用户名: 密码: 验证码:
沈阳浑河傍河区域地下水氮素污染研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
傍河区域地下水具有极高的开采利用价值,是我国重要的供水水源之一。然而,随着人类活动范围与强度的加大、地表河流的污染,傍河区域地下水污染问题引起了极大的关注。其中,傍河区域地下水的氮素污染具有常见性、独特性与复杂性等特点,值得深入探讨研究。本论文针对沈阳浑河李官堡傍河区域存在的氮素污染问题,将研究区分为南北两部,借助水化学分析、多元统计分析、环境同位素分析、数值模拟等研究手段,对该区地下水开展了水化学特征、污染特征、氮素迁移转化机理、氮素污染来源及比例等问题的探讨研究。主要研究成果如下:
     (1)研究区地下水来源于大气降水、上游地下水径流、浑河补给三部分。研究区北部用地类型以居民、工业用地为主,污染源密度大。南部用地类型以绿地与农用地为主,污染源密度小。氢氧同位素分析结果表明浑河河水对傍河地下水存在补给,补给比例可达60%。
     (2)水化学及多元统计分析表明,研究区南北部呈现出不同的地下水化学特征。两区地下水环境相比,北部呈现出相对的弱氧化性、弱酸性特征;南部呈现出相对的弱还原性、弱碱性特征。虽然两区地下水均属于溶滤水,但北部比南部表现出相对更高的钠离子、氯离子含量。南北部地下水的主要污染物分别为铵氮与硝氮。此外,北部地下水TDS、氯离子等指标明显高于南部地下水。
     (3)水化学及环境同位素的分析表明,研究区南北部地下水氮素的迁移转化机理存在差异。北部的包气带及含水层均处于氧化环境中,氮素的迁移转化受控于硝化作用;而南部的包气带及含水层分别处于氧化环境及还原环境中,氮素的迁移转化分别受控于硝化作用与反硝化作用。
     (4)研究区南北部地下水存在不同的氮素污染来源。结合研究区实际条件及氮氧同位素的分析表明,研究区地表水、地下水氮素的最主要来源为人为活动排放的粪便及污水。从垂向包气带及水平向含水层开展的数值模拟研究定量揭示出不同途径氮素污染源的贡献率。北部地下水的硝氮主要来源于地表污染源的垂向入渗及上游地下水径流,其比例分别为43.92%、27.37%。南部地下水的铵氮主要来源于浑河河水及上游径流,其比例分别为61.79%、38.06%。整体上看,研究区氮素主要来源于地表垂向入渗。
The riparian groundwater demonstrates a high value for exploitation and is oneof the most important water supply sources in China. However, the contamination ofthe riparian groundwater has aroused lots of attention due to the increase of the rangeand intensity of human activities and the contamination of rivers. The nitrogencontamination of the riparian groundwater is worth for research because of itscharacteristics of universality, uniqueness and complexity. This paper carried out astudy on groundwater nitrogen contamination in the riparian area of Hun river, Liguan pu, Shen yang. The research area was divided into the south and the north twoparts and the research measures included hydrochemistry analysis, multiple statisticalanalysis, environment isotope analysis and numerical modeling. The questionsfocused in the paper included the contamination and hydrochemistry characteristics ofthe riparian groundwater, the nitrogen transformation mechanism in the backgroundenvironment, and nitrogen sources as well as their relevant proportions contributed tothe nitrogen contamination. The main conclusions are listed below.
     (1) Groundwater of the research area was supplied by rainfall, upstreamgroundwater flow and the Hun river. The northern research area was mainly attributedto resident and industrial lands with a high contamination source intensity. Thesouthern research area was mainly covered by the farmland and the green land with alower contamination source intensity. The hydrogen and oxygen isotope analysisdemonstrated that the Hun river could supply the riparian groundwater and the ratecould be up to60%.
     (2) The northern and southern groundwater in the study area showed differenthydrochemical characteristics by the help of hydrochemistry and multiple statisticalanalyses. Taking the two groundwater environment for comparison, it was found thatthe northern groundwater demonstrated a slightly oxidizing and acidic characteristicand the southern groundwater demonstrated a slightly reducing and alkalinecharacteristic. Although the whole groundwater belonged to the infiltration water type,but the northern groundwater owned a relevant higher content of sodium and chloride ions compared to the southern groundwater. Nitrate and ammonium were the maincontaminants of the north and the south respectively. The TDS and chloride in thenorth were much higher than those of the south.
     (3) The nitrogen of the northern and the southern groundwater owned differenttransformation mechanisms by the research of hydrochemistry and environmentisotopes. In both the unsaturated zone and the aquifer of the north, their environmentswere in a oxidation condition and the nitrogen was controlled by nitrification. In thesouth, the nitrogen moved in the unsaturated zone was controlled by nitrification. Inthe aquifer, the nitrogen was controlled by denitrification.
     (4) The nitrogen of the south and the north came from different sources. Themain nitrogen source could be attributed to the feces and sewage discharged byhuman activities by the investigation of local environment and the nitrate isotoperesearch. The numerical modeling combined both the vertical and parallel orientationsrevealed the contribution rates of different nitrogen sources effectively. The nitrogenin the northern groundwater was mainly from the surface contamination sources andthe upstream groundwater, and the corresponding proportions were43.92%,27.37%.The nitrogen in the southern groundwater mainly came from the Hun river and theupstream groundwater, and the corresponding proportions were61.79%,38.06%. As awhole, the surface sources were the main contributor to the groundwater nitrogencontamination.
引文
Adams S., Titus R., Pietersen K., et al. Hydrochemical characteristics of aquifers near Sutherlandin the Western Karoo, South Africa[J]. Journal of Hydrology,2001,241(1-2):91-103.
    Albertin A.R., Sickman J.O., Pinowska A., et al. Identification of nitrogen sources andtransformations within karst springs using isotope tracers of nitrogen[J]. Biogeochemistry,2011,108(1-3):219-232.
    Amundson R., Austin A., Schuur E., et al. Global patterns of the isotopic composition of soil andplant nitrogen[J]. Global Biogeochemical Cycles,2003,17(1):1031-1042.
    B ttcher J., Strebel O., Voerkelius S., et al. Using isotope fractionation of nitrate-nitrogen andnitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer[J]. Journal ofHydrology,1990,114(3):413-424.
    Banks E.W., Simmons C.T., Love A.J., et al. Assessing spatial and temporal connectivity betweensurface water and groundwater in a regional catchment: Implications for regional scale waterquantity and quality[J]. Journal of Hydrology,2011,404(1-2):30-49.
    Ben Moussa A., Zouari K., Oueslati N. Geochemical study of groundwater mineralization in theGrombalia shallow aquifer, north-eastern Tunisia: implication of irrigation and industrialwaste water accounting[J]. Environmental Geology,2009,58(3):555-566.
    Bhardwaj V., Singh D.S., Singh A. Hydrogeochemistry of groundwater and anthropogenic controlover dolomitization reactions in alluvial sediments of the Deoria district: Ganga plain,India[J]. Environmental Earth Sciences,2010,59(5):1099-1109.
    Casciotti K., Sigman D., Hastings M.G., et al. Measurement of the oxygen isotopic composition ofnitrate in seawater and freshwater using the denitrifier method[J]. Analytical Chemistry,2002,74(19):4905-4912.
    Cey E.E., Rudolph D.L., Aravena R., et al. Role of the riparian zone in controlling the distributionand fate of agricultural nitrogen near a small stream in southern Ontario[J]. Journal ofContaminant Hydrology,1999,37(1):45-67.
    Chen Z.Y., Nie Z.L., Zhang G.H., et al. Environmental isotopic study on the recharge andresidence time of groundwater in the Heihe River Basin, northwestern China[J].Hydrogeology Journal,2006,14(8):1635-1651.
    Choi W.J., Han G.H., Ro H.M., et al. Evaluation of nitrate contamination sources of unconfinedgroundwater in the North Han River basin of Korea using nitrogen isotope ratios[J].Geosciences Journal,2002,6(1):47-55.
    Clement T. A Modular Computer Code for Simulating Reactive Multispecies Transport in3–Dimensional Groundwater Aquifers[J]. Pacific Northwest National Laboratory, RichlandWA, USA PNNL-11720Found online at: http://bioprocess pnl gov/rt3d htm,1997,
    Craig H. Isotopic variations in meteoric waters[J]. Science,1961,133(3465):1702-1703.
    Dahl M., Nilsson B., Langhoff J.H., et al. Review of classification systems and new multi-scaletypology of groundwater-surface water interaction[J]. Journal of Hydrology,2007,344(1-2):1-16.
    Dansgaard W. Stable isotopes in precipitation[J]. Tellus,1964,16(4):436-468.
    Demlie M., Wohnlich S., Wisotzky F., et al. Groundwater recharge, flow and hydrogeochemicalevolution in a complex volcanic aquifer system, central Ethiopia[J]. Hydrogeology Journal,2007,15(6):1169-1181.
    Diédhiou M., CisséFaye S., Diouf O., et al. Tracing groundwater nitrate sources in the Dakarsuburban area: an isotopic multi‐tracer approach[J]. Hydrological Processes,2012,2012(26):760-770.
    Durka W., Schulze E.D., Gebauer G., et al. Effects of forest decline on uptake and leaching ofdeposited nitrate determined from15N and18O measurements[J]. Nature,1994,372(6508):765-767.
    Dzwairo B., Hoko Z., Love D., et al. geochemistry of groundwater[J]. Physics and Chemistry ofthe Earth,2006,31(15-16):779-788.
    Farhat B., Mammou A.B., Kouzana L., et al. Groundwater Chemistry of the Mornag AquiferSystem in NE Tunisia[J]. Resource Geology,2010,60(4):377-388.
    Farnham I., Johannesson K., Singh A., et al. Factor analytical approaches for evaluatinggroundwater trace element chemistry data[J]. Analytica Chimica Acta,2003,490(1):123-138.
    Fenech C., Rock L., Nolan K., et al. The potential for a suite of isotope and chemical markers todifferentiate sources of nitrate contamination: a review[J]. Water Research,2012,46(7):2023-2041.
    Field K.G., Samadpour M. Fecal source tracking, the indicator paradigm, and managing waterquality[J]. Water Research,2007,41(16):3517-3538.
    Fukada T., Hiscock K.M., Dennis P.F., et al. A dual isotope approach to identify denitrification ingroundwater at a river-bank infiltration site[J]. Water Research,2003,37(13):3070-3078.
    Güler C., Thyne G.D., Mccray J.E., et al. Evaluation of graphical and multivariate statisticalmethods for classification of water chemistry data[J]. Hydrogeology Journal,2002,10(4):455-474.
    Gammons C.H., Poulson S.R., Pellicori D.A., et al. The hydrogen and oxygen isotopiccomposition of precipitation, evaporated mine water, and river water in Montana, USA[J].Journal of Hydrology,2006,328(1-2):319-330.
    Garcia G.M., Del V. Hidalgo M., Blesa M.A. Geochemistry of groundwater in the alluvial plain ofTucuman province, Argentina[J]. Hydrogeology Journal,2001,9(6):597-610.
    Gibbs R.J. Mechanisms controlling world water chemistry[J]. Science,1970,170(3962):1088-1090.
    Guler C., Thyne G.D. Hydrologic and geologic factors controlling surface and groundwaterchemistry in Indian Wells-Owens Valley area, southeastern California, USA[J]. Journal ofHydrology,2004,285(1-4):177-198.
    Hancock P.J. Human impacts on the stream-groundwater exchange zone[J]. EnvironmentalManagement,2002,29(6):763-781.
    Hanson B.R., im nek J., Hopmans J.W. Evaluation of urea–ammonium–nitrate fertigation withdrip irrigation using numerical modeling[J]. Agricultural Water Management,2006,86(1):102-113.
    Harbaugh A.W., Banta E.R., Hill M.C., et al. MODFLOW-2000, the US Geological Surveymodular ground-water model: User guide to modularization concepts and the ground-waterflow process[M]. US Geological Survey Reston,2000.
    Heatwole K.K., Mccray J.E. Modeling potential vadose-zone transport of nitrogen from onsitewastewater systems at the development scale[J]. Journal of Contaminant Hydrology,2007,91(1):184-201.
    Helstrup T., J rgensen N.O., Banoeng-Yakubo B. Investigation of hydrochemical characteristicsof groundwater from the Cretaceous-Eocene limestone aquifer in southern Ghana andsouthern Togo using hierarchical cluster analysis[J]. Hydrogeology Journal,2007,15(5):977-989.
    Hilten R.N., Lawrence T.M., Tollner E.W. Modeling stormwater runoff from green roofs withHYDRUS-1D[J]. Journal of Hydrology,2008,358(3):288-293.
    Hosono T., Tokunaga T., Kagabu M., et al. The use of deltaN and deltaO tracers with anunderstanding of groundwater flow dynamics for evaluating the origins and attenuationmechanisms of nitrate pollution[J]. Water Research,2013, in press.
    Jalali M. Major ion chemistry of groundwaters in the Bahar area, Hamadan, western Iran[J].Environmental Geology,2005,47(6):763-772.
    Jalali M. Geochemistry characterization of groundwater in an agricultural area of Razan, Hamadan,Iran[J]. Environmental Geology,2009,56(7):1479-1488.
    K hne J.M., K hne S., im nek J. A review of model applications for structured soils:(a) Waterflow and tracer transport[J]. Journal of Contaminant Hydrology,2009,104(1):4-35.
    Kendall C., Elliott E.M., Wankel S.D. Tracing Anthropogenic Inputs of Nitrogen to Ecosystems[M]. Stable Isotopes in Ecology and Environmental Science. Blackwell Publishing Ltd.2008:375-449.
    Kendall C., Mcdonnell J.J. Isotope tracers in catchment hydrology[M]. Elsevier ScienceLimited,1998.
    Kohl D.H., Shearer G.B., Commoner B. Fertilizer nitrogen: contribution to nitrate in surface waterin a corn belt watershed[J]. Science (New York, NY),1971,174(16):1331.
    Kool D.M., Wrage N., Oenema O., et al. Oxygen exchange between (de) nitrificationintermediates and H2O and its implications for source determination of NO3-and N2O: areview[J]. Rapid Communications in Mass Spectrometry,2007,21(22):3569-3578.
    Korom S.F. Natural denitrification in the saturated zone: A review[J]. Water Resources Research,1992,28(6):1657-1668.
    Krabbenhoft D.P., Bowser C.J., Anderson M.P., et al. Estimating Groundwater Exchange withLakes.1. The Stable Isotope Mass Balance Method[J]. Water Resources Research,1990,26(10):2445-2453.
    Larson T.E., Buswell A.M., Ludwig H.F., et al. Calcium Carbonate Saturation Index andAlkalinity Interpretations [with Discussion][J]. Journal (American Water Works Association),1942,1667-1684.
    Lee M.-S., Lee K.-K., Hyun Y., et al. Nitrogen transformation and transport modeling ingroundwater aquifers[J]. Ecological Modelling,2006,192(1-2):143-159.
    Liu C.-W., Lin K.-H., Kuo Y.-M. Application of factor analysis in the assessment of groundwaterquality in a blackfoot disease area in Taiwan[J]. Science of the Total Environment,2003,313(1):77-89.
    M rkved P.T., D rsch P., S vik A.K., et al. Simplified preparation for the δ15N-analysis in soilNO3-by the denitrifier method[J]. Soil Biology and Biochemistry,2007,39(8):1907-1915.
    Mailhol J., Ruelle P., Nemeth I. Impact of fertilisation practices on nitrogen leaching underirrigation[J]. Irrigation science,2001,20(3):139-147.
    Mariotti A., Germon J., Hubert P., et al. Experimental determination of nitrogen kinetic isotopefractionation: some principles; illustration for the denitrification and nitrification processes[J].Plant and Soil,1981,62(3):413-430.
    Minet E., Coxon C.E., Goodhue R., et al. Evaluating the utility of15N and18O isotope abundanceanalyses to identify nitrate sources: A soil zone study[J]. Water Research,2012,46(12):3723-3736.
    Monjerezi M., Vogt R.D., Aagaard P., et al. Hydro-geochemical processes in an area with salinegroundwater in lower Shire River valley, Malawi: An integrated application of hierarchicalcluster and principal component analyses[J]. Applied Geochemistry,2011,26(8):1399-1413.
    Navarro A., Carbonell M. Evaluation of groundwater contamination beneath an urbanenvironment: The Besos river basin (Barcelona, Spain)[J]. Journal of EnvironmentalManagement,2007,85(2):259-269.
    Obeidat M., Massadeh A., Al-Ajlouni A., et al. Analysis and evaluation of nitrate levels ingroundwater at Al-Hashimiya area, Jordan[J]. Environmental Monitoring and Assessment,2007,135(1):475-486.
    Phillips D.L., Gregg J.W. Source partitioning using stable isotopes: coping with too manysources[J]. Oecologia,2003,136(2):261-269.
    Phillips D.L., Koch P.L. Incorporating concentration dependence in stable isotope mixingmodels[J]. Oecologia,2002,130(1):114-125.
    Phillips D.L., Newsome S.D., Gregg J.W. Combining sources in stable isotope mixing models:alternative methods[J]. Oecologia,2005,144(4):520-527.
    Pi a-Ochoa E., lvarez-Cobelas M. Denitrification in Aquatic Environments: A Cross-systemAnalysis[J]. Biogeochemistry,2006,81(1):111-130.
    Pinay G., Ruffinoni C., Wondzell S., et al. Change in groundwater nitrate concentration in a largeriver floodplain: denitrification, uptake, or mixing?[J]. Journal of the North AmericanBenthological Society,1998,17(2):179-189.
    Reghunath R., Murthy T., Raghavan B. The utility of multivariate statistical techniques inhydrogeochemical studies: an example from Karnataka, India[J]. Water Research,2002,36(10):2437-2442.
    Rock L., Ellert B.H. Nitrogen-15and Oxygen-18Natural Abundance of Potassium ChlorideExtractable Soil Nitrate Using the Denitrifier Method[J]. Soil Science Society of AmericaJournal,2007,71(2):355.
    Rozemeijer J., Broers H., Geer F.V., et al. Weather-induced temporal variations in nitrateconcentrations in shallow groundwater[J]. Journal of Hydrology,2009,378(1):119-127.
    Salazar O., Wesstr m I., Youssef M.A., et al. Evaluation of the DRAINMOD–N II model forpredicting nitrogen losses in a loamy sand under cultivation in south-east Sweden[J].Agricultural Water Management,2009,96(2):267-281.
    Seitzinger S., Harrison J.A., Bohlke J.K., et al. Denitrification across landscapes and waterscapes:A synthesis[J]. Ecological Applications,2006,16(6):2064-2090.
    Sigman D., Casciotti K., Andreani M., et al. A bacterial method for the nitrogen isotopic analysisof nitrate in seawater and freshwater[J]. Analytical Chemistry,2001,73(17):4145-4153.im nek J., Van Genuchten M.T. Modeling nonequilibrium flow and transport processes usingHYDRUS[J]. Vadose Zone Journal,2008,7(2):782-797.
    Simunek J., Van Genuchten M.T., Sejna M. The HYDRUS-1D software package for simulatingthe one-dimensional movement of water, heat, and multiple solutes in variably-saturatedmedia[R]. University of California, Riverside, Research reports,2005.
    Simunek J., Van Genuchten M.T., Sejna M. Development and applications of the HYDRUS andSTANMOD software packages and related codes[J]. Vadose Zone Journal,2008,7(2):587-600.
    Song X.F., Liu X., Zhang Y.H., et al. Spatio-temporal variations of delta(2)H and delta(18)O inprecipitation and shallow groundwater in the Hilly Loess Region of the Loess Plateau,China[J]. Environmental Earth Sciences,2011,63(5):1105-1118.
    Stigter T., Van Ooijen S., Post V., et al. A hydrogeological and hydrochemical explanation of thegroundwater composition under irrigated land in a Mediterranean environment, Algarve,Portugal[J]. Journal of Hydrology,1998,208(3-4):262-279.
    Toth J. Groundwater as a geologic agent: An overview of the causes, processes, andmanifestations[J]. Hydrogeology Journal,1999,7(1):1-14.
    U. K., S. C., M.V. P., et al. A study on the mixing proportion in groundwater samples by usingPiper diagram and Phreeqc model[J]. Chinese Journal of Geochemistry,2011,04):490-495.
    Umezawa Y., Hosono T., Onodera S.-I., et al. Sources of nitrate and ammonium contamination ingroundwater under developing Asian megacities[J]. Science of the Total Environment,2008,404(2-3):361-376.
    Van Genuchten M.T. A closed-form equation for predicting the hydraulic conductivity ofunsaturated soils[J]. Soil Science Society of America Journal,1980,44(5):892-898.
    Wang H., Ju X., Wei Y., et al. Simulation of bromide and nitrate leaching under heavy rainfall andhigh-intensity irrigation rates in North China Plain[J]. Agricultural Water Management,2010,97(10):1646-1654.
    Wen X., Wu Y., Wu J. Hydrochemical characteristics of groundwater in the Zhangye Basin,Northwestern China[J]. Environmental Geology,2008,55(8):1713-1724.
    Widory D., Kloppmann W., Chery L., et al. Nitrate in groundwater: an isotopic multi-tracerapproach[J]. Journal of Contaminant Hydrology,2004,72(1-4):165-188.
    Wriedt G., Rode M. Modelling nitrate transport and turnover in a lowland catchment system[J].Journal of Hydrology,2006,328(1-2):157-176.
    Xue D., Botte J., De Baets B., et al. Present limitations and future prospects of stable isotopemethods for nitrate source identification in surface-and groundwater[J]. Water Research,2009,43(5):1159-1170.
    Yangui H., Zouari K., Trabelsi R., et al. Recharge mode and mineralization of groundwater in asemi-arid region: Sidi Bouzid plain (central Tunisia)[J]. Environmental Earth Sciences,2011,63(5):969-979.
    Yidana S.M. Groundwater Classification Using Multivariate Statistical Methods: Birimian Basin,Ghana[J]. Journal of Environmental Engineering,2010,136(12):1379.
    Yu C., Yao Y.Y., Hayes G., et al. Quantitative assessment of groundwater vulnerability using indexsystem and transport simulation, Huangshuihe catchment, China[J]. Science of the TotalEnvironment,2010,408(24):6108-6116.
    Zhang X., Wang Q., Liu Y., et al. Application of multivariate statistical techniques in theassessment of water quality in the Southwest New Territories and Kowloon, Hong Kong[J].Environmental Monitoring and Assessment,2011,173(1):17-27.
    Zheng C. MT3D: A modular three-dimensional transport model for simulation of advection,dispersion and chemical reactions of contaminants in groundwater systems[M]. SSPapadopulos&Associates,1992.
    毕二平,李政红.石家庄市地下水中氮污染分析[J].水文地质工程地质,2001,28(2):31-34.
    毕二平,母海东,陈宗宇,等.人类活动对河北平原地下水水质演化的影响[J].地球学报,2001,22(4):365-368.
    毕经伟,张佳宝,陈效民,等.应用HYDRUS-1D模型模拟农田土壤水渗漏及硝态氮淋失特征[J].农村生态环境,2004,20(2):28-32.
    曹巧红,龚元石.水分氮素运移特征[J].植物营养与肥料学报,2003,9(2):139-145.
    陈建耀,王亚,张洪波,等.地下水硝酸盐污染研究综述[J].地理科学进展,2006,25(1):34-44.
    邓林,曹玉清,王文科.地下水NO-3氮与氧同位素研究进展[J].地球科学进展,2007,22(7):716-724.
    丁元芳,迟宝明,易树平,等. Visual MODFLOW在李官堡水源地水流模拟中的应用[J].水土保持研究,2006,13(5):99-102.
    董建明.傍河型水源地地下水水质水位预测方法研究[硕士学位论文]:中国地质大学(北京),2012.
    方堃,陈效民,杜臻杰,等.低山丘陵区红壤酸雨中典型阴离子垂直迁移状况及模拟[J].农业环境科学学报,2009,28(1):107-111.
    方堃,陈效民,沃飞,等.典型水稻土中硝态氮垂直穿透状况及模拟[J].安全与环境学报,2007,7(5):16-20.
    顾慰祖.同位素水文学[M].北京:科学出版社,2011.378-422.
    郝芳华,孙雯,曾阿妍,等. HYDRUS-1D模型对河套灌区不同灌施情景下氮素迁移的模拟[J].环境科学学报,2008,28(5):853-858.
    何江涛,马文洁,张昕.基于过程单元模型参数替代防污性能评价方法研究―以北京市平原区为例[M].北京:地质出版社,2012.1-27.
    何勇,秦大河,任贾文,等.塬堡全新世黄土剖面有机质碳同位素的气候记录[J].地球化学,2004,33(2):178-184.
    贾金生,田冰,刘昌明. Visual MODFLOW在地下水模拟中的应用[J].河北农业大学学报,2003,26(2):71-78.
    贾小妨.山东省地下水硝酸盐分布规律及溯源研究[硕士学位论文]:中国农业科学院,2010.
    贾小妨,李玉中,徐春英,等.氮,氧同位素与地下水中硝酸盐溯源研究进展[J].中国农学通报,2009,25(14):233-239.
    金赞芳,叶红玉.氮同位素方法在地下水氮污染源识别中的应用[J].环境污染与防治,2006,28(7):531-535.
    鞠晓明,何江涛,王俊杰,等.抽水试验与微水试验在确定水文地质参数中的对比分析[J].工程勘察,2011,39(1):51-56+63.
    李铎,宋雪琳,张燕君.傍河地下水水源地污染模式研究[J].地球学报,2000,21(2):202-206.
    李俊霞,苏春利,谢先军,等.多元统计方法在地下水环境研究中的应用——以山西大同盆地为例[J].地质科技情报,2010,29(6):94-100.
    李思亮.喀斯特城市地下水C、N同位素地球化学—污染物迁移和转化研究[博士学位论文]:中国科学院地球化学研究所,2005.
    李思亮,刘丛强,肖化云,等. δ~(15)N在贵阳地下水氮污染来源和转化过程中的辨识应用[J].地球化学,2005,34(3):257-262.
    刘存富.应用氧同位素确定含水层补给区方法[J].地质科技情报,1983,3(3):119-121.
    刘丽雅,何江涛,王俊杰,等.某傍河污染场地排污河与地下水水力联系模拟研究[J].现代地质,2011,25(6):1201-1206.
    柳鉴容,宋献方,袁国富,等.中国东部季风区大气降水δ~(18)O的特征及水汽来源[J].科学通报,2009,54(22):3521-3531.
    罗泽娇,靳孟贵.地下水三氮污染的研究进展[J].水文地质工程地质,2002,29(4):65-69.
    马军花,任理.考虑水力学和矿化参数空间变异下土壤水氮运移的数值分析[J].水利学报,2005,36(9):1067-1076.
    毛绪美,罗泽娇,李永勇,等.地下水硝酸盐氮同位素分析最新方法——细菌反硝化法;proceedings of the第八届全国同位素地质年代学和同位素地球化学学术讨论会,中国北京, F,2005[C].
    钱会,马致远.水文地球化学[M].北京:地质出版社,2005.50-66.
    秦松柏,欧阳正平,程天舜.分层聚类分析在水文地球化学分类中的应用[J].地下水,2008,30(1):21-24.
    沈杨,何江涛,王俊杰,等.基于多元统计方法的地下水水化学特征分析:以沈阳市李官堡傍河水源地为例[J].现代地质,2013,27(2):440-447.
    孙蓓蓓.孪井灌区硝态氮运移规律和淋失通量计算[硕士学位论文]:中国海洋大学,2010.
    孙猛,董莉莉,孙明正.长春市地下水中氮污染分析[J].长春工程学院学报(自然科学版),2008,9(1):58-61.
    唐大雄.工程岩土学[M].北京:地质出版社,1999.23-25.
    唐克旺,吴玉成,侯杰.中国地下水资源质量评价(Ⅱ)——地下水水质现状和污染分析[J].水资源保护,2006,22(3):1-4+8.
    王东升.氮同位素比(~(15)N/~(14)N)在地下水氮污染研究中的应用基础[J].地球学报,1997,18(2):109-112.
    王俊杰,何江涛,张昕,等.某傍河研究区的地下水化学分析[J].现代地质,2010,24(5):1000-1006.
    王文科,李俊亭,王钊,等.河流与地下水关系的演化及若干科学问题[J].吉林大学学报(地球科学版),2007,37(2):231-238.
    吴登定,姜月华,贾军远,等.运用氮、氧同位素技术判别常州地区地下水氮污染源[J].水文地质工程地质,2006,33(3):11-15.
    吴文业,王恩德,胡成,等.利用环境同位素技术研究沈阳浑河与地下水的水力联系[J].气象与环境学报,2007,23(3):19-22.
    杨维,郭毓,王晓华,等.氮素在包气带与饱水层迁移转化的实验研究[J].环境科学研究,2008,21(3):69-75.
    杨维,郭毓,王泳,等.氨氮污染地下水的动态实验研究[J].沈阳建筑大学学报(自然科学版),2007,23(5):826-831.
    杨维,王恩德,李勇,等.浑河冲洪积扇中下游地下水中氮转化与水文地球化学特征的研究[J].水文地质工程地质,2005,32(2):39-41.
    杨维,王泳,李宇斌,等.饱水岩层生物地球化学特征与氮转化[J].沈阳建筑大学学报(自然科学版),2006,22(5):812-816.
    杨文献,陆士新,刘桂亭,等.我国食管癌高发现场的防治战略与对策研究[J].第十三届中国科协年会第18分会场-癌症流行病趋势和防控策略研讨会论文集,2011,1-5.
    于津生,虞福基,刘德平.中国东部大气降水氢、氧同位素组成[J].地球化学,1987,16(1):22-26.
    余振国,杨顾,连炎清.应用氢氧同位素方法研究兰州市傍河水源地地下水水体的形成和循环机理[J].甘肃地质学报,1992,1(1):68-84.
    岳甫均.利用反硝化细菌法测试水体硝酸盐氮氧同位素[J]. Chinese Journal of Ecology,2012,31(8):2152-2157.
    张翠云,马琳娜,张胜,等. Visual Modflow在石家庄市地下水硝酸盐污染模拟中的应用[J].地球学报,2007,28(6):561-566.
    张启德,于淑清,宋立明.污染河水对地下水水质影响的研究[J].环境科学学报,1984,4(1):65-68.
    张曲明.浑河污染对李官堡水源区地下水次生污染影响的研究[J].环境保护科学,1987,3(3):20-28.
    周美英.地下水中“三氮”运移的随机模拟研究[硕士学位论文]:中国地质大学(北京),2012.
    周迅,姜月华.氮,氧同位素在地下水硝酸盐污染研究中的应用[J].地球学报,2007,28(4):389-395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700