用户名: 密码: 验证码:
饮用水含氯消毒工艺中副产物的生成及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在科技部小城镇科技发展重大项目支持下,根据我国城镇饮用水消毒工艺的实际现状和国际上饮用水消毒技术的发展趋势,针对采用二氧化氯、氯胺及氯作为消毒剂的消毒工艺,探讨受不同程度污染的原水的优化组合消毒工艺,借助现代分析测试技术手段和风险评价理论,对有关消毒工艺中副产物的形成规律和影响因素进行了深入研究,对有关消毒副产物及消毒工艺的健康风险进行了分析,提出了适合不同水质的优化消毒组合工艺,旨在为我国城镇不同水质供水企业的消毒工艺选择提供理论指导和技术支持。
     研究内容和主要结果包括以下八个方面:
     一.不同消毒工艺的消毒剂剂量与水质污染关系研究
     结果表明,腐殖酸模拟水样的TOC、UV_(254)、A_(410)等参数与腐殖酸含量存在较好的相关性,可用于表征水样中腐殖酸含量的高低;ClO_2取代Cl_2消毒可以显著降低卤代消毒副产物生成量;研究确定的轻微、轻度、中度和重度污染模拟水样对应不同消毒工艺(ClO_2、ClO_2+NH_2Cl、90%ClO_2+NH_2Cl、Cl_2+NH_4Cl、ClO_2+Cl_2、90%ClO_2+Cl_2和Cl_2工艺)的CT值可以较为完全地灭活水中的细菌菌落和大肠菌群,达到我国饮用水卫生标准;消毒剂投加一定时间后,水样中的消毒剂浓度变化遵循二级反应衰减规律。
     二.不同消毒工艺生成的副产物及影响因素研究
     发展了使用短程色谱柱快速测定5种HAAs的GC-ECD的方法;研究发现TCM、TCAA和DCAA为腐殖酸模拟水样消毒中检出的主要DBPs,并确定了消毒各模拟水样时不同消毒工艺的优先使用顺序;发现Br~-的存在显著改变了THMs和HAAs的种类分布和生成量,活性碳处理可以显著降低DBPs生成量。
     三.不同工艺消毒前后腐殖酸模拟水样中半挥发性有机物的变化研究
     经固相萃取和GC/MS分析,首次对比研究了不同工艺消毒前后腐殖酸模拟水样中半挥发性有机物的变化,结果表明,不同工艺消毒后,半挥发性有机物部分消失,部分相对含量减少,另有部分的相对含量增加,并生成了新的半挥发性有机物。腐殖酸模拟水样消毒后生成的半挥发性有机物涵盖了自来水中的主要半挥发性有机物,可用腐殖酸水样来模拟给水水质进行相关消毒研究。
     四.不同消毒工艺消毒前后模拟水样水质参数变化研究
     结果显示,不同工艺消毒后,腐殖酸分子质量平均降低了71.5%~92.0%,水样的荧光强度降低了0.7%~27.6%。取代基效应和重原子效应是影响水样荧光强度的主要有机物结构因素。
     五.不同分子质量区间腐殖酸的DBPs生成及影响因素研究
     结果表明,HAAs和THMs的前体物不完全相同,50~100ku分子质量区间腐殖酸成份是THMs和HAAs的最主要前体物;不同分子质量区间的UV_(254)、A_(410)和A_(465)/A_(656)值的变化,从一定程度上间接反映出各分子质量区间的腐殖酸在形成THMs和HAAs过程中参与反应程度的相对大小。
     六.卤乙酸的自然降解研究:
     结果表明,有氧条件下,HAAs以一级反应速率自然降解,温度对HAAs的自然降解速率影响较大,四种卤乙酸的总体降解速率为:DBAA>DCAA>MBAA>TCAA。HAAs在7~35℃的主要降解机理可能是微生物作用下的水解-氧化降解,而45℃时的降解机理可能主要是化学降解。
     七.零价锌和铁对HAAs的降解研究
     Zn~0和Fe~0对HAAs的降解研究表明,在缺氧状态下,HAAs以一级反应动力学模式降解;好氧状态下,DBAA在Zn~0作用下以二级反应速率降解,而在Fe~0作用下以一级反应速率降解。Zn~0比Fe~0更易降解HAAs。金属投加量、pH值、高浓度MBAA共存、溶解氧等因素对DBAA降解影响较大:Zn~0对MBAA和TCAA也有显著降解效果,但对DCAA的降解作用不明显;Zn~0和Fe~0降解DBAA的速率,同时受DBAA在零价金属表面的化学反应速率和溶液中的DBAA分子扩散到零价金属表面的扩散速率控制。Zn~0降解MBAA的速率仅受金属表面的化学反应速率控制;Zn~0和Fe~0对HAAs的降解机理为氢解作用;溶剂水通过提供H~+参与HAAs降解的氢解反应。
     八.饮用水消毒的多途径健康风险评价与分析
     结果表明,TCM和DCAA是腐殖酸模拟水样消毒后的致癌风险和非致癌性危害的主要来源,且TCM的致癌风险和非致癌性危害较DCAA为大;口腔摄入途径是致癌风险和非致癌性危害的主要途径;各消毒工艺的总致癌风险和非致癌性危害大小基本顺序为:Cl_2>90%ClO_2+Cl_2>ClO_2+Cl_2>Cl_2+NH_4Cl>90%ClO_2+NH_2Cl>ClO_2+NH_2Cl>ClO_2。水体中溴离子的存在,改变了产生致癌风险和非致癌性危害的主要DBPs类型;活性碳处理可以显著降低饮用水的健康风险。
Focussing on the situation of disinfection process of drinking water in small towns and recent development trend of this field, optimized combination of different disinfection processes for source water contaminated with different degrees was studied in this paper. These disinfection processes include three types of disinfectants that are chlorine dioxide, monochloramine and chlorine. Formation and influencing factors of disinfection by-products (DBPs) were studied by using modern analysis technologies. Health risk of correlative DBPs and disinfection process was evaluated, and optimized disinfection processes for water samples with various qualities were presented. Under the support of Key Project from Ministry of Science and Technology of China, the purpose of this research is to provide academic suggestion and technical guidance for drinking water works with various water qualities.
    The content and main results of this paper include the following eight parts:
    (1) The relationship of disinfectant dosages between various disinfection processes and contaminated degrees of water samples was investigated. The results showed that TOC, UV_(254) and A_(410) of humic acid can be used to denote concentrations of humic acid because of their good correlation. Formation of DBPs remarkably reduced when substituting ClO_2 for Cl_2 as disinfectant. In this study, seven disinfection processes, i.e. ClO_2, ClO_2+NH_2Cl, 90%ClO_2+NH_2Cl, Cl_2+NH_4Cl, ClO_2+Cl_2, 90%ClO_2+Cl_2 and Cl_2, were applied to investigate the disinfection processes for slight-polluted, low-polluted, medium-polluted and serious-polluted water samples simulated with humic acid solutions. Indicator microorganisms in water samples were inactivated by determined CT values of various disinfection processes, and the disinfected water can meet the need of national drinking water sanitation standard of China. Disinfectant concentration in water samples decreased according to second-order kinetic model after disinfectants were added to water
     samples for certain time.
     (2) Formation and influencing factors of DBPs using various disinfection processes were studied. In this part, a simple and rapid method for determination of five haloacetic acids (HAAs) in drinking water was developed using gas chromatography(GC) coupled with short capillary column and electron capture dectetor(ECD). TCM, TCAA and DCAA were primary DBPs detected from disinfected water samples. Preferential order of various disinfection processes for DBPs formation control was determined. Bromide in water remarkably affected the speciation and quantity of trihalomethanes (THMs) and HAAs. Active carbon filtration can reduce the formation of DBPs efficiently.
     (3) By using gas chromatography and mass spectrometry method, it was investigated that semivolatile organic compounds (SVOCs) transformation in humic acid simulation water samples disinfected by various processes. It was found that some SVOCs disappeared, some SVOCs decreased, and others increased. Some new SVOCs produced when water sample was disinfected by various processes. Primary SVOCs in drinking water were determined in disinfected humic acid simulation water samples too. It was demonstrated that humic acid water solutions can be used to simulate source water in disinfection research processes.
     (4) It was studied that variation of water quality parameters of humic acid simulation water samples disinfected with different processes. The results showed that molecular weight of humic acid reduced 71.5%-92.0% and fluorescence intensity decreased 0.7% -27.6%, Substituent effect and weighty atom effect were the possible dominating organic structure factors that affected fluorescence intensity of humic acid water sample.
     (5) DBPs formation and influencing factor of humic acid in different molecular weight distribution were investigated. The results showed that the humic acid in the molecular weight range between 50-100ku was the most important precursor of THMs and HAAs, and the precursors of THMs and HAAs were not the same substances. Variation of UV_(254), A_(410) and A_(465)/A_(656) in different molecular weight range indirectly reflected the reactive variation of humic acid in corresponding molecular weight range.
     (6) Research of aerobic degradation of HAAs indicated that HAAs spontaneously degradated according to first order kinetic model and HAAs degradation rate affected by temperature obviously. HAAs degradation rate order is: DBAA>DCAA>MBAA>TCAA. The possible degradation mechanism of HAAs is hydrolysis-oxidation at 7-35℃and chemical degradation at 45℃respectively.
     (7) Study of reduction of HAAs by Zn~0 and Fe~0 indicated that HAAs was reduced by first-order kinetic rate under anoxic conditions. However, DBAA was reduced according to second-order and first-order kinetic rate by Zn~0 and Fe~0 respectively in aerobic condition. Zn~0 reduced HAAs more rapidly than Fe~0 did. Degradation rate of DBAA was significantly affected by metal dosage, pH value, coexistence of MBAA with high concentration and dissolved oxygen. MBAA and TCAA significantly reduced by Zn~0 too, but no obvious reduction of DCAA by Zn~0 was observed. Reduction of DBAA by Zn~0 and Fe~0 was controlled by a mixture of chemical reaction and mass transfer, but Reduction of MBAA by Zn~0 was controlled only by chemical reaction. The reductive reaction proceeded via sequential hydrogenolysis. Water molecules participated in the reductive reaction by providing protons.
     (8) Health risk of drinking water disinfection was assessed by using multi-pathway risk assessment method. It was found that TCM and DCAA are the primary source of lifetime cancer risk and noncarcinogenic hazard risk in disinfected humic acid simulation water samples. TCM has higher cancer risk and noncarcinogenic hazard risk than DCAA does. Ingestion route is the main route of cancer risk and noncarcinogenic hazard risk. In the following disinfection process order, cancer risk and noncarcinogenic hazard risk ranged from high to low: Cl_2>90% ClO_2+Cl_2>ClO_2+Cl_2>Cl_2+NH_4Cl>90% ClO_2+NH_2Cl>ClO_2+NH_2Cl>ClO_2. Bromide in water changed the primary DBPs speciation which bring cancer risk and noncarcinogenic hazard risk. Active carbon filtration decreased the health risk of drinking water significantly.
引文
[1] 张金松,尤作亮,孙昕.饮用水二氧化氯净化技术[M].北京:化学工业出版社,2002.
    [2] 路凯,井海宁,李士英,等.美国大、中型水厂饮水消毒调查报告[J].环境与健康杂志,2001,18(3):179-182
    [3] Rook J J. Formation of haloform during chlorination of natural waters[J]. Water Treatm Exam, 1974, 23(2): 234-243
    [4] Quimby B D, Delaney M F, Uden P c, et al. Determination of aqueous chlorination proucts of humic substances by gas chromatography with microwave emission detection[J]. Anal Chem, 1980, 52(2): 259-264
    [5] Bao M, Pantani F, Griffini O, et al. Determination of carbonyl compounds in water by derivation solid phase microextraction and gas chromatographic analysis[J]. J Chromatogr, 1998, 8090):75-87
    [6] Romero J, Ventura F, Caixach J. Identification and quantification of the mutagenic compound 2-chloro-4-(dichloromethy)-5-hydroxy-2-(SH)-furanone(MX) in chlorine treated water[J]. Bull Environ Contam Toxicol, 1997, 59(5): 715-722
    [7] Sapone Andrea, Gustavino Bianca, Monfrinotti Monica, et al. Perturbation of cytochrome P450, generation of oxidative stress and induction of DNA damage in Cyprinus carpio exposed in situ to potable surface water[J]. Mutation Research, 2007, 626(1-2): 143-154
    [8] King W D, Marrett L D. Case-control study of bladder cancer and chlorination by-products in treated water(Ontario Canada)[J]. Cancer Cause Control, 1996, 7(6): 596-604
    [9] Bove F J, Fulcomer M C, Klotz J B, et al. Public drinking water contamination and birth outcome[J]. Am J Epidemiol, 1995, 141(9): 850-862
    [10] Hu J, Aizawa T, Ookubo S. Products of aqueous chlorination of bisphenol A and their estrogenic activity[J]. Environ Sci Technol, 2002, 36(9): 1980-1987
    [11] Hu J, Cheng S, Aizawa T. Products of aqueous chlorination of 17β-estradiol and their estrogenic activities[J]. Environ Sci Technol, 2003, 37(24): 5665-5670
    [12] Komulainen Hannu. Experimental cancer studies of chlorinated by-products[J]. Toxicology, 2004, 198(3): 239-248
    [13] Hwang B F, Jaakkola J J K. Water chlorination and birth defects: a systematic review and meta-analysis[J]. Arch Environ Health, 2003, 58(1):83-91
    [14] Zani Claudia, Feretti Donatella, Buschini Annamaria, et al. Toxicity and genotoxicity of surface water before and after various potabilization steps[J]. Mutation Research, 2005, 587(1): 26-37
    [15] Richardson S D, Thruston JRA D, Canghran T V, et al. Identification of new drinking water disinfection by-products from ozone, chlorine dioxide ,chlonamine, and chorine[J]. Water, air and soil pollution, 2000, 123: 95-102
    [16] Gopal Krishna, Tripathy Sushree Swarupa, Bersillon Jean Luc, et al. Chlorination byproducts, their toxicodynamics and removal from drinking water[J]. J Hazard Mater, in press
    [17] Kransner S W, McGuire M. Occurrence of disinfection by-products in US drinking water[J]. AWWA, 1989, 81(8): 41-53
    [18] William D T, LeBei G L, Benoit F M. Disinfection by-products in Canadian drinking water[J]. Chemosphere, 1997,34(2): 299-316
    [19] Golfinopoulos Spyros K, Nikolaou Anastasia D. Survey of disinfection by-products in drinking water in Athens, Greece[J]. Desalination, 2005, 176(1):13-24
    [20] 黄君礼.范启样,寇广中.国内主要水厂氯仿的调查[J].环境化学,1987,6(4);80-86
    [21] 岳舜琳.我国给水氯化消毒的现状及存在的问题[J].给水排水,1993,19(1):15-17
    [22] 刘文君.饮用水中可生物降解有机物和消毒副产物特性研究[M].北京,高等教育出版社.2003
    [23] National Interim Primary Drinking Water Regulations. Fed Reg(1979) 44, 68624-68707
    [24] National Interim Primary Drinking Water Regulations. Fed Reg(1994) 59,38668-38829
    [25] Golfinopoulos S K, Arhonditsis G B. Multiple regression models: a methodology for evaluating trihalomethane concentrations in drinking water from raw water characteristics[J]. Chemosphere, 2002, 47(9): 1007-1018
    [26] 中华人民共和国建设部,《城市供水水质标准》,CJ/T206-2005
    [27] 中华人民共和国卫生部,《生活饮用水卫生标准》,GB5749-2006
    [28] 王宝贞,王琳,时双喜.水源与饮用水中病原原生动物的危害及其检测技术[J].哈尔滨间建筑大学学报,1999,32(5):43-46
    [29] 张翼,张晖.控制水体隐孢子虫的研究进展[J].环境科学与技术,2004,27(2):110-113
    [30] Wilczak Andrzej. Effects of treatment changes on chloramine demand and dacay[J]. AWWA, 2003, 95(7): 94-106
    [31] Guay Cynthia, Rodriguez Manuel, Serodes Jean. Using ozonation and chloramination to reduce the formation of trihalomethanes and haloacetic acids in drinking water[J]. Desalination, 2005, 176(1-3): 229-240
    [32] 葛飞,舒海民.饮用水中氯化消毒副产物的研究进展[J].净水技术,2006,25(1):34-38
    [33] Christman R F, Norwood D L, Milington D S. Identity and yields of major halogenated products of aquatic fulvic acid chlorination[J]. Environ Sci Technol, 1983,17(10): 625-628
    [34] Adin A, Katzhendler J, Alkaslassy D. THM formation in chlorination drinking water, a kinetic mode[J]. Water Res, 1991, 25(7): 797-805
    [35] 黄君礼.水中腐殖酸等前驱物质对卤仿形成的影响[J].环境化学,1987,6(5):14-19
    [36] Simpson K L, Hayes K D. Drinking water disinfection byproducts: an Australian persoective[J]. Environ Sci Technol, 2002,36(5):884-890
    [37] Abduilah Md Pauzi, Yew C H, Mohamad Salleh bin Ramli. Formation, modeling and validation of trihalomethanes(THM) in Malaysian drinking water: a case study in the districts of Tampin, Negeri Sembilan and Sabak Bernam, Selangor, Malaysia[J]. Water Res, 2003, 37(19):4637-4644
    [38] Marhaba Taha F, Van Doanh. The variation of mass and disinfection by-product formation potential of dissolved oranic matter fractions along a conventional surface water treatment plant[J]. Journal of hazardous mateials. 2000, 74(3): 133-147
    [39] Collins M R, Amy G L, Steelink C. Molecular weight distribution, carboxylic acidity, and humic substances content of aquatic organic matter: implications for removal during water treatment[J]. Environ Sci Technol, 1986, 20(10):1028-1032
    [40] Callard H, gunten U V. Chlorination of phenols: kinetics and formation of chloroform[J]. Envrion Sci Technol, 2002, 36(5): 884-890
    [41] Boyce S D, Hornig J F. Reaction pathways of trihalomethan formation from the halogenation of dihydroxyaromatic model compounds for humic acid[J]. Environ Sci Technol, 1983, 17(4): 202-211
    [42] Blatchley III E R, Margetasb D, Duggirala R, et al. Copper catalysis in chloroform formation during water chlorination[J]. Water Res, 2003, 37(18): 4385-4394
    
    [43] Armenter J L.Cristia J, Matia L. Pretreatment options for water with high disinfection byproducts formation potential[J]. Water Supply, 1998, 16(1-2): 543-550
    [44] Croue J P, Lefebvre E, Martin B, et al. Removal of dissolved hydrophobic and hydrophilic organic substances during coagulation/flocculation of surface water[J]. Water Sci Tech, 1993, 27(11): 143-152
    [45] De Laat J, Merlet N, Dore M. Chlorination of organic compounds: Chlorine demand and reactivity in relationship to the trihalomethane formation, incidence of ammoniacal nitrogen[J]. Water Res, 1982, 16(10): 1437-1450
    [46] Rebenne L M, Gonzalez A C, Olson T M, Aquaeous chloination kinetics and mechanism of substituted dihydroxybenzenes[J]. Environ Sci Technol, 1996, 30(7): 2235-2242
    [47] Heller-Grossman L, Manka J, Limoni-Relis B, et al. Formation and distribution of haloactic acids, THM and TOX in chlorination of bromide-rich lake water[J]. Water Res, 1993, 37(8):1323-1331
    [48] Qi Yinan, Shang Chii, Lo Irene M C. Formation of haloacetic acids during monochoramination[J]. Wat Res, 2004, 38(9): 2375-2383
    [49] Pourmoghaddas H, Stevens A A, Kinman R N, et al. Effect of bromide ion on formation of HAAs during chlorination[J]. J AWWA, 1993, 85(1):82-87.
    [50] Cowman Gretchen A, Singer Philip C. Effet of bromide ion on haloacetic acid speciation resulting from chlorination and chloramination of aquatic humic substances[J]. Environ Sci Technol, 1996, 30(1): 16-24.
    [51] Radziminski Chris, Ballantyne Liza, Hodson Jeffrey, et al. Disinfection of Bacillus subtilis spores with chlorine dioxide: a bench-scale and pilot-scale study[J]. Water Res, 2002, 36(6): 1629-1639
    [52] Li Jun Wen, Yu Zuo Bin, Cai Xin Pei, et al. Trihalomathanes formation in water treated with chlorine dioxide[J]. Water Res, 1996, 30(10): 2371- 2376.
    [53] Li Jun Wen, Xin Zhong Tao, Wang Xin Wei, et al. Mechanisms of inactivation of hepatitis virus in water by chlorine dioxide[J]. Water Res, 2004, 38(6): 1514-1519
    [54] Veschetti E, Cittadini B, Maresca D, et al. lorganic by-products in waters disinfected with chlorine dioxide[J]. Microchemical Joural, 2005,79(1): 165-170
    [55] Chang Chen-Yu, Hsieh Yung-Hsu, Lin Yu-Min, et al. The organic precursors affecting the formation of disinfection by-products with chlorine dioxide[J]. Chemosphere, 2001, 44(5): 1153-1158
    [56] Korn Caroline, Andrews Robert C, Escobar Micheal D. Development of chlorine dioxide-related by-product models for drinking water treatment[J], Water Res, 2002, 36(1): 330-342
    [57] Sorlini Sabrina, Collivignarelli Carlo. Trihalomethane formation during chemical oxidation with chlorine, chlorine dioxide and ozone of ten Italian natural waters[J]. Desalination, 2005, 176(2): 103-111
    [58] 乐林生,范瑾初、高乃云,等.上海市长江水源净水厂的优化处理工艺研究[J].中国给水排水,2000,16(6):13-16
    [59] 邱立平,张立昕,于衍真.二氧化氯消毒剂对氯仿形成的影响[J].济南大学学报,2006,20(2):138-140
    [60] Son Hyunju, Cho Min, Kim Jaeeun, et al. Enhanced disinfection efficiency of mechanically mixed oxidants with free chlorine[J]. Water Res, 2005, 39(4): 721-727
    [61] Cho M, Chung H, Yoon J. Quantitative evaluation of the synergistic sequential inactivation of Bacillus subtilis spores with ozone followed by chlorine[J]. Environ Sci Technol, 2003, 37(10): 2134-2138
    [62] Corona-Vasquez B, Rennecker J L, Driedger A M, et al. Sequential inactivation of Cryptosporidium pavum oocysts with chlorine dioxide followed by free chlorine or monochloramine[J]. Water Res, 2002, 36(1): 178-188
    [63] Narkis N, Kata A, Orshansky F, et al. Disinfection of effluents by combinations of chlorine dioxide and chlorine[J], Water Sci Technol, 1995, 31(5): 104-114
    [64] 董民强,李棕华.氯胺消毒法对自来水中三氯甲烷形成影响的研究[J].水处理技术,1997,23(6):341-344
    [65] Diehl A C, Speitel Jr G E, Symons J M, et al. DBPs formation during chloramination [J]. AWWA, 2000, 90(2): 76-90
    [66] 马蓉,吕锡武,窦月芹.氯胺消毒对管网中消毒副产物的控制[J].水处理技术,2006,32(7):67-69
    [67] 焦中志,陈忠林,李圭白,等.氯胺消毒对三卤甲烷类消毒副产物的控制研究[J].环境污染治理技术与设备,2006,7(6):43-45
    [68] 焦中志,陈忠林.李圭白,等.氯胺消毒对卤乙酸类消毒副产物的控制研究[J].给水排水,2005,31(6):35-37
    [69] APHA, AWWA, WEF, Standard methods for the examination of water and wastewater[M], 20th edition, Washington, D C: AHPA Publication Office, 1998
    [70] 魏复盛.水和废水监测分析方法[M].中国环境科学出版社,2002,北京:500-524
    [71] 王正萍,商丹红,宋艳涛.HS-SPME-GC/MS测定饮用水中三卤甲烷分析条什的优化[J].光谱实验室,2005,22(1):170-172
    [72] Geme Gija, Brown Michael A, Emmert Gary L. Measuring the concentrations of drinking water disinfection by-products using capillary membrane sampling-flow injection analysis[J]. Water Research, 2005,39(16): 3827-3836
    [73] US EPA. Method 552.1: Determination of haloacetic acids and dalapon in drinking water by ion-exchange liquid-solide extraction and gas chromatography with an electron capture detector.in: Methods for the determination of organic compounds in drinking water. EPA-600/R-92-129 (Suppl. Ⅱ), 1992
    [74] US EPA. Method 552.2: Determination of haloacetic acids and dalapon in drinking water by liquid-liquid extraction, derivatization, and gas chromatography with electron capture detector.in: Methods for the determination of organic compounds in drinking water. EPA-600/R-95/131 (Suppl.Ⅲ), 1995
    [75] US EPA. Method 552.3: Determination of haloacetic acids and dalapon in drinking water by liquid-liquid extraction, derivatization, and gas chromatography with electron capture detector. EPA-815-B-03-002, 2003
    [76] Xie Y.F., Rashid, I., Zhou H. J., et al. Acidic methanol methylation for HAA analysis: Limitations and possible solutions[J]. AWWA,2002, 94 (11): 115-122
    [77] Nikolaou, A. D., Golfinopoulos S. K., Kostopoulou, M. N., et al. Determination of haloacetic acids in water by acidic methanol esterification-GC-ECD method[J]. Water Res, 2002, 36(4): 1089-1094
    [78] Xie, Y.F. Analyzing haloacetic acids using gas chromatography/mass spectrometry [J]. Water Res., 2001, 35 (6): 1599-1602
    [79] Xie, Y.F., Reckhow, D. A., Springborg D. C.. Analyzing HAAs and ketoacids without diazomethane [J]. AWWA, 1998, 94(4): 131-138
    [80] 刘文君,贺北平,王占生等.饮用水中消毒副产物卤乙酸(HAAs)测定方法研究[J].给水排水,2004,30(8):38-41
    [81] 任月明,赵洪宾,徐洪福等.饮用水中5种卤乙酸的检测方法研究[J].哈尔滨工业大学学报,2003,35(12):1510-1513
    [82] Wang, Y.H., Wong, P.K.. Determination of dichloroacetic acid and trichloroacetic acid in drinking water by acidic methanol esterification and headspace gas chromatography [J]. Water Res, 2005, 39(9): 1844-1848
    [83] Nikolaou A, Golfinopouios S, Rizzo L,et al. Optimization of analytical methods for the determination of DBPs: Application to drinking waters from Greece and Italy[J]. Desalination, 2005, 176(1): 25-36
    [84] Ma Yee-Chung, Chiang Chi-Yung. Evaluation of the effects of various gas chromatographic parameters on haloacetic acids disinfection by-products analysis[J]. Journal of Chromatography A, 2005, 1076(2): 216-219
    [85] Domino Mark M, Pepich Barry V, Munch David J. Optimizing the determination of haloacetic acids in drinking waters[J] J Chromatogr A, 2004, 1035(1): 9-16
    [86] Li Xin, Ren YUe-ming, Qiang Liang-sheng, et al. Researches on Formation of Haloacetic Acids in Chlorination of Drinking Water by a Novel Technique[J]. Chem. Res. Chinese U., 2004, 20(3), 285-288
    [87] Loos Robert, Barcelo Damia. Determination of haloacetic acids in aqueous environments by solid-phase extraction followed by ion-pair liquid chromatography-electrospray ionization mass spectrometric detection [J]. J. Chromatogr. A, 2001,938(1-2): 45-55
    [88] Eisert, Ralf, Levsen, K.. Solid-phase microextraction coupled to gas chromatography: a new method for the analysis of organics in water[J], J. Chromatogr. A, 1996, 733(1):143-157
    [89] Sarrion M N, Santos F J, Galceran M T. Solid-phase microextraction coupled with gas chromatography-ion trap mass spectrometry for the analysis of haloacetic acids in water[J], J Chromatogr A, 1999,859(2): 159-171
    [90] Simone Jr Paul S. Anderson Greg T. Emmert Gary L. On-line monitoring of μg/L levels of haloacetic acids using ion chromatography with post-column nicotinamide reaction and fluorescence detection[J]. Analytica Chimica Acta, 2006, 570(2): 259-266
    [91] Barron Leon, Nesterenko Pavel N,Paull Brett. Use of temperature programming to improve resolution of inorganic anions, haloacetic acids and oxyhalides in drinking water by suppressed ion chromatography[J]. J Chromatogr A, 2005, 1072(2): 207-215
    [92] Paull Brett, Barron Leon. Using ion chromatography to monitor halocetic acids in drinking water: a review of current technologies[J] J Chromatogr A, 2004, 1046(1): 1-9
    [93] Liu Yongjian, Mou Shifen. Simultaneous determination of trace level bromate and chlorinated haloactic acids in bottled drinking water by ion chromatography[J]. Microchemical Journal, 2003, 75(2): 79-86
    [94] Kou Dawen, Wang Xiaoyan, Mitra Somenath. Supported liquid membrane microextraction with high-performance liquid chromatography-UV detection for monitoring trace haloacetic acids in water[J]. J Chromatogr A, 2004, 1055( 1): 63-69
    [95] Lopez-Avila Viorica, Goor Tom van de, Coufal Pavel, et al. Seperation of haloacetic acids in water by capillary zone electrophoresis with direct UV detection and contactless conductivity detection[J], J Chromatogr A, 2003, 993(2): 143-152
    [96] Benanou David, Acobas Francoise, Sztajnbok Pascale. Analysis of haloacetic acids in water by a novel technique: simultaneous extraction-derivatization[J]. Water Res, 1998, 32(9): 2798-2806
    [97] Kampioti Adamantia A, Stephanou Euripides G. Simultaneous determination of halogenated neutral and acidic disinfection by-products in drinking water by closed-loop stripping extraction and capillary gas chromatography [J]. J Chromatogr A, 1999, 857(2): 217-229
    [98] Barron Leon, Paull Brett. Simultaneous determination of trace oxyhalides and haloacetic acids using suppressed ion chromatography-electrospray mass spectrometry[J]. Talanta, 2006, 69(3): 621-630
    [99] Roehl R, Slingsby R, Avdalovic N, et al. Applications of ion chromatography with electrospray mass spectrometric detection to the determination of environmental contaminants in water[J]. J Chromatogr A, 2002, 956(2):245-254
    [100] Kuklenyik Z, Ashley D L, Calafat A M. Quantitative detection of trichloroacetic acid in human urine using isotope dilution high-performance liquid chromatograthy-electrospray ionization tandem mass spectrometry [J]. Ana. Chem., 2002, 74 (9): 2058-2063
    [101] Suedee Roongnapa, Intakong Wimon, Dickert Franz L. Molecularly imprinted polymer-modified electrode for on-line conductometric monitoring of haloacetic acids in chlorinated water[J]. Analytica Chimica Acta, 2006, 569(1): 66-75
    [102] Suedee Roongnapa, Intakong Wimon, Dickert Franz L. The use of trichloroacetic acid imprinted polymer coated quartz crystal microbalance as a screening method for determination of haloacetic acids in drinking water[J]. Talanta, 2006, 70(1): 194-201
    [103] Wang Xiaoyan, Kou Dawen, Mitra Somenath. Continuous, on-line monitoring of haloacetic acids via membrane extraction[J]. J Chromatogr A, 2005, 1089(1): 39-44
    [104] Liu yongjian, Mou Shifen, Chen Dengyun. Determination of trace-level haloacetic acids in drinking water by ion chromatography-inductively coupled plasma mass spectrometry[J]. J Chromatogr A, 2004, 1034(1): 89-95
    [105] Hozalski Raymond M, Zhang Li, Arnold William A. Reduction of haloacetic acids by Fe~0: implications for treatment and fate[J]. Environ Sci Technol, 2001, 35(11): 2258-2263
    [106] Berg M, Muller S R, Muhlemann J. Concentrations and Mass Fluxes of Chloroacetic Acids and Trifluoroacetic Acid in Rain and Natural Waters in Switzerland[J]. Environ Sci Technol, 2000, 34(13): 2675-2683
    [107] Lifongo Lydia L, Bowden Derek J, Brimblecombe Peter. Photodegradation of haloacetic acids in water[J]. Chemosphere, 2004, 55(3): 467-476
    [108] Laturnus F. Marine macroalgae in polar regions as natural sources for volatile organohalogens[J]. Environ Sci Pollut Res, 2001, 8(2): 102-108
    [109] Zhang Li, Arnold Willam A, Hozalski Raymond M. Kinetics of Haloacetic Acid Reactions with Fe(0) [J]. Environ Sci Technol, 2004, 38(24): 6881-6889
    
    [110] Frank H, Scholl H, Renschen D, et al. Haloacetic acids, phytotoxic secondary air pollutants[J]. Environ Sci Pollut Res Int, 1994, 1(1): 4-14
    [111] Zhang Xiangru, Minear Roger A. Decomposition of trihaloacetic acids and formation of the corresponding trihalomethanes in drinking water[J]. water Res, 2002, 36(14): 3665-3673.
    [112] Heller-Grossman L, Manka J, Limoni-Relis B, et al. Formation and distribution of haloacetic acids, THM and TOX in chlorination of bromide-rich lake water[J], water Res, 1993,27(8): 1323-31
    [113] McRae Bathany M., LaPara Timothy M., Hozalaski Raymond M. Biodegradation of haloacetic acids by bacterial enrichment cultures[J]. Chemosphere, 2004, 55(6): 915-925.
    [114] Chen We Jie, Weisel Clifford P. Halogenated DBP concentrations in a distribution system [J].AWWA, 1998,90(4): 151-163
    [115] Bove F, Fillcomer M C, Savin J E. Public drinking water contamination and birth outcomes[J]. Amer Jour Epidemiol, 1995, 14(7): 850-859
    [116] Ellis D A, Hanson M L, Sibley P K, et al. The fate and persistence of trifluoroacetic and chloroacetic acids in pond water[J]. Chemosphere, 2001,42(3): 309-318
    [117] Yu p, Welander T. Growth of an aerobic bacterium with trichloroactic acid as the sole source of energy and carbon[J] . Appl Microbiol Biotechnol, 1995,42(7): 769-774
    
    [118] Weightman AL. Weightman AJ. Slater J H. Microbial dehalogenation of trichloroacetic acid[J]. World J Microbiol Biotechnol, 1992,8(5):512-518
    [119] Rodriguez Manuel J, Serodes Jean-B, Levallois Patrick. Behavior of trihalomethanes and haloacetic acids in a drinking water distribution system[J]. Water Res, 2004, 38(20): 4367-4382
    [120] Krasner S W, McGuire M J, Jacangelo J G, et al. The occurrence of disinfection by-products in U.S. drinking water[J]. AWWA, 1989,81(8): 41-53
    [121] De Wever Helene, Cole James R, Fettig Michael R, et al. Reductive dehalogenation of trichloroacetic acid by trichlorobacter thiogenes gen. nov., sp. nov.[J]. Appl Envion Microbiol, 2000, 66(6): 2297-2301
    [122] Boronina Tatyana, Klabunde Kenneth J. Destruction of organohalides in water using metal particles: Carbon tetrachloride/water reactions with maganesium, tin, and zinc[J]. Environ Sci TechnoI, 1995,29(6): 1511-1517
    [123] Tratnyek P G, Johnson T L, Schattauer A. Emerging technologies in hazardous waste management VII, Atlanta.GA: American Chemical Society: Washington DC, 1995,589-592.
    [124] Reardon Eric J. Anaerobic corrosion of granular iron: measurement and interpreration of hydrogen evolution rates[J]. Environ Sci Technol, 1995, 29(12): 2936-2945
    [125] Matheson Leah J, Tratnyek Paul G. Reductive dehalogenation of chlorinated mthanes by iron metal[J]. Environ Sci Technol, 1994,28(12): 2045-2053
    [126] Agrawal Abinash, Tratnyek Paul G Reduction of nitro aromatic compoundes by zero-valent iron metal[J]. Environ Sci Technol, 1996,30(1): 153-160
    [127] Levesque Steven, Rodriguez Manuel J, Serodes Jean, et al. Effects of indoor drinking water handling on trihalomethanes and haloacetic acids[J]. Water Res, 2006, 40(15): 2921-2930
    [128] Krasner Stuart W, Wright J Michael.The effect of boiling water on disinfection by-product exposure[J].Water Res, 2005,39(5): 855-864
    [129] Wu Chunde, Wei Dongbin, Fan Jinchu, et al. Photosonochemical degradation of trichloroacetic acid in aqueous solution[J]. 2001,44(5): 1293-1297
    [130] De LaraCastells M P, Krause Jeffrey L. Theoretical study of the interaction of molecular oxygen with a reduced TiO_2 surface[J]. Chem Phys Lett, 354(6): 483-490
    [131] Mao Yun, Schoeneich Christian, Asmus Klaus Dieter. Identification of organic acids and other intermediates in oxidative degradation of chlorinated ethanes on titania surfaces en route to mineralization: a combined photocatalytic and radiation chemical study[J]. J Phys Chem, 1991,95(24): 10080-10089
    
    [132] 陆雍森,环境评价(第二版)[M],上海:同济大学出版社,1999:531-558
    [133] National Academy of Sciences(NAS).Risk Assessment in Federal Government: Managing the Process[M]. Washington DC: National Academy Press, 1983:15
    [134] Barbara D. Beck.The use of information on susceptibility in risk assessment: state of the science and potential for improvement[J]. Environ Toxicol Pharm, 1997, 4:229-234
    [135] 王丽,黄君礼,李百祥.二氧化,氯、亚氯酸盐和氯酸盐水溶液的致突变性[J].环境化学,2002,21(4):412-414
    [136] 张晓建,李爽.消毒副产物总敛癌风险的首要指标参数——卤乙酸[J].给水排水,2000,26(8):1-6
    [137] Tokmak Burcu, Capar Goksen,Dilek Filiz B, et al.Trihalomethanes and associated potential cancer risks in the water supply in Ankara Turkey[J]. Environ Res,2004, 96(3): 345-352
    [138] Lee S C, Guo H, Lam S M J, Lau S L A. Multipathway risk assessment on disinfectin by-products of drinking water in Hong Kong[J]. Environ Res, 2004, 94(1): 7-56
    [139] Richardson Susan D. Disinfection by-products and other emerging contaminants in drinking water[J]. Trends Anal Chem, 2003, 22(10): 666-684
    [140] Nicholas John Ashbolt. Risk analysis of drinking water microbial contamination versus disinfection by-products(DBPs) [J].Toxicology, 2004, 198:255-262
    [141] Duncanson M,Russel N, Weistein P, et al. Rates of notified cryptosporidiosis and quality of drinking water supplies in Aotearoa, NewZealand[J]. Water Res, 2000, 34(15): 3804-3812
    [142] Monarca S, Zanardini A, Ferrtti D, et al. Mutagenicity of extracts of lake drinking water treated with different disinfectants in bacterial and plant tests[J]. Water Res, 1998, 32(9): 2689-2695
    [143] Bull R J. 2003,Are there significant health effects associated with the use of chemical disinfection of drinking water? In: Sinclair,M.(Ed.),Report on DBPs and Health Effects Seminar and Workshop, 29-31,October 2001, Melbourne, CRC for Water Quality and Treatment, Adelaide.
    [144] US EPA. Guidelines for carcinogen risk assessment. Risk assessment forum. Washington DC: U.S. Environmental Protection Agency, 1999. NCEA-F-0644(Revised raft)
    [145] US EPA. Guidance on cumulative risk assessment of pesticide chemicals that have a common mechanism of toxicity. Washington, DC: OPP, 2002
    [146] US EPA. Integrated risk information system(IRIS). Online. Washington, DC: National Center for Environmental Assessment, 2005
    [147] US EPA. Guidelines for carcinogen risk assessment. Risk assessment forum. Washington DC: U.S. Environmental Protection Agency, 2005. EPA/630/P-03/001F
    [148] Wang Wuyi, Ye Bixiong, Yang Linsheng, et al. Risk assessment on disinfection by-products of drinking water of different water sources and disinfection processes[J]. Environment International, 2007, 33(2): 219-225
    [149] Uyak Vedat. Multi-pathway risk assessment of trihalomethanes exposure in Istanbul drinking water supplies[J]. 2006, 32(1): 12-21
    [150] Regli S, Rose J B, Hass C N, et al. Modeling risk for pathogens in drinking water[J]. AWWA, 1991,83(11): 76-84
    [151] Krishnan Kannan, Paterson Joel, Williams David T. Health risk assessment of drinking water contaminants in Canada: the applicability of mixture risk assessment methods[J]. Regul Toxicol Pharm, 1997, 26(2): 179-187
    [152] Weinberg Howard S, Pereira Vanessa R P J, Singer Philip C.Considerations for improving the accuracy of exposure to disinfection by-products by ingestion in epidemiologic studies[J],Science of The Total Environment, 2006, 354(1): 35-42
    [153] Fewtrell L, Macgill S M, Kay D, et al. Uncertainties in risk assessment for the determination of drinking water pollutant concentrations: cryptosporidium case study[J]. Water Res, 2001, 35(2): 441-447
    [154] Babcock D, Singer P. Chloriantion and coagulation of humic and fulvic acids[J]. AWWA, 1979, 71(2): 149-152
    [155] Monhamd Y Z, Aboul Eish, Martha J M Wells. Assessing the trihalomethane formation potential of aquatic fulvic and humic acids fractionated using thin-layer chromatography [J]. J Chromatogr A, 2006, 1116(1-2): 272-276
    [156] 王丽花,张晓建,王占山,等.常规工艺对消毒副产物及前体物的去除[J].给水排水,2001,27(4):35-37
    [157 唐秀华,吴星五.饮用水源中有机物的危害及去除方法[J].净水技术,2003.22(2):7-10
    [158] Langvik V-A, Holmbom B. Formation of mutagenic organic by-products and AOX by chlorination of fractions of humic water[J]. War Res, 1994,28(3):553-557
    [159] 李君文.氯化消毒时三卤甲烷的形成.(1)形成机理及影响因素[J].环境保护科学,1994,20(1):5-8
    [160] Watt B E, Malcolm R L, et al. Chemistry and potential mutagenicity of humic substances in waters from different watersheds in Britain and Ireland[J]. Wat Res, 1996,30(6): 1502-1516.
    [161] Hintelmann H, Welbourn P M, Evans R D. Measurement of complexation of methimercurn(Ⅱ) compounds by freshwater humic substances using equilibrium dialysis[J]. Environ Sci Technol, 1997,31(2): 489-485
    [162] Singer P C. Humic substances as precursors for potentially harmful disinfection by-products[J]. War Sci Tech, 1999,40(9): 25-30
    [163] Chang Chen-Yu, Hsieh Yung-Hsu ,Hsu Sheng-Sheng, et al. The formation of disinfecton by-products in water treated with chlorine dioxide[J]. Journal of hazardous mateials B. 2000, 79(1): 89-102
    [164] Chang Chen-Yu, Hsieh Yung-Hsu, Shih I-Chen, et al. The formation and control of disinfection by-products using chlorine dioxide[J]. Chemosphere,2000,41(8): 1181-1186.
    [165] 林立,孙卫玲.倪晋仁.天然水体中离子对消毒过程中挥发性卤代烃牛成的影响[J].环境化学,2004,23(4):413-418
    [166] 李欣,赵洪宾,浮田正夫.配水管网中三卤甲烷的研究[J].给水排水,1999.25(1):1-7.
    [167] 隋铭皓,马军.多相催化臭氧氧化对CHCl_3生成势降解效能研究[J].哈尔滨商业大学 学报(自然科学版),2004,20(5):552-555
    [168] Chow Alex T. Disinfection byproduct reactivity of aquatic humic substances derived from soils[J]. Water Res, 2006, 40(7): 1426-1430
    [169] Philip C, Singer. Control of disinfection by-products in drinking water[J]. Water Environ Res, 1998, 70(4): 727-736.
    [170] 黄君礼、唐玉兰、王丽,等.ClO_2和Cl_2混合消毒剂对氯仿形成的影响[J].环境科学,2003,24(2):102-107.
    [171] 张晓健,陈超,何文杰等.安全氯化消毒工艺的消毒副产物控制[J].中国给水排水,2004,20(9):13-16.
    [172] 黄晓平,钟笑颜.二氧化氯消毒饮用水的“余氯”控制实践[J].中国给水排水,2003,19(41:98-100
    [173] Lee M C, Snoeyink V L, Crittenden J C. Activated carbon adsorption of humic substances[J]. AWWA, 1981, 73(8): 440-447
    [174] Goel S H, Raymond M, Edward J B, Evaluating oxidants for the removal of model taste and odor compounds from a municipal water supply[J], AWWA, 1995,85(1): 90-105
    [175] Brian Bolto, Gudrun Abbt-Braun, David Dixon, et al. Experimental evaluation of cationic matter in convemtional treatment with alum[J]. Water Sci Tech, 1999,40(9): 71-19.
    [176] 张颖,顾平,谭丁.膜混凝反应器处理轻度污染地表水[J],天津大学学报,2003,36(2):187-191
    [177] Andersen D O. Nature of natural organic matter (NOM) in acidified and limed surface waters[J]. Wat Res, 2000, 34(1):266-278
    [178] Maartens A., Humic membrane foulants in natural brown water: characterization and removal [J]. Desalination, 1998, 115(3):215-227
    [179] Gressel N, McGrath A E, McColl J G, and Powers R F. Spectroscopy of aqueous extracts of forest litter. Ⅰ: Suitability of methods [J]. Soil Sci Soc Am J, 1995, 59(17): 1715-1723
    [180] 张永吉.武道吉,李圭白等.腐殖酸特性及其对三卤甲烷形成的影响[J].中国给水排水,2005,21(1):14-17.
    [181] 徐洪福.配水管网系统水质变化规律与水质模型研究[D].哈尔滨工业大学博士学位论文,哈尔滨.2003.55-56
    [182] Reckhow D A, Singer P C. Chlorinaton by-products in drinking waters: from formation potentials to finished waters concentrations[J]. AWWA, 1990, 82(4): 173-180
    [183] Chailet Thorn, Singer Philip C, Miles Amy. Effecitiveness of coagulation, ozonation, and biofiltration in controlling DBPs[J]. J AWWA, 2002, 94(12): 81-82.
    [184] Bruchet A, Duguet J P, Suffet I H. Role of oxidants and disinfectante on the removal, masking and generation of tastes and odours[J]. Reviews in environmental science and biotechnology, 2004, 3(1): 33-41
    [185] American Water Works Association. Position statement on chlorine residual. In 1995-1996 AWWA officer and committee directory, Denver, 1990:196-198
    [186] Csordas Viktor, Bubnis Bernie, Fabian Istvan, et al. Kinetics and mechanism of catalytic decomposition and oxidation of chlorine dioxide by the hypochloriteion[J]. Inorg Chem, 2001, 40(8): 1833-1836.
    [187] Jia Zhongjiang, Margerum Dale W, Francisco Joseph S. General-acid-catalyzed reactions of hypochlorous acid and acetyl hypochlorite with chlorite ion[J]. Inorg Chem, 2000, 39(12): 2614-2620.
    [188] Fabian lstvan, Szucs D, Gordon G.. Unexpected kinetic phenomena in the mercury(Ⅱ)-chlorite ion system: evidence for the formation of HgCl~(2+) complex[J]. J Phys Chem A, 2000, 104(34): 8045-8049.
    [189] katz A, Narkis N, Orshansky F, et al. Disinfection of effluent by combinations of equal doses of chlorine dioxide and chlorine added simultaneously over varying contact time[J].Water Res, 1994,28(10):2133-2138.
    [190] Ruffell Kristen M, Rennecker Jason L, Marinas Benito J. Inactivation of cryptosporidium parvum oocysts with chlorine dioxide[J]. Water Res, 2000, 34(3): 868-876.
    [191] Sansebastiano G, Rebizzi V, Bellelli E, et ai. Total halogenated oganic (TOX) measurement in ground water treated with hypochlorite and with chlorine dioxide. Initial results of an experiment carried out in Emilia-Romagna(Italy)[J], Water Res, 1995, 29(4): 1207-1209
    [192] Singer P C, Chang S D. Correlations between trihalomethanes and total organic halides formed during water treatment[J]. J AWWA, 1989, 81(8): 61-65
    [193] 金相灿,程振华,徐南妮,等.有机化合物污染化学—有毒有机相污染化学[M].北京:清华大学出版社,1990
    [194] 孟令芝,龚淑玲,何永炳.有机波谱分析(第二版)[M].武汉:武汉大学出版社.2003:280-286
    [195] 高向阳.新编仪器分析(第二版)[M].北京:科学出版社.2004:46-60
    [196] Belin C, Croue J P. Charaterizaton of natural organic matter using fluorescence spectroscopy[J]. Proceedings of the natural organic matter workshop, 1996, 9(1): 18-19.
    [197] Raczyk-Stanislawiak U, Swietlik J, Dabrowaka A, et al. Biodegradability of organic by-products after natural organic matter oxidation with ClO_2——case study[J]. Water Research, 2004, 38(6): 1044-1054
    [198] Richardson S D, Thruston A D, Collette T W, et al. Multispectral Identification of Chlorine Dioxide Disinfection Byproducts in Drinking Water[J]. Environ Sci Technol, 1994, 28(4): 592-599.
    [199] Dabrowska A, Swietlik J, Nawrocki J. Formation of aldehydes upon ClO_2 disinfection[J]. Water Res, 2003, 37(5): 1161-1169.
    [200] Ivancev-Tumbas I, Dalmacija B. Effects of coagulation processes on aldehydes formation in groundwater treated with common oxidative agents[J]. Water Res, 2001,35(16): 3950-3958.
    [201] Loagan Brucc E. Molecular size distribution of dissolved organic matte[J]. J Environ Eng, 1990, 116(6): 1046-1062.
    [202] 张志斌,夏四清,赵建夫.化学生物絮凝工艺对溶解性有机物的去除特性[J].中国给水排水,2006,22(3):32-34
    [203] Fenneily Jay P, Roberts A Lynn. Reaction of l,l,l-Trichloroethane with Zero-Valent Metals and Bimetallic Reductants[J]. Environ Sci Technol, 1998,32(13): 1980-1988
    [204] Arnold William A, Roberts A Lynn. Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles[J]. Environ Sci Technol, 2000,34(9): 1794-1805
    [205] Johnson Timothy L, Soberer Michelle M, Tratnyek Paul G. Kinetics of halogenated organic compound degradation by iron metal[J]. Environ Sci Technol, 1996,30(8): 2634-2640
    [206] Chun Chan Lan, Hozalski Raymond M, Arnold William A. Degradation of drinking water disinfection byproducts by synthetic goethite and magnetite[J]. Environ Sci Technol, 2005, 39(21): 8525-8532
    [207] Roberts A Lynn, Totten Lisa A, Arnold William A. Reductive Elimination of Chlorinated Ethylenes by Zero-Valent Metals[J]. Environ Sci Technol, 1996, 30(8): 2654-2659
    [208] Sohn Jinsik, Amy Gary, Cho Jaeweon, et al. Disinfectrant dacay and disinfection by-products formation model development: chlorination and ozonation by-products[J]. Water Res, 2004, 38(10): 2461-2478
    [209] Jennifer L, Clancy, Zia Bukhari, et al. Using uv to inactivate cryptosporidium[J]. AWWA,2002,92(9):97-104
    [210] Condie LW. Toxicological problem associated with chlorine dioxide[J] .AWWA, 1986, 78 (1): 73-78.
    [211] CCC(Chlorine Chemistry Council). Drinking water chlorination white paper: a review of disinfection practices and issues. Water Quality and Health Council. 1997, Web site: http://waterandhealth.org/drinkingwater/whitepapercl.html
    [212] Hamilton Paul D, Gale Paul, Pollard Simon J T. A commentary on recent water safety initiatives in the context of water utility risk management [J]. Environment International, 2006, 32(8): 958-966
    [213] Nazir Muddassir, Khan Faisal I. Human health risk modeling for various exposure routes of trihalomethanes (THMs) in potable water supply[J]. 2006, 21 (10): 1416-1429
    [214] Kavcar Pinar, Odabasi Mustafa, Kitis Mehmet, et al. Occurrence, oral exposure and risk assessment of volatile organic compounds in drinking water for lzmir[J]. Water Res, 2006, 40(17): 3219-3230
    [215] Gold Lois Swirsky, Gaylor David W, Slone Thomas H. Comparison of cancer risk estimates based on a variety of risk assessment methodologies[J]. Regulatory Toxicology and Pharmacology, 2003, 37(1): 45-53
    [216] Hsu Ching-Hung, Jeng Eoei-Lih,Chang Rueyi-Mai,et al. Estimation of potential lifetime cancer risks for trihalomethanes from consuming chlorinated drinking water in Taiwan[J]. Environ Res, 2001, 85(2): 77-82
    [217] 黄奕龙,王仰麟,谭启宇,等.城市饮用水源地水环境健康风险评价及风险管理[J].地 学前缘,2006,13(3):162-167
    [218] 韩冰,何江涛,陈鸿汉,等.地下水有机污染人体健康风险评价初探[J].地学前缘.2006,13(1):224-229
    [219] 葛元新,朱志良,赵建夫,等.饮用水消毒的健康风险分析及评价[J].净水技术.2006,25(3):1-5
    [220] Lin T F, Hoang S W. Inhalation exposure to THMs from drinking water in south Taiwan[J], Sci Total Environ, 2000, 246(1): 41-49
    [221] Wilkes C, Small M, Andelman J, et al. Inhalation exposure model for volatile chemicals from indoor uses of water[J]. Atmos Environ, 1992, 26(12): 2227-2236
    [222] US EPA. Risk assessment guidance for superfund—Vol. 1, Part B. Washington, DC: US Environmental Protection Agency, 1991, EPA/540/R-92/003
    [223] National Bureau of Statistic of China. Population life expectancy by region. China statistical yearbook. China Statistic Press, 2004
    [224] Wallace L A. Comparison of risks from outdoor and idoor exposure to toxic chemicals[J]. Environ Health Perspect, 1991, 95(1): 7-13
    [225] Arbuckle T E, Hrudey S E, Singer P, et al. Assessing exposure in epidemiologic studies to disinfection by-products in drinking water: report from an international workshop[J]. Environ Health Perspect, 2002, 110(suppl 1): 53-60
    [226] Niuwenhuijsen M J, Toledano M B, Eaton N E, et al. Chlorination disinfection byproducts in water and their associaton with adverse reproductive outcomes: a review[J]. Occup Environ Med, 2000, 57(1): 73-85
    [227] Kim Y M, Harrad S, Harrison R M. Levels and sources of personal inhalation exposure to volatile organic compounds[J]. Environ Sci Technol, 2002, 36(24): 5405-5410

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700