用户名: 密码: 验证码:
黑河流域蓝绿水时空变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
所有的有机体,包括人类,都需要淡水资源来保证其生存。因此,保证足够的淡水资源供给不仅对人类是必不可少的,对生态系统也是极其必要的。水资源可以分为蓝水和绿水。蓝水主要指江、河、湖水及浅层地下水;绿水是指源于降水,储藏于非饱和土壤中并被植物以蒸散发的形式吸收利用的那部分水。以往,人们往往更多的关注蓝水而忽视绿水。但是绿水在粮食生产和生态系统服务中发挥着非常重要的作用。蓝绿水研究引发了科学界对水资源概念及评价的重新思考,逐步影响着人类对水资源管理的思维方式,并已经成为水文水资源领域研究热点。
     在我国干旱区内陆河流域,人们对水循环的认识仍然是以蓝水为主,对流域生态系统和人类极其重要的绿水和其时空分布却了解甚少。本研究选择干旱区典型内陆河流黑河为研究对象,以蓝绿水为研究核心,以Soil and Water Assessment Tool (SWAT)模型和Mann-Kendall等统计检验方法为研究手段,研究黑河流域蓝绿水的时空动态分布格局和人类活动对蓝绿水变化规律的影响。在流域尺度上分析蓝绿水在干旱年、湿润年、平水年这些典型年份的变化特征;并综合考虑蓝绿水资源空间分布和水资源变化情况,探讨蓝水、绿水转化的理论框架。
     研究发现,黑河流域蓝水流(地表径流、壤中流和地下径流之和)和绿水流(实际蒸散发)呈现从上游到下游递减的规律。黑河流域绿水系数(绿水流占蓝绿水流之和的比重)达到了88%以上,因此在黑河流域大部分水资源是以绿水的形式存在的。人类活动会影响蓝绿水的变化和分布。黑河流域中游地区城市化的进程导致该地区蓝水流增加,绿水流减少;而中游地区农田的灌溉导致蓝水流减少,绿水流增加。通过对1960-2010年的蓝绿水变化趋势分析发现,黑河流域蓝水流和蓝绿水总量在过去51年来呈现显著增加的趋势,而绿水系数呈现显著减少的趋势。蓝水流、绿水流和蓝绿水总量在上游和中游增加显著,但在下游地区变化趋势不显著。蓝水流在1963年发生突变,蓝绿水总量在分别在1963和1978年发生突变。通过对黑河流域未来蓝绿水的变化趋势预测发现,黑河流域未来蓝绿水都将呈现增加的趋势,而绿水系数则呈现减少的趋势。蓝绿水总量在湿润年份(1998年,252.72亿m3)明显大于干旱年份(1978年,167.73亿m3);绿水系数在于旱年份(90.30%)明显高于湿润年份(85.41%)。降水低的年份(干旱年份)的绿水流所占蓝绿水流总量的比例明显高于湿润年,而湿润年份蓝水流占水资源的比例明显高于干旱年。本研究为科学合理地规划和管理中国西北内陆河流域的水资源提供了基础数据,对流域尺度上水资源的评价和预测有着重要的指导和实践意义;可以为国家内陆河流域综合管理、水安全、生态安全提供理论基础和科技支撑。
Ensuring sufficient water supply is essential for the survival and sustenance of humans and ecosystems. In the long term, insufficient water availability for essential ecosystem functions and services can lead to ecosystem degradation with consequent impacts on overall water scarcity and human well-being. Water resources assessment and management often emphasize on blue water, ignoring green water. Conceptually, water can be divided into green water and blue water. Blue water is the water in rivers, lakes, wetland and shallow aquifers, while green water is precipitation water stored in unsaturated soil, and later used for evapotranspiration. Although green water is often ignored, it plays an essential role in crop production and other ecosystem services. The green/blue water research has become a hot topic of water resources research.
     The concepts of green and blue water make the scientific community start a new way of thinking and understanding of water resources and their assessment framework. In particular in arid and semi-arid regions, water use competition is intense between human and ecosystems:hence, a comprehensive assessment of green and blue water resources in a spatially and temporal explicit way is a key to deepening the understanding of the renewable water endowments as well as to enhancing water management towards sustainable, efficient and equitable use of limited water resources. In this study, we selected China's second-largest inland river, the Heihe River, as a case study for the analysis of green/blue water.
     Our results show that:blue water flow (the sum of surface runoff, lateral water and groundwater runoff) and green water flow (the actual evapotranspiration) are larger in upstream sub-basins than in midstream and downstream sub-basins. The green water coefficient (the proportion of green water flow in total blue and green water flows) of Heihe river basin was more than88%. This implies that more than88%of water resources in the Heihe river basin are green water. Human activities can influence the green/blue water variability and distribution. In midstream, the urbanization increased blue water flow and decreased green water flow; in contrast, irrigation increased green water flow and decreased blue water flow. The blue water flow and total blue and green water flows of the entire basin increased significantly during the study period, while the proportion of green water decreased significantly. The three flows (green water flow, blue water flow, and the total flows) increased significantly in the upstream and midstream basins, but did not change significantly in the downstream basin. Blue water flows changed abruptly in1963, and total flows changed abruptly in1963and1978. Green/blue water flows in the Heihe river basin will continue to increase in future, but the proportion of green water will decrease. The results for typical reference years showed the green/blue water flows in a typical wet year (1998,25.27billion m3) were more than in a typical dry year (1978,16.77billion m3). The green water coefficient was greater in a typical dry year (90.30%) than in a typical wet year (85.41%). Therefore, the percent of green water in total water resources was higher in a typical dry year or dry region (mid-and downstream) than in a typical wet year or wet region (upstream). This study provides insights into green and blue water endowments for different sub-basins in the entire Heihe river basin. The results are helpful to benchmark the green and blue water assessment at a river basin level and to improve water resources management in the inland river basins of China.
引文
1. 陈崇希.关于地下水开采引发地面沉降灾害的思考[J].水文地质工程地质,2000,(1):45-60.
    2. 陈仁升.康尔泗,杨建平.等.TOPMODEL模型在黑河干流出山径流模拟中的应用[J].中国沙漠,2003.23:428-434.
    3. 程磊,徐宗学,罗睿.SWAT在干旱半干旱地区的应用—以窟野河流域为例[J].地理研究,2009,28(1):65-71.
    4. 程国栋,肖洪浪.徐中民,等.中国西北内陆河水问题及其应对策略—以黑河流域为例[J].冰川冻土.2003,03:406-413.
    5. 程国栋,赵文智.绿水及其研究进展[J].地球科学进展,2006,03:221-227.
    6. 程玉菲,王根绪,席海洋,等.近35a来黑河干流中游平原区陆面蒸散发的变化研究[J].冰川冻土.2007,29:406-413.
    7. 丁松爽,苏培玺.黑河上游祁连山区植物群落随海拔生境的变化特征[J].冰川冻土,2010,32:829-836.
    8. 方生,陈秀玲.地下水开发引起的环境问题与治理[J].地F水,2001,23(1):8-11.
    9. 付奔.金晨曦.三种干旱指数在2009-2010年云南特大干旱中的应用比较研究[J].人民珠江2012,2(2):4-6.
    10.高洋洋,左其亭.植被覆盖变化对流域总蒸散发量的影响研究[J].水资源与水工程学报,2009,20:26-32.
    11.郭军庭.潮河流域十地利用/气候变化的水文响应研究[D]北京:北京林业大学,2012,18-39.
    12.郭巧玲,杨云松,畅祥生,等.1957-2008年黑河流域径流年内分配变化[J].地理科学进展,2011,30:550-556.
    13.韩杰,张万昌.赵登忠.基于TOPMODEL径流模拟的黑河水资源探讨[J].农村生态环境.2004,20:16-20.
    14.郝芳华,张雪松,程红光.分布式水文模型亚流域合理划分水平刍议[J].水土保持学报,2003,17(4),75-78.
    15.贺缠生.Carlo D. M., Thomas E. C.,等.基于分布式大流域径流模型的中国西北黑河流域水文模拟[J].冰川冻土(英文版),2009,03:410-421.
    16.黄清华,张万昌.SWAT分布式水文模型在黑河干流山区流域的改进及应用[J].南京林业大学学报(自然科学版),2004,28:22-26.
    17.贾文雄.何元庆.李宗省.等.近50年来河西走廊平原区气候变化的区域特征及突变分析[J].地理科学,2008,28(4):525-531.
    18.贾仰文,王浩,严登华.黑河流域水循环系统的分布式模拟(Ⅱ)—模型应用[J].水利学报,2006a,37:655-661.
    19.贾仰文,五浩,严登华.黑河流域水循环系统的分布式模拟(Ⅰ)模型开发与验证[J].水利学报,2006b.37:534-542.
    20.金晓媚,梁继运.黑河中游地区区域蒸散量的时间变化规律及其影响因素[J].干旱区资源与环境,2009,23:88-93.
    21.鞠笑生,杨贤为.我国单站旱涝指标确定和区域旱涝级别划分的研究[J].应用气象学报,1997,8(1):26-32.
    22.蓝永超.丁永建.康尔泗.近50年来黑河山区汇流区温度及降水变化趋势[J].高原气象,2004,2(5):723-727.
    23.李新,周宏飞.人类活动干预后的塔里木河水资源持续利用问题[J].地理研究,1998,17(2):171-177.
    24.李志,刘文兆,张勋昌,等.黄土塬区坡面土壤侵蚀对全球气候变化的响应[J].水土保持通报,2010,(01):1-6.
    25.李弘毅,王根绪.SRM融雪径流模型在黑河流域上游的模拟研究[J].冰川冻土,2008,05:669-775.
    26.李建新.朱新军,于磊.SWAT模型在海河流域水资源管理中的应用[J].海河水利,2010,(5):46-49.
    27.李万寿.黑河流域水资源可持续利用研究[J].水文水资源,2001,22(4):17-20.
    28.李小雁.流域绿水研究的关键科学问题[J].地球科学进展.2008,07:707-712.
    29.李占玲.黑河上游山区流域径流模拟与模型不确定性分析[D].北京:北京师范大学,2009,14-29.
    30.刘鹄,唐何.黑河上游山区土壤非饱和导水率测定及其估算——以排露沟流域为例[J].生态学杂志,2011,30:177-182.
    31.刘昌明,李云成.“绿水”与节水:中国水资源内涵问题讨论[J].科学对社会的影响,2006,16-20.
    32.刘少玉.张光辉,张翠云,等.黑河流域水资源系统演变和人类活动影响[J].吉林大学学报(地球科学版),2008.38:806-813.
    33.刘艳艳,张勃,张耀宗,等.黑河流域近46年日照时数的气候变化特征及其影响因素[J].干旱区资源与环境,2009,23:72-77.
    34.庞靖鹏,徐宗学.刘昌明.SWAT模型研究应用进展[J].水土保持研究,2007,03:31-35.
    35.邱国玉.陆地生态系统中的绿水资源及其评价方法[J].地球科学进展,2008,07:713-722.
    36.任建民,件彦卿,贡力.人类活动对内陆河石羊河流域水资源转化的影响[J].干旱区资源与环境,2007,21(8):7-11.
    37.仕玉治.气候变化及人类活动对流域水资源的影响及实例研究[D].大连:大连理工大学.2011.12-25.
    38.孙永亮,徐宗学,苏保林,等.变化情景下的漳卫南运河流域水景水质模拟[J].北京师范大学 学报(自然科学版),2010,(03):387-394.
    39.田辉,文军,马耀明,等.夏季黑河流域蒸散发量卫星遥感估算研究[J].水科学进展,2009,20:18-24.
    40.王浩,贾仰文,王建华,等.人类活动影响下的黄河流域水资源演化规律初探[J].白然资源学报,2005,20(2):157-162.
    41.王金叶,王彦辉,于澎涛,等.祁连山林草复合流域降水规律的研究[J].林业科学研究,2006,19(4):416-422.
    42.王录仓,张晓玉.黑河流域近期气候变化对水资源的影响分析[J].干旱区资源与环境,2010,04:60-65.
    43.王盛萍.典型小流域土地利用与气候变异的生态水文响应研究仁[D].北京:北京林业大学,2007.42-55.
    44.王晓燕,秦福来,欧洋,等.丛于SWAT模型的流域非点源污染模拟—以密云水库北部流域为例[J].农业环境科学学报,2008,27(3):1098-1105.
    45.王中根,刘昌明.黄友波.SWAT模型的原理、结构及应用研究[J].地理科学进展,2003,22:79-86.
    46.干中根,朱新军,夏军,等.海河流域分布式SWAT模型的构建[J].地理科学进展,2008,27(4):1-6.
    47.魏怀斌,张占庞,杨金鹏.SWAT模型土壤数据库建立方法[J].水利水电技术,2007.38:15-18.
    48.温志群,杨胜天,宋文龙,等.典型喀斯特植被类型条件下绿水循环过程数值模拟[J].地理研究,2010.29:1841-1852.
    49.吴洪涛.武春友.郝芳华,等.绿水的多角度评估及其在碧流河上游地区的应用[J].资源科学,2009,03:420-428.
    50.吴锦奎,丁永建,沈永平.黑河中游地区湿草地蒸散量试验研究[J].冰川冻土,2005,27:582-591.
    51.夏军,左其亭.国际水文科学研究的新进展[J].地球科学进展,2009,03:256-261.
    52.肖生春,肖洪浪,蓝永超,等.近50a来黑河流域水资源问题与流域集成管理[J].中国沙漠.2011,(02):529-535
    53.肖生春.肖洪浪.近百年来人类活动对黑河流域水环境的影响[J].干旱区资源与环境,2004.18(3):57-62.
    54.徐宗学,程磊.分布式水文模型研究与应用进展[J].水利学报,2010,(09):1009-1017.
    55.徐宗学,李占玲.黑河流域上游山区径流模拟及模型评估[J].北京师范大学学报(自然科学版),2010.46:344-349.
    56.徐宗学,左德鹏.拓宽思路,科学评价水资源量—以渭河流域蓝水绿水资源量评价为例[J].南水北调与水利科技,2013,11(1):12-17
    57.徐宗学,左德鹏.渭河流域蓝水绿水资源量多尺度综合评价[J].中国水利技术信息中心《2012全国水资源合理配置与优化调度技术专刊,2012,139-155.
    58.杨明金,张勃,王海青,等.黑河流域1950-2004年出山径流变化规律分析[J].资源科学.2009.03:413-419.
    59.袁军营,苏保林,李卉,等.基于SWAT模型的柴河水库流域径流模拟研究[J].北京师范大学学报(自然科学版),2010,46(3):361-365.
    60.袁文平.周广胜.标准化降水指标与Z指数在我国应用的对比分析[J].植物生态学报,2004.28(4)523-529.
    61.张辉.气候变化和人类活动对黑河流域水资源的影响[D].兰州:兰州大学,2009,22-45.
    62.张应华,仵彦卿.黑河流域中游盆地地下水补给机理分析[J].中国沙漠,2009,29:370-375.
    63.张永勇,王中根.于磊,等.SWAT水质模块的扩展及其在海河流域典型区的应用[J].资源科学.2009.(1):94-100.
    64.赵微.土地整理对区域蓝绿水资源配置的影响[J].中国人口·资源与环境,2011,21:44-49.
    65.赵建忠,魏莉莉,赵玉苹.黑河流域地下水与地表水转化研究进展[J].西北地质,2010.43:120-126.
    66.赵映东,贾小明,谢建丽,等.气候变化对黑河流域水资源影响分析[J].中国水利,2009.17-20.
    67.甄婷婷.徐宗学,程磊,等.蓝水绿水资源量估算方法及时空分布规律研究-以卢氏流域为例[J].资源科学,2010,32(6):1177-1183
    68.中华人民共和国水利部.黑河流域近期治理规划[M].北京:水利水电出版社.2002,12-30.
    69.周剑,王根绪,赵洁.黑河流域中游地下水时空变异性分析及其对土地利用变化的响应[J].自然资源学报,2009,03:498-506.
    70.竹磊磊,李娜,常军.SWAT模型在半湿润区径流模拟中的适用性研究[J].人民黄河,2010,(12):59-61.
    71. Abbaspour K. C., Yang J., Maximov I., et al. Modelling hydrology and water quality in the pre-Alpine/Alpine Thur watershed using SWAT [J]. Journal of Hydrology.2007.333,413-430.
    72. Abbaspour, K. C. User Manual for SWAT-CUP, SWAT Calibration and Uncertainty Analysis Programs [R]. Swiss Federal Institute of Aquatic Science and Technology. Eawag,2007. Duebendorf, Switzerland,93pp.
    73. Allen R. G.. Periera L. S., Smith M. Crops evapotranspiration guidelines for computing crop water requirements [R]. FAO Irrigation and Drainage,1990, Paper 56.
    74. Alley R. B., Marotzke J., Nordhaus W. D. Abrupt Climate Change [J]. Science,2003,299, 2005-2010 (doi:10.1126/science.1081056).
    75. Arnold J. G.. Fohrer N. SWAT2000:Current capabilities and research opportunities in applied watershed modeling [J]. Hydrological Processes.2005,3:563-572.
    76. Arnold J. G., Srinivasan R. S., Muttiah J. R., et al. Large area hydrologic modeling and assessment. Part Ⅰ:Model development [J]. Journal of the American Water resources Association,1998,34, 73-89.
    77. Bern. M., Dobkin. D.. Eppstein. D. Triangulating polygons without large angles. Proc. Annual ACM Symp [J]. Computational Geometry & apllications,1992,8:222-231.
    78. Burn D. H., Hag Elnur M. A. Detection of hydrologic trends and variability [J]. Journal of Hydrology,2002,255:107-122.
    79. Eckhardt K., Haverkamp S., Fohrer N., et al. SWAT-G. a version of SWAT99.2 modified for application to low mountain range catchments [J], Physics and Chemistry of the Earth, Parts A/B/C, 2002,27(9):641-644.
    80. Falkenmark M. Coping with water scarcity under rapid population growth [R]. Conference of SADC Minister. Pretoria,1995. November 23-24.
    81. Falkenmark M. Freshwater as shared between society and ecosystems:from divided approaches to integrated challenges [J]. Philosophical Transaction,2003,358,2037-2049.
    82. Falkenmark M., Rockstrom J. The new blue and green water paradigm:breaking new ground for water resources planning and management [J] Journal of Water Resources Planning and Management,2006,3:129-132.
    83. Faramarzi M., Abbaspour K. C., Schulin R., Yang H. Modelling blue and green water resources availability in Iran [J]. Hyrological Processes,2009.23,486-501.
    84. Feidas H., Makrogiannis T, Bora S. E. Trend analysis of air temperature time series in Greece and their relationship with circulation using surface and satellite data:1955-2001 [J]. Theoretical and Applied Climatology,2004.79:185-208(doi:10.1007/s00704-004-0064-5).
    85. Fontaine R. Surface Water Quality-Assurance Plan for the Hawaii District of the U. S. GeologicalSurvey [J]. U. S. Geologeical Survey Open-File Report, Honolulu, Hawaii,2001,1-75 (http://hi.water.usgs.gov/publications/pubs/ofr/ofr2001-75.pdf).
    86. Gassman P. W.. Arnold J. G., Srinivasan R., et al. The world wide use of the SWAT model. Technological driver, networking impacts, and simulation trends [J]. Transactions of the ASABE, 2010,50(4):1211.
    87. Gassman P.W., Reyes M. R.. Green C. H. The Soil and Water Assessment Tool: Historicaldevelopment. applications, and future research directions[D],2007.22-37.
    88. Gassman P. W., Reyes M., Green C. H., et al. The soil and water assessment tool:historical development, applications, and future directions [J]. Transactions of the ASABE,2007,50, 1211-1250.
    89. Gerald A. M., Francis Z., Jenni E. Trends in Extreme Weather and Climate Events:Issues Related to Modeling Extremes in Projections of Future Climate Change [J]. American Meteorological Society,2000,81(3):427-436.
    90. Gerten D., Hoff H., Bondeau A. Contemporary green "water flows:Simulations with a dynamic global vegetation and water balance model [J]. Physics and Chemistry of the Earth,2005,30. 334-338.
    91. Gilbert R. O. Statistical methods for environmental pollution monitoring [R]. Van Nostrand Reinhold, New York,1987,12-20.
    92. Gleick P. H. A Look at Twenty-first Century Water Resources Development [J]. Water International. 1998.25:127-138.
    93. Hao X. M., Chen Y. N, Xu C. C., et al. Impacts of climate change and human activities on the surface runoff in theTarimRiver basin over the last fifty years [J].Water Resourees Management. 2008.22(9):1159-1171.
    94. Hargreaves G. L., Asce A. M., Hargreaves G. H., et al. Agricultural Benefits for Senegal River Basin [J]. Journal of Irrigation and Drainage Engineering,1985,111:113-124.
    95. Henderson B. Exploring between site differences in water quality trends:a functional data analysis approach [J]. Environmetrics,2006.17:65-80.
    96. Jansson F. C., Rockstrom J., Gordon L. Linking Freshwater Flows and Ecosystem Services Appropriated by People:The Case of the Baltic Sea Drainage Basin [J]. Ecosystems,1999, 351-366.
    97. Jewitt G. P. W., Garratt J. A., Calder I. R., et al. Water resources planning and modelling tools for the assessment of land use change in the Luvuvhu Catchment, South Africa [J]. Physics and Chemistry of the Earth,2004,15(18):1233-1241.
    98. Jin W. X.. Liang J. The Temporal Change of Regional Evapotraspiration and the Impact Factors in Middle Stream of the Heihe River Basin [J]. Journal of Arid Land Resources and Environment, 2009,23(3):88-92.
    99. Karpouzos D. K., Kavalieratou S., C. Trend Analysis of Precipitation Data in Pieria Region (Greece) [J]. European Water,2010.30:31-40.
    100. Kubilius K., Melichov D. On estimation of the Hurst index of solutions of stochastic integral equations[R], Liet. Mat. Rink.. LMD Darbai,48/49. pp.2008,401-406.
    101. Kundzevvicz Z. W., Mata L. J., Arnell N. W. The implications of projected climate change for freshwater resources and their management[J]. Hydrological Sciences Journal.2008.53(1):3-10.
    102. Lannerstad F. Interactive comment on "Consumptive water useto feed humanity-curing a blind spot" by M. Falkenmark and M. Lannerstad [J]. Hydrol. Earth Syst. Sci. Discuss,2005,1.20-28.
    103. Li N., Li J., Yu S. Effect of permafrost degradation on hydrological processes in typical basins with various permafrost coverage in Western China[J]. Science China Earth Sciences.2011.54:615-624.
    104. Li S. B. Satellite-based actual evapotranspiration estimation in the middle reach of the Heihe River Basin using the SEBAL method [J]. Hydrological Processes,2010,24:3337-3344.
    105. Li Z. L., Shao Q. X., Xu Z. X., et al. Analysis of parameter uncertainty in semi-distributed hydrological models using bootstrap method:A case study of SWAT model applied to Yingluoxia watershed in northwest China [J]. Journal of Hydrology,2010,385:76-83.
    106. Li Z. L., Xu Z. X. Detection of Change Points in Temperature and Precipitation Time Series in the Heihe River Basin over the Past 50 Years [J]. Resources Science,2011,33 (10):1877-1882.
    107. Li Z. L., Xu Z. X., Li J. Y. Shift trend and step changes for runoff time series in the Shiyang River basin, northwest China [J]. Hydrological Processes,2008,22:4639-4646(doi:10.1002/hyp.7127).
    108. Li Z. L., Xu Z. X., Shao Q. X.i, et al. Parameter estimation and uncertainty analysis of SWAT model in upper reaches of the Heihe river basin [J]. Hydrological Processes,2009,23:2744-2753.
    109. Li Z., Zhang X. C. Zheng F. L. Assessing and regulating the impacts of climate change on water resources in the Heihe watershed on the Loess Plateau of China [J]. Science China Earth Sciences. 2010,53:710-720.
    110. Liu J. G., Zang C. F., Tian S. Y., et al. Water conservancy projects in China:Achievements. challenges and way forward [J]. Global Environmental Change,2013, in press, corrected proof (Doi:org/10.1016/j.gloenvcha.2013.02.002). available online 13 March 2013.
    111. Liu J., Christian F., Yang H., et al. A Global and Spatially Explicit Assessment of Climate Change Impacts on Crop Production and Consumptive Water Use [J]. PLoS One,2013,8(2):e57750, (Doi: 10.1371/journal.pone.0057750). Epub 2013 Feb 27.
    112. Liu J., Yang H. Spatially explicit assessment of global consumptive water uses in cropland:Green and blue water [J]. Journal of Hydrology,2010,384:187-197.
    113. Liu J., Zehnder A. J. B., Yang, H.. et al. Global consumptive water use for crop production:The importance of green water and virtual water [J]. Water Resources Research,2009a,45, (Dio:10.1029/2007WR006051).
    114. Liu J., Yang H. Consumptive water use in cropland and its partitioning:A high-resolution assessment [J]. Science in China Series E Technological Sciences,2009b.52.
    115. Liu X., Ren L., Yuan F. Quantifying the effect of land use and land cover changes on green water and blue water in northern part of China [J]. Hydrology and Earth System Sciences,2009,6(13): 735-747.
    116. Liu Y. Zhang, B., Zhang Y., et al. Climatic change of sunshine duration and its influencing factors over Heihe River Basin during the last 46 years [J]. Journal of Arid Land Resources and Environment,2009b,23,72-76.
    117. Liu Z.. Todini E. Towards a comprehensive physically based rainfall-runoff model [J]. Hydrology and Earth System Sciences.2002.6(5):859-881
    118. Ma W., Ma Y., Hu Z., et al. Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery'[J]. Hydrology Earth System Science,2011,15,1403-1413.
    119. Ma Z. M., Kang S. Z., Zhang L., et al. Analysis of impacts of climate variability and human activity on stream flow for a river basin in arid region of northwest China [J]. Journal of hydrology. 2008.352(3-4):239-249.
    120. Mann H. B. Non-parametric tests against trend [J]. Econometrica,1945,13:245-259.
    121. Martin A. J., Williams. Human Impact on the Nile Basin:Past, Present, Future [J]. Springer Science Business Media B.V,2009,771-777.
    122. Nash J. E., Sutcliffe J. V. River flow forecasting through con-ceptual models. Part Ⅰ-a discussion of principles[J]. Journal of Hydrology,1970,10,282-290.
    123.Neitsch S. L., Arnold J. G., Kiniry R., et al. Soil and Water Assessment Tool user's manual version 2000 [R]. Texas Water Resources Institute.2002. College Station. Texas.
    124. Neitsch S. L., Arnold J. G. Kiniry, R., et al. Soil and Water Assessment Tool Input/Output File Documentation Version 2005 [M]. Grassland, Soil and water research laboratory Angriculture research services & Black land research Center Texas Agricultual Experiment station,2004,50-80.
    125. Oki T., Kanae S. Global hydrological cycles and world water resources [J]. Science,2006, 313:1068-1072.
    126. Piao S. L., Ciais P.e, Fang J. Y., et al. The impacts of climate change on water resources and agriculture in China [J]. Nature,2010,467:43-51(doi:10.1038/nature09364).
    127. Postel S. L., Daily G. C., Ehrlich P. R. Human appropriation of renewable fresh water [J]. Science 1996,5250:785-788.
    128. Ren L. L., Wang M. R.. Li C. H., et al. Impaets of human activity on river runoff in the northern area of China [J]. Journal of Hydrology,2002,261(1-4):204-217.
    129. Rockstrom J. Future water availability for global food production:The potential of green water for increasing resilience to global change [J]. Water Resources Research,2009,45(7):W00A12 (DOI:10.1029/2007 WR006767).
    130. Rockstrom J., Gordon L. Assessment of green water flows to sustain major biomes of the world: Implications for future ecohydrological landscape management [J]. Physics and Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere,2001,11 (12):843.
    131. Rockstrom J., Karlberg L., Wani S. P., et al. Managing water in rainfed agriculture-The need for a paradigm shift [J]. Agricultural Water Management,2010.4:543-550.
    132. Rockstrom J., Lannerstad M. F. M. Assessing the water challenge of a new green revolution in developing countries [J]. Proceedings of the National Academy of Sciences of the United States of America.2007.15:6253-6260.
    133. Rockstrtom J. On farm green water estimates as a tool for increased food production in water scarcity regions [J]. Physics and Chemiistry of the Earth (B),1999.24:375-383.
    134. Rost S., Gerten D., Bondeau A., et al. Agricultural green and blue water consumption and its influence on the global water system [J]. Water Resources Research,2008,44(Dio: 10.1029/2007WR006331).
    135.Rudi J., Vander E., Savenije H., Bettina S. Origin and fate of atmospheric moisture over continents[J]. Water Resources Research,2010,46,1-12.
    136. Sakalauskiene G. The Hurst phenomenon in hydrology [J]. Environmental Research Engineering and Management.2003,3:16-20.
    137. Schuol J., Abbaspour K. C. Yang H., et al. Modeling blue and green water availability in Africa[J]. Water Resources Research,2008,44 (Doi:10.1029/2007WR006609).
    138. Seiler B. A, Haye L., Bressan. Using the standard rized precipitation index for flood risk monitoring. International [J]. Journal of Climatology,2002.22:1365-1376.
    139. Sen P. K. Estimates of the regression coefficient based on Kendall's tau [J]. Journal of the American Statistical Association,1968,39:1379-1389.
    140. Shao Q. X., Campbell N. A., Modelling trends in groundwater levels by segmented regression with constraints [J]. Australian & New Zealand Journal of Statistics.2002.44:129-141.
    141. Shao Q. X., Li Z., Xu X. Trend detection in hydrological time series by segment regression with application to Shiyang River basin [J]. Stochastic Environmental Research & Risk Assessment, 2009, (DO1:10.1007/s00477-009-0312-4).
    142. Siriwardena L., Finlayson B. L., Me M. T. A. The impact of land use chang on catehment hydrology in large catehments:The Comet River. Central Queens land, Australia [J]. Journal of Hydrology,2006,326(1-4):199-214.
    143. Sluter R. Interpolation methods for climate data literature review Intern rapport[R]. IR 2009,04.
    144. Stonefelt M. D., Fontaine T. A., Hotchkiss R H. Impacts of climate change on water yield in the Upper Wnd River basin [J]. Journal of the American Water Resources Association,2000,36(2): 321-336.
    145. Sun. G., Wang X. L. Estimation of surface soil moisture and roughness from multi-angular ASAR imagery in the Watershed Allied Telemetry Experimental Research (WATER) [J]. Hydrology Earth System Science,2011,15:1415-1426.
    146. Thanapakpawin P.. Riehey J., Thomas D., et al. Effeets of land use change on the hydrologic regime of the MaeChaem river basin, NW Thailand [J]. Journal of Hydrology,2006,3 34:215-230.
    147. Timo S., Maatta A., Anttila P. Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall lest and Sen's slope estimates-the Excel lemplate application MAKESENS. Finnish Meteorological Institute[J]. Air Quality Research,2002,31 (1456-789X):1-26.
    148. USGS/EROS, A. G. V. T. M. E. N. I..:ASTER Global DEM Validation Summary Report [R].2009. 11-20.
    149. Vorosmarty C. J., Green P., Salisbury J. Global Water Resources:Vulnerability from Climate Change and Population Growth [J]. Science,2000,289(5477):284-288.
    150. Wang G. X., Cheng G. D., Du M. Y., The impacts of human activity on hydrological processes in the arid zones of the Hexi Corridor, northwest China, in the past 50 years [R]. Water Resources Systems-Water vailability and Global Change (Proceedings of symposium HS02a held during IUGG2003 al Sapporo. July 2003). IAHS Publ. no.280,2003,93-103.
    151. Wang X. P. Analysis of temporal trends in potential evaportranspiration over Heihe River basin. Wrater Resource and Environmental Protection (ISWREP) [R], International Symposium on,20-22 May 2011,15-20.
    152. Wouter B.. Rolando C., Bert D. B., et al. Human impact on the hydrology of the Andean pa'ramos [J]. Earth Seienee Reviews,2006,79:53-72.
    153. Wu J. k., Ding Y. Yang X., et al. Spatio-temporal variation of stable isotopes in precipitation in the Heihe River Basin, Northwestern China [J]. Environ Earth Science,2010,61:1123-1134.
    154. Xu Y.. Ding Y. H., Zhao Z. C. A Scenario of Seasonal Climate Change of the 21st Century in Northwest China [J]. Climatic and Environmental Research,2003.8(1):19-26.
    155. Yang J., Reichert P., Abbaspour K. C., et al. Comparing uncertainty analysis techniques for a SWAT application to Chaohe Basin in China [J]. Journal of Hydrology,2008,358,1-23.
    156. Yang J., Reichert P.. Abbaspour K. C., et al. Hydrological modelling of the Chaohe basin in China: Statistical model formulation and Bayesian inference [J]. Journal of Hydrology,2007,340, 167-182.
    157. Yin Y. Y. Vulnerability and Adaptation to Climate Variability and Change in Western China [R]. A Final Report Submitted to Assessments of Impacts and Adaptations to Climate Change (AIACC), Project No. AS 25 Published by the International START Secretariat 2000 Florida Avenue, NW Washington. DC 20009 USA (www.start.org).2006.22-28.
    158. Zang C. F., Liu J., Van der Velde M., et al. Assessment of spatial and temporal patterns of green and blue water flows under natural conditions in inland river basins in Northwest China [J]. Hydrology Earth System Science.2012,16(8):2859-2870.
    159. Zhang Y. L., Xia J. Assessment of dam impacts on river flow regimes and water quality:a case study of the Huai River Basin in P.R.China [J]. Journal of Chongqing University (English Edition). 2008,04:261-276.
    160. Zhou J., Hu B., Cheng G. D., et al. Development of a three-dimensional watershed modelling system for water cycle in the middle part of the Heihe rivershed. in the west of China [J]. Hydrological Processes.2011.25:1964-1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700