3):572-577.
    Gan, W. Y., H. Zhao and R. Amal (2009). Photoelectrocatalytic Activity of Mesoporous TiO2Thin FilmElectrodes. Applied Catalysis A: General354(1-2):8-16.
    Gawande, M. B., P. S. Branco and R. S. Varma (2013). Nano-Magnetite (Fe3O4) as a Support forRecyclable Catalysts in the Development of Sustainable Methodologies. Chemical SocietyReviews.
    Ge, M., N. Zhu, Y. Zhao, J. Li and L. Liu (2012). Sunlight-Assisted Degradation of Dye Pollutants inAg3PO4Suspension. Industrial&Engineering Chemistry Research51(14):5167-5173.
    Guoting, L., S. Gangfu, C. Jing, Z. Meiya and P. K. Wong (2010). Photocatalytic Degradation ofMethylene Blue by Magnetically Separable Bivo4Supported on Fe3O4Nanoparticles.Environmental Science and Information Application Technology (ESIAT),2010InternationalConference on.
    He, M., D. Li, D. Jiang and M. Chen (2012). Magnetically SeparableGamma-Fe2O3@SiO2@Ce-Doped TiO2Core-Shell Nanocomposites: Fabrication andVisible-Light-Driven Photocatalytic Activity. Journal Of Solid State Chemistry192:139-143.
    Hepel, M. and S. Hazelton (2005). Photoelectrocatalytic Degradation of Diazo Dyes on NanostructuredWo3Electrodes. Electrochimica Acta50(25-26):5278-5291.
    Hong, R. Y., T. T. Pan and H. Z. Li (2006). Microwave Synthesis of Magnetic Fe3O4NanoparticlesUsed as a Precursor of Nanocomposites and Ferrofluids. Journal Of Magnetism and MagneticMaterials303(1):60-68.
    Hou, Y., X. Li, Q. Zhao, G. Chen and C. L. Rastor (2012). Role of Hydroxyl Radicals and Mechanismof Escherichia Coli Inactivation on Ag/Agbr/TiO2Nanotube Array Electrode under VisibleLight Irradiation. Environmental Science&Technology46(7):4042-4050.
    Hou, Y. I., J. H. Qu, X. Zhao, P. J. Lei, D. J. Wan and C. P. Huang (2009). Electro-PhotocatalyticDegradation of Acid Orange Ii Using a Novel TiO2/Acf Photoanode. Science Of The TotalEnvironment407(7):2431-2439.
    Kapa ka, A., A. Katsaounis, N.-L. Michels, A. Leonidova, S. Souentie, C. Comninellis and K. M. Udert(2010). Ammonia Oxidation to Nitrogen Mediated by Electrogenerated Active Chlorine onTi/Ptox-IrO2. Electrochemistry Communications12(9):1203-1205.
    Khan, A., M. Qamar and M. Muneer (2012). Synthesis of Highly Active Visible-Light-Driven ColloidalSilver Orthophosphate. Chemical Physics Letters519-20:54-58.
    Kojima, T., T. A. Gad-Allah, S. Kato and S. Satokawa (2011). Photocatalytic Activity of MagneticallySeparable TiO2/SiO2/Fe3O4Composite for Dye Degradation. Journal of Chemical Engineeringof Japan44(9):662-667.
    Kormann, C., D. W. Bahnemann and M. R. Hoffmann (1988). Preparation and Characterization ofQuantum-Size Titanium Dioxide. The Journal of Physical Chemistry92(18):5196-5201.
    Lee, D.-K. and I.-C. Cho (2001). Characterization of TiO2Thin Film Immobilized on Glass Tube andIts Application to Pce Photocatalytic Destruction. Microchemical Journal68(2-3):215-223.
    Li, M., C. Feng, W. Hu, Z. Zhang and N. Sugiura (2009). Electrochemical Degradation of PhenolUsing Electrodes of Ti/RuO2–Pt and Ti/IrO2–Pt. Journal of Hazardous Materials162(1):455-462.
    Li, M., Q. Xue, Z. Zhang, C. Feng, N. Chen, X. Lei, Z. Shen and N. Sugiura (2010). Removal ofGeosmin (Trans-1,10-Dimethyl-Trans-9-Decalol) from Aqueous Solution Using an IndirectElectrochemical Method. Electrochimica Acta55(23):6979-6982.
    Li Puma, G., V. Puddu, H. K. Tsang, A. Gora and B. Toepfer (2010). Photocatalytic Oxidation ofMulticomponent Mixtures of Estrogens (Estrone (E1),17[Beta]-Estradiol (E2),17[Alpha]-Ethynylestradiol (Ee2) and Estriol (E3)) under Uva and Uvc Radiation: PhotonAbsorption, Quantum Yields and Rate Constants Independent of Photon Absorption. AppliedCatalysis B: Environmental99(3-4):388-397.
    Li, Q., T. Kako and J. Ye (2011). Facile Ion-Exchanged Synthesis of Sn2+Incorporated PotassiumTitanate Nanoribbons and Their Visible-Light-Responded Photocatalytic Activity.International Journal of Hydrogen Energy36(8):4716-4723.
    Li, X.-Y., J.-N. Wang, L.-L. Zhang and C.-J. Li (2012). Photocatalytic Activity of MagneticallySeparable La-Doped TiO2/CoFe2O4Nanofibers Prepared by Two-Spinneret Electrospinning.Journal Of Materials Science47(1):465-472.
    Lin, C.-F., C.-H. Wu and Z.-N. Onn (2008). Degradation of4-Chlorophenol in TiO2, WO3, SnO2,TiO2/WO3and TiO2/SnO2Systems. Journal of Hazardous Materials154(1–3):1033-1039.
    Liu, J., Y. Yu, Z. Liu, S. Zuo and B. Li (2012). Agbr-Coupled TiO2: A Visible HeterostructuredPhotocatalyst for Degrading Dye Pollutants. International Journal of Photoenergy.
    Liu, Y., L. Li and R. Goel (2009). Kinetic Study of Electrolytic Ammonia Removal Using Ti/IrO2asAnode under Different Experimental Conditions. Journal of Hazardous Materials167(1-3):959-965.
    Liu, Y., Y. Ohko, R. Zhang, Y. Yang and Z. Zhang (2010). Degradation of Malachite Green on Pd/WO3Photocatalysts under Simulated Solar Light. Journal of Hazardous Materials184(1-3):386-391.
    Lv, B., Y. Xu, H. Tian, D. Wu and Y. Sun (2010). Synthesis of Fe3O4\SiO2\Ag Nanoparticles and ItsApplication in Surface-Enhanced Raman Scattering. Journal Of Solid State Chemistry183(12):2968-2973.
    Makgae, M., C. Theron, W. Przybylowicz and A. Crouch (2005). Preparation and SurfaceCharacterization of Ti/SnO2RuO2IrO2Thin Films as Electrode Material for the Oxidation ofPhenol. Materials Chemistry and Physics92(2-3):559-564.
    Makovec, D., M. Sajko, A. Seisnik and M. Drofenik (2011). Magnetically Recoverable PhotocatalyticNanocomposite Particles for Water Treatment. Materials Chemistry and Physics129(1-2):83-89.
    Martínez, S. S. and C. L. Bahena (2009). Chlorbromuron Urea Herbicide Removal by Electro-FentonReaction in Aqueous Effluents. Water Research43(1):33-40.
    Muna, G. W., N. Tasheva and G. M. Swain (2004). Electro-Oxidation and Amperometric Detection ofChlorinated Phenols at Boron-Doped Diamond Electrodes: A Comparison of Microcrystallineand Nanocrystalline Thin Films. Environmental Science&Technology38(13):3674-3682.
    Ohko, Y., K.-i. Iuchi, C. Niwa, T. Tatsuma, T. Nakashima, T. Iguchi, Y. Kubota and A. Fujishima (2002).17β-Estradiol Degradation by TiO2Photocatalysis as a Means of Reducing Estrogenic Activity.Environmental Science&Technology36(19):4175-4181.
    Ooka, C., H. Yoshida, M. Horio, K. Suzuki and T. Hattori (2003). Adsorptive and PhotocatalyticPerformance of TiO2Pillared Montmorillonite in Degradation of Endocrine Disruptors HavingDifferent Hydrophobicity. Applied Catalysis B: Environmental41(3):313-321.
    Padmanabhan, P. V. A., K. P. Sreekumar, T. K. Thiyagarajan, R. U. Satpute, K. Bhanumurthy, P.Sengupta, G. K. Dey and K. G. K. Warrier (2006). Nano-Crystalline Titanium DioxideFormed by Reactive Plasma Synthesis. Vacuum80(11–12):1252-1255.
    Pelegrini, R. T., R. S. Freire, N. Duran and R. Bertazzoli (2001). Photoassisted ElectrochemicalDegradation of Organic Pollutants on a Dsa Type Oxide Electrode: Process Test for a PhenolSynthetic Solution and Its Application for the E1Bleach Kraft Mill Effluent. EnvironmentalScience&Technology35(13):2849-2853.
    Pinhedo, L., R. Pelegrini, R. Bertazzoli and A. J. Motheo (2005). Photoelectrochemical Degradation ofHumic Acid on a (Tio2)0.7(Ruo2)0.3Dimensionally Stable Anode. Applied Catalysis B:Environmental57(2):75-81.
    Quan, X., S. Chen, J. Su, J. Chen and G. Chen (2004). Synergetic Degradation of2,4-D by IntegratedPhoto-and Electrochemical Catalysis on a Pt Doped TiO2/Ti Electrode. Separation andPurification Technology34(1–3):73-79.
    Radjenovic, J., A. Bagastyo, R. A. Rozendal, Y. Mu, J. Keller and K. Rabaey (2011). ElectrochemicalOxidation of Trace Organic Contaminants in Reverse Osmosis Concentrate UsingRuO2/IrO2-Coated Titanium Anodes. Water Research45(4):1579-1586.
    Rafqah, S., P. Wong-Wah-Chung, A. Aamili and M. Sarakha (2005). Degradation of MetsulfuronMethyl by Heterogeneous Photocatalysis on TiO2in Aqueous Suspensions: Kinetic andAnalytical Studies. Journal of Molecular Catalysis A: Chemical237(1-2):50-59.
    Reyter, D., D. Bélanger and L. Roué(2010). Nitrate Removal by a Paired Electrolysis on Copper andTi/IrO2Coupled Electrodes–Influence of the Anode/Cathode Surface Area Ratio. WaterResearch44(6):1918-1926.
    Sarigül, T., R. nam and H. Y. Aboul-Enein (2010). Electro-Oxidation of Herbicide HalosulfuronMethyl on Glassy Carbon Electrode and Applications. Talanta82(5):1814-1819.
    Shi, H., T. Wang, J. Chen, C. Zhu, J. Ye and Z. Zou (2010). Photoreduction of Carbon Dioxide overNaNBO2Nanostructured Photocatalysts. Catalysis Letters141(4):525-530.
    Shi, J., J. Zheng, P. Wu and X. Ji (2008). Immobilization of TiO2Films on Activated Carbon Fiber andTheir Photocatalytic Degradation Properties for Dye Compounds with Different MolecularSize. Catalysis Communications9(9):1846-1850.
    Simond, O. and C. Comninellis (1997). Anodic Oxidation of Organics on Ti/IrO2Anodes UsingNafion as Electrolyte. Electrochimica Acta42(13-14):2013-2018.
    Siracusano, S., V. Baglio, A. Stassi, R. Ornelas, V. Antonucci and A. S. Aricò(2011). Investigation ofIro2Electrocatalysts Prepared by a Sulfite-Couplex Route for the O2Evolution Reaction inSolid Polymer Electrolyte Water Electrolyzers. International Journal of Hydrogen Energy36(13):7822-7831.
    Song, X.-M., J.-M. Wu and M. Yan (2008). Photocatalytic and Photoelectrocatalytic Degradation ofAqueous Rhodamine B by Low-Temperature Deposited Anatase Thin Films. MaterialsChemistry And Physics112(2):510-515.
    Turro, E., A. Giannis, R. Cossu, E. Gidarakos, D. Mantzavinos and A. Katsaounis (2011).Electrochemical Oxidation of Stabilized Landfill Leachate on Dsa Electrodes. Journal ofHazardous Materials190(1-3):460-465.
    Umezawa, N., O. Shuxin and J. Ye (2011). Theoretical Study of High Photocatalytic Performance ofAg3PO4. Physical Review B83(3).
    Vlyssides, A., E. M. Barampouti, S. Mai, D. Arapoglou and A. Kotronarou (2004). Degradation ofMethylparathion in Aqueous Solution by Electrochemical Oxidation. Environmental Science&Technology38(22):6125-6131.
    Vulliet, E., C. Emmelin, J.-M. Chovelon, C. Guillard and J.-M. Herrmann (2002). PhotocatalyticDegradation of Sulfonylurea Herbicides in Aqueous TiO2. Applied Catalysis B: Environmental38(2):127-137.
    Wang, H., Y. Wu and B.-Q. Xu (2005). Preparation and Characterization of Nanosized Anatase TiO2Cuboids for Photocatalysis. Applied Catalysis B: Environmental59(3–4):139-146.
    Wang, W., B. Cheng, J. Yu, G. Liu and W. Fan (2012). Visible-Light Photocatalytic Activity andDeactivation Mechanism of Ag3PO4Spherical Particles. Chemistry-an Asian Journal7(8):1902-1908.
    Wang, X., J. Hu, J. Zhang and C. Cao (2008). Characterization of Surface Fouling of Ti/IrO2Electrodesin4-Chlorophenol Aqueous Solutions by Electrochemical Impedance Spectroscopy.Electrochimica Acta53(8):3386-3394.
    Wang, Y.-F. and C.-M. Fan (2012). Ag3PO4: Visible Light Photocatalytic Performance and Mechanism.Chinese Journal Of Inorganic Chemistry28(2):347-351.
    Wang, Z., L. Shen and S. Zhu (2012). Synthesis of Core-Shell Fe3O4@SiO2@TiO2Microspheres andTheir Application as Recyclable Photocatalysts. International Journal of Photoenergy.
    Xi, G., B. Yue, J. Cao and J. Ye (2011). Fe3o4/Wo3Hierarchical Core-Shell Structure:High-Performance and Recyclable Visible-Light Photocatalysis. Chemistry-A EuropeanJournal17(18):5145-5154.
    Xu, X., X. Shen, G. Zhu, L. Jing, X. Liu and K. Chen (2012). Magnetically RecoverableBi2WO6-Fe3O4Composite Photocatalysts: Fabrication and Photocatalytic Activity. ChemicalEngineering Journal200:521-531.
    Xu, Y., J. Jia, D. Zhong and Y. Wang (2009). Degradation of Dye Wastewater in a Thin-FilmPhotoelectrocatalytic (Pec) Reactor with Slant-Placed TiO2/Ti Anode. Chemical EngineeringJournal150(2-3):302-307.
    Xue, Q., M. Li, K. Shimizu, M. Utsumi, Z. Zhang, C. Feng, Y. Gao and N. Sugiura (2011).Electrochemical Degradation of Geosmin Using Electrode of Ti/IrO2–Pt. Desalination265(1-3):135-139.
    Yang, H. G., C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng and G. Q. Lu (2008).Anatase TiO2Single Crystals with a Large Percentage of Reactive Facets. Nature453(7195):638-641.
    Yang, J., C. C. Chen, H. W. Ji, W. H. Ma and J. C. Zhao (2005). Mechanism of TiO2-AssistedPhotocatalytic Degradation of Dyes under Visible Irradiation: Photoelectrocatalytic Study byTiO2-Film Electrodes. Journal Of Physical Chemistry B109(46):21900-21907.
    Ye, F., J. Li, X. Wang, T. Wang, S. Li, H. Wei, Q. Li and E. Christensen (2010). ElectrocatalyticProperties of Ti/Pt–IrO2Anode for Oxygen Evolution in Pem Water Electrolysis. InternationalJournal of Hydrogen Energy35(15):8049-8055.
    Ye, M., Q. Zhang, Y. Hu, J. Ge, Z. Lu, L. He, Z. Chen and Y. Yin (2010). Magnetically RecoverableCore–Shell Nanocomposites with Enhanced Photocatalytic Activity. Chemistry–A EuropeanJournal16(21):6243-6250.
    Ye, M. M., Q. Zhang, Y. X. Hu, J. P. Ge, Z. D. Lu, L. He, Z. L. Chen and Y. D. Yin (2010).Magnetically Recoverable Core-Shell Nanocomposites with Enhanced Photocatalytic Activity.Chemistry-a European Journal16(21):6243-6250.
    Ye, Z.-G., H.-M. Meng, D. Chen, H.-Y. Yu, Z.-S. Huan, X.-D. Wang and D.-B. Sun (2008). Structureand Characteristics of Ti/IrO2(X)+MnO2(1X) Anode for Oxygen Evolution. Solid StateSciences10(3):346-354.
    Yi, Z. G., J. H. Ye, N. Kikugawa, T. Kako, S. X. Ouyang, H. Stuart-Williams, H. Yang, J. Y. Cao, W. J.Luo, Z. S. Li, Y. Liu and R. L. Withers (2010). An Orthophosphate Semiconductor withPhotooxidation Properties under Visible-Light Irradiation. Nature Materials9(7):559-564.
    Yu, J., W. Wang, B. Cheng and B.-L. Su (2009). Enhancement of Photocatalytic Activity of MesporousTiO2Powders by Hydrothermal Surface Fluorination Treatment. The Journal of PhysicalChemistry C113(16):6743-6750.
    Yu, X., S. Liu and J. Yu (2011). Superparamagnetic Fe2O3@SiO2@TiO2Composite Microspheres withSuperior Photocatalytic Properties. Applied Catalysis B: Environmental104(1-2):12-20.
    Zaviska, F., P. Drogui, J.-F. Blais, G. Mercier and P. Lafrance (2011). Experimental DesignMethodology Applied to Electrochemical Oxidation of the Herbicide Atrazine Using Ti/IrO2and Ti/SnO2Circular Anode Electrodes. Journal of Hazardous Materials185(2-3):1499-1507.
    Zhang, L., D. Chen and X. Jiao (2006). Monoclinic Structured BiVO4Nanosheets: HydrothermalPreparation, Formation Mechanism, and Coloristic and Photocatalytic Properties. The Journalof Physical Chemistry B110(6):2668-2673.
    Zhang, W., T. An, X. Xiao, J. Fu, G. Sheng, M. Cui and G. Li (2003). PhotoelectrocatalyticDegradation of Reactive Brilliant Orange K-R in a New Continuous FlowPhotoelectrocatalytic Reactor. Applied Catalysis A: General255(2):221-229.
    Zhang, X. F., Y. B. Zhang, X. Quan and S. Chen (2009). Preparation of Ag Doped BiVO4Film and ItsEnhanced Photoelectrocatalytic (Pec) Ability of Phenol Degradation under Visible Light.Journal Of Hazardous Materials167(1-3):911-914.
    Zhang, Y., Z.-R. Tang, X. Fu and Y.-J. Xu (2011). Nanocomposite of Ag-AgBr-TiO2as a Photoactiveand Durable Catalyst for Degradation of Volatile Organic Compounds in the Gas Phase.Applied Catalysis B-environmental106(3-4):445-452.
    Zhao, B.-x., X.-z. Li and P. Wang (2007). Degradation of2,4-Dichlorophenol with a NovelTiO2/Ti-Fe-Graphite Felt Photoelectrocatalytic Oxidation Process. Journal Of EnvironmentalSciences19(8):1020-1024.
    Zhao, H. M., Y. Chen, X. Quan and X. L. Ruan (2007). Preparation of Zn-Doped TiO2NanotubesElectrode and Its Application in Pentachlorophenol Photoelectrocatalytic Degradation.Chinese Science Bulletin52(11):1456-1461.
    Zhao, X., T. Xu, W. Yao, C. Zhang and Y. Zhu (2007). Photoelectrocatalytic Degradation of4-Chlorophenol at Bi2WO6Nanoflake Film Electrode under Visible Light Irradiation. AppliedCatalysis B: Environmental72(1-2):92-97.
    Zheng, B., M. Zhang, D. Xiao, Y. Jin and M. M. F. Choi (2010). Fast Microwave Synthesis of Fe3O4and Fe3O4/Ag Magnetic Nanoparticles Using Fe2+as Precursor. Inorganic Materials46(10):1106-1111.
    Zhou, M. and X. Ma (2009). Efficient Photoelectrocatalytic Activity of TiO2/Ti Anode Fabricated byMetalorganic Chemical Vapor Deposition (Mocvd). Electrochemistry Communications11(4):921-924.
    崔升,沈晓冬,林本兰(2005).四氧化三铁纳米粉的制备方法及应用.无机盐工业37(2):4-6.
    崔玉民,韩金霞(2004).光催化降解水中有机污染物研究现状与展望.燃料化学学报32(01):123-128.
    丁震,冯小刚,陈晓东(2006).金属泡沫镍负载TiO2光催化降解甲醛和VOCs.环境科学27(9):1814-1819.
    董德贵,温青,矫彩山,李凯峰,刘立波(2004).光催化降解水中污染物的研究.应用科技31(03):63-65.
    高镰,郑珊,张青红(2002).纳米氧化钦光催化材料及应用.北京,化学工业出版社.
    黄利君(2012).磷酸银的制备及其光催化性能的研究.硕士论文,吉林大学.
    黄仲涛,曾昭怀,钟邦克(1999).无机膜技术及其应用.北京,中国石化出版社.
    李田,陈正夫(1998).城市自来水光催化氧化深度净化效果.环境科学学报18(2):167-171.
    刘守新,刘鸿(2006).光催化及光电催化基础及应用.北京,化学工业出版社.
    王丽燕(2010).磁可分复合型TiO2光催化剂制备及其污染物降解性能研究.博士论文,哈尔滨工业大学.
    王韶华(2010).改性纳米TiO2光催化剂的制备及其去除水中染料污染物的研究.博士论文,华南理工大学.
    温慧颖(2004).高分子-四氧化三铁核壳材料的制备.硕士论文,吉林大学.
    吴明在,张启花,刘艳美,冯俊生,宋学萍(2009).水热法制备Fe3O4粒子及其形貌控制.安徽大学学报33(3):60-64.
    许士洪(2007).可磁分离光催化剂的制备及其降解水中有机污染物性能的研究.博士论文,上海交通大学
    宣守虎(2008). Fe3O4及其结构型复合粒子的合成与性能.博士论文,中国科技大学
    颜晓莉,史惠祥,雷乐成,汪大(2004).负载型二氧化钛光电催化降解苯酚废水的反应动力学.化工学报55(3):426-433.
    余家国,赵修建,赵青南(2000).光催化多孔TiO2薄膜的表面形貌对亲水性的影响.硅酸盐学报28(3):245-250.
    张梅,杨绪杰,陆路德(2000).纳米TiO2一种性能优良的光催化剂.化工新型材料28(4):11-13.
    赵谦,王忠华,姜廷顺,岳鸣峰.(2005). TiO2光催化氧化的研究进展.哈尔滨师范大学自然科学学报21(04):77-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700