用户名: 密码: 验证码:
微污染饮用水源中砷及几种重金属离子的吸附分离过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在科技部小城镇科技发展重大项目(2003BA808A17)支持下,根据国际上重金属微污染水体修复技术的发展趋势,针对重金属微污染水源水体特征,并在对上海水源地水体重金属污染背景调查的基础上,提出了三种有效修复技术方案:弱碱性阴离子交换树脂修复技术,铁、锰矿物修复技术及新型负载吸附剂修复技术。利用红外光谱、扫描电镜、X-射线衍射等现代分析测试手段对自主合成的几种新型吸附剂进行了分析表征,并通过影响因素分析、吸附等温试验和吸附动力学试验等详细探讨了三种修复技术的适用条件和微观作用机理。论文可以为重金属微污染水源水体的修复、突发性重金属污染事故的应急处理等提供理论指导和实际技术支持。
     论文主要分为四个部分。(Ⅰ)微污染水体沉积物中重金属及砷的迁移转化规律研究;(Ⅱ)弱碱性阴离子交换树脂对微污染水源中重金属及砷的分离过程研究;(Ⅲ)铁锰氧化物吸附剂分离水体中重金属及砷的研究;(Ⅳ)负载吸附剂去除水体中重金属及砷的研究。
     第一部分:
     首先对上海水源地(包括上覆水和沉积物)中重金属作了背景调查,并利用BCR顺序提取法测定分析了上海水源地沉积物中Cr,Cu、Pb、Zn、Cd、Co、Ni六种元素的形态分布特征。结果表明:①上覆水中上述重金属含量未超过生活饮用水水质标准,符合地表水Ⅱ类水质标准。②沉积物中上述重金属总量分析表明:排污口及邻近地区重金属污染相对严重;港口地区重金属污染严重;河流下游比上游污染严重。③沉积物重金属形态分析表明:黄浦江水从上游淀峰流往下游吴淞口处的过程中,沿途受到重金属的污染,并且增加的重金属多以环境不稳定的形态(如酸溶态和可还原态)存在,它们在水体环境发生变化时,就有可能溶解、置换而释放入水体,给环境造成不可忽视的威胁。
     随后以黄浦江沉积物为研究对象,研究了黄浦江沉积物对重金属吸附动力学及黄浦江沉积物砷释放的规律。结果表明:①黄浦江沉积物对重金属Cd,Pb,Cu,Zn及As(V)都具有较强的吸附能力,对重金属优先选择吸附的顺序为:Pb>Cu>Zn≈Cd>As(V);黄浦江沉积物与As(V)的结合强度随时间延长而不断增大,并且黄浦江沉积物对As(V)吸附表面的非均相程度非常高。②扰动、温度升高有利于As(V)的释放;As(V)的释放随pH的变化呈现“V”字形,pH增大和降低都有利于As(V)的释放,在pH5附近,As(V)释放量最低;PO_4~(3-)和HCO_3~-对As(V)的释放影响极为明显,As(V)释放量随溶液中PO_4~(3-)和HCO_3~-浓度的增大而增大。
     第二部分:
     通过苯乙烯、丙烯酸和环氧树脂类的对比筛选,选择了弱碱性环氧树脂331,分别系统研究了该树脂对Cu~(2+),Cd~(2+)及Cr(Ⅴ)的去除效果及动力学吸附行为。同时,通过模拟实际受污染水体,探讨了在Cu~(2+)、Cd~(2+)、Cr(Ⅵ)共存的体系中,弱碱性阴离子树脂331去除重金属的作用规律及相关的机理。论文还就弱碱性阴离子交换树脂对As(Ⅴ)的吸附去除能力进行了初步探讨。结果表明:①环氧系弱碱性阴离子交换树脂对重金属具有更高的选择性,能够在高背景的碱金属和碱土金属离子共存下实现水体中微量重金属污染离子的高效分离。②在痕量的浓度水平及近中性的pH值范围内,331弱碱性环氧阴离子交换树脂对Cu~(2+),Cd~(2+)及Cr(Ⅴ)具有较好的选择性去除效果,最大吸附容量分别为84.03,44.58和77.52mg/g;其中对Cu~(2+)和Cd~(2+)的去除主要是通过表面络合作用;对Cr(Ⅵ)的去除不仅有离子交换作用,同时还有表面络合作用,且离子交换速率快于表面络合速率。③当Cr(Ⅵ)存在于多种重金属共存的体系中时,弱碱性阴离子优先吸附Cr(Ⅵ),并大大降低了对其他几种重金属离子的吸附。因此,如果在利用弱碱性阴离子树脂处理Cu~(2+)、Ni~(2+)、Co~(2+)、pb~(2+)、Mn~(2+)、Cd~(2+)等重金属阳离子时,必须要考虑到Cr(Ⅵ)(CrO_4~(2-)及HCrO_4~-)的竞争吸附影响。④SO_4~(2-)的存在显著降低弱碱性阴离子交换树脂对As(Ⅴ)的去除效果。
     第三部分:
     选择两类铁矿α-FeOOH(针铁矿)和β-FeOOH(四方纤铁矿)以及自然界存在最为广泛的δ-MnO_2(水钠锰矿),深入研究了它们对重金属和As(Ⅴ)的吸附性能,并对吸附机理作了相关探讨。结果发现:①α-FeO(OH)、β-FeO(OH)均可以在自然水体pH范围有效吸附Cr(Ⅵ),吸附速度快,最大吸附容量分别为50.25mg/g和42.02mg/g;②α-FeO(OH)和β-FeO(OH)均能够有效吸附水体中的As(Ⅴ),其最佳pH范围分别为pH5~6.5和pH3.5~7,最大吸附量分别为5.05 mg/g和23.42 mg/g;③四种方法合成的δ-MnO_2均能将初始浓度约为1mg/L的重金属Zn,Pb,Cd,Ni,Cu和Co的含量降低到饮用水安全标准值范围;四种方法合成的δ-MnO_2对重金属的吸附动力学、吸附容量均有所差异,这可能是四种方法合成的δ-MnO_2微观结构不同而造成的,具有进一步深入探讨的价值。④四种方法合成的δ-MnO_2对As(Ⅴ)的吸附能力大小有如下顺序:δ-MnO_2(KMnO_4+MnSO_4)>δ-MnO_2(KMnO_4+MnCl_2)>δ-MnO_2(KMnO_4+HCl)>δ-MnO_2(KMnO_4+Mn(NO_3)_2)。
     第四部分:
     主要研究将铁锰粉末材料负载到较大颗粒载体树脂上、制备容易实现固液分离的复合吸附剂R-MnO_2(MnO_2负载树脂D301)及RFM(铁锰氧化物负载树脂D301),并研究了它们对重金属及砷的去除效果。结果发现:①所制备的吸附剂R-MnO_2能够在较广泛pH值范围(pH3~8)有效去除饮用水体中微量重金属,是
    一种微污染源水中微量重金属的有效吸附剂;R-MnO_2对Zn~(2+),Cd~(2+),Cu~(2+),Co~(2
    +)和Ni~(2+)的最大吸附容量分别为78.13,63.69,131.58,68.49,55.25mg/g,吸附
    能力顺序:Cu~(2+)>Zn~(2+),Cd~(2+),Co~(2+)>Ni~(2+);吸附重金属后的R-MnO_2可以用0.05
    mol/L的HNO_3有效洗脱再生。②所制备的吸附剂R-MnO_2可以在酸性条件下(pH
    ≈2)有效吸附水体中As(V),吸附速度快,尤其是对低浓度As(V)(1mg/L左右),
    吸附率接近100%;预测R-MnO_2吸附As(V)是特性吸附、非特性吸附及沉淀与
    共沉淀效应的共同结果。③所制备的吸附剂RFM可以在广泛的pH范围(pH4~
    9)有效吸附水体中As(V),吸附率接近100%;IR和XRD表征RFM发现其
    表面有丰富的羟基,预测RFM吸附As(V)是非特性吸附和特性吸附作用的共同
    结果,配位交换的专性吸附是主要吸附方式。
Aiming at the recent development trend of remediation technologies for water sources contaminated with slight pollution of heavy metals, this dissertation has put forward three remediation schemes based on the situation of Shanghai water resource. These three schemes include Weak base anion exchange resin remediation technique, iron & manganese mineral remediation technique, and loaded adsorbent remediation technique. Adopting modern analytical and test technologies, that included FTIR、 SEM、XRD and so on, the optimized conditions and possible mechanisms of the separation processes of heavy metals were investigated for these technologies. Under the support of Key Project of Ministry of Science and Technology, the purpose of this paper is to provide technical and theoretical suggestions and support for the efficient remediation of water sources with slight heavy metals pollution, it will also be benefit for dealing with the emergency affairs of heavy metal pollution in water sources.
    This paper consists of four parts. ( I) Mobility and release of several heavy metals and arsenic between the sediment and the water (II) Study on the separation of several heavy metals and arsenic in the slight-polluted water by Weak base anion exchange resin (III) Study on the adsorption of several heavy metals and arsenic by mineral material such as α -FeO(OH)、β -FeO(OH) and δ -MnO_2 (IV) Study on the adsorption of several heavy metals and arsenic by loaded adsorbents such as R-MnC>2 and RFM.
    ( I ) In the first part of the dissertation, the background investigation was carried out to know the content of heavy metals in the overlaying water and surface layer sediments from Shanghai drinking water sources. Then BCR sequential extraction method was employed to analyze the distribution characteristics of heavy metals including Cr, Cu, Pb, Zn, Cd, Co and Ni in the sediments. The obtained experimental results showed :
    ① The contents of heavy metals from overlaying water were not beyond the domestic drinking water standard, they can meet the second class water quality for surface water.
    ② According to the data of heavy metals in sediments: The heavy metals pollution at the discharge location and their adjacent areas were more serious than other locations. The heavy metals pollution at the port area was very serious. The heavy metals pollution at the downriver area was more serious than that of upriver area.
    
     ③The distribution state of heavy metals in Huangpu river made it clear that the Huangpu river was contaminated by heavy metals when it flows from upriver area Dianfeng to downriver area Wusongkou, and the increased concentration of heavy metals was mainly caused by acid soluble fraction, which may endanger the total environment.
     Subsequently, the Huangpu river was selected for further study, the adsorption dynamics of heavy metals and Arsenic release between the sediment and the surface water was investigated. The following conclusions were given out from the experimental results.
     The surface sediments have strong affinity capacity for heavy metals such as Cu, Pb, Zn, Cd, and As. The affinitiy sequence was Pb>Cu>Zn≈Cd>As(Ⅴ). The affinity capacity was increasing with the extension of reaction time. The extent of heterogeneous of sorption sites was high.
     The increase of the vibration and the temperature could facilitate the discharge of As(Ⅴ) from the sediment. With the increase or the decrease of pH, the discharge amount of As(Ⅴ) will increase, and at the range of pH 5, the discharge amount was the lowest. The presence of PO_4~(3-) HCO_3~- could affect the discharge process greatly, and the discharge amount of As(Ⅴ) increased with the increment of PO_4~(3-) or HCO_3~- concentrations.
     (Ⅱ) In the second part of this paper, through the comparative investigation among the styrene resin, acrylic acid resin and epoxide resin, we selected Weak base anion exchange resin 331 as adsorbent to study the adsorption behaviors of Cu(Ⅱ), Cd(Ⅱ), and Cr(Ⅵ) on it respectively. Furthermore, with weak base anion exchange resin 331, batch systems were investigated through simulating the actual polluted water in which Cu~(2+), Cd~(2+), Cr(Ⅵ) were co-existed in aqueous solution. At last, elementary study on the adsorption of the Arsenic(Ⅴ) were also carried out. The experimental results showed:
     ①Weak base anion-exchange resin is capable of selectively removing heavy metals from high concentrations of co-existed alkaline and alkaline earth metals through complexing action.
     ②The maximum amounts of metals adsorbed by weak base anion exchange resin 331were 44.58, 84.03 and 77.52 mg/g for Cd~(2+), Cu~(2+), and Cr(Ⅵ) respectively. For the removal process of Cu~2 and Cd~(2+), it based on the complexing action. For Cr(Ⅵ), the removal was associated with the ion-exchange and compexing action, and the rate for ion exchange was faster than that for complexing action.
     ③The adsorption behaviors of heavy metals onto 331 weak base anion-exchange resin were strongly influenced by the presence of competing ions in the solution. When Cr(Ⅵ) is co-existing with other heavy metals, the weak base anion-exchange resin had a preferred adsorption of Cr(Ⅵ), which led to the fewer adsorption for other heavy metal ions. Hence, if the weak base anion-exchange resin is applied to treat the heavy metals like Cu~(2+), Ni~(2+), Co~(2+), Pb~(2+), Mn~(2+), Cd~(2+) and so on, the competitive adsorption of Cr(Ⅵ) (CrO_4~(2-) and HCrO_4~-) must be considered.
     ④the presence of SO_4~(2-) caused the interference in the removal of As(Ⅴ) by weak base anion-exchange resin 331.
     (Ⅲ) In the third part of this paper,α-FeOOH,β-FeOOH (goethite and lepidocrote) andδ-MnO_2 were synthesized for the further research. Batch experiments of adsorption were conducted to study the removal efficiency of heavy metals and arsenic from aqueous solutions. The behaviors and the possible mechanisms for As(Ⅴ) removal were discussed. The results showed:
     ①Cr(Ⅵ) can be efficiently removed byα- FeO(OH) andβ- FeO(OH) within the natural water source pH range. The adsorption process follows Langmuir and Freundlich isotherm models, the maximal capacity were 50.25mg/g and 42.02mg/g, respectively. The adsorption capacity of Cr(Ⅵ) decreased with the increment of ion strength, the existence of HCO_3~- or H_2PO_4~- decreased the adsorption capacity by about 20%.
     ②As(Ⅴ) can be efficiently removed byα- FeO(OH) andβ- FeO(OH), the optimal pH range were pH 5~6.5 and pH 3.5~7, respectively. The maximal adsorption capacities were 5.05 mg/g and 23.42 mg/g respectively.
     ③δ-MnO_2 synthesized by four different methods had the capacity to reduce the contents of Zn, Pb, Cd, Ni, Cu, Co in water solution to meet the drinking water quality standard when the initial heavy metal concentration was 1mg/L. Four types ofδ-MnO_2 had the different adsorption kinetics and capacities, which might result from the different micro-surface structures.
     ④The sequence of adsorption capacity wasδ-MnO_2 (KMnO_4+MnSO_4)>δ-MnO2 (KMnO_4+MnCl_2)>δ-MnO_2 (KMnO_4+ HCl)>δ-MnO_2 ( KMnO_4 +Mn(NO_3)_2. The adsorption kinetics for As(Ⅴ) were similar, the results meant that chemical reaction might be the principal control procedure and the it could be described by pseudo-second order rate equation.
     (Ⅳ) In the last part, loaded absorbent R-MnO_2 and RFM was synthesized by loading manganese (hydr)oxides and/or iron (hydr)oxides on weak basic anion exchange resin D301. Batch experiments of adsorption were conducted to study the removal of heavy metals and Arsenic from aqueous solutions.
     ①The loaded adsorbent R-MnO_2 showed a high capacity for the removal of trace amount of heavy metals such as Cu~(2+), Co~(2+) Zn~(2+) and Ni~(2+) with the coexistence of high concentration of alkali and alkaline-earth metal ions at the wide range of pH 3-8. The maximum removal capacity was 78.13, 63.69, 129.87, 67.11 and 54.64mg/g for Zn~(2+), Cd~(2+), Cu~(2+), Co~(2+) and Ni~(2+) respectively. The sequence of adsorption capacity was Cu~(2+)>Zn~(2+), Cd~(2+), Co~(2+)>Ni~(2+). With 0.05mol/L HNO_3, R-MnO_2 could be regenerated to the efficiency of 80%. The IR and XRD analysis results indicated that the metal oxide loaded on the D301 resin was the mixture ofδ-MnO_2 and MnO(OH). The high removal efficiency of heavy metals on R-MnO_2 was mainly due to the specific adsorption via surface hydroxide complexation reaction.
     ②The loaded adsorbent R-MnO_2 can be used as an efficient adsorbent for the removal of As(Ⅴ) from aqueous solution at pH=2. In the case of water samples contaminated by low As(Ⅴ) concentration, the removal rate can reach almost 100%. Arsenic adsorption by R-MnO_2 decreased with the increase of ion strength, the presence of PO_4~(3-) or HCO_3~- inhibited the arsenic adsorption. The adsorption process followed pseudo second-order kinetics. The arsenic removal was supposed as the common results of specified adsorption, non-specified adsorption, precipitation and co-precipitation.
     ③The loaded adsorbent RFM can be used as an efficient absorbent for the removal of As(Ⅴ) from aqueous solution in a wide pH range 4-9. In the case of water solution contaminated with low As(Ⅴ) concentration, the removal rate can reach almost 100%. Arsenic adsorption by RFM decreased with the increment of ion strength, the presence of PO_4~(3-), HCO_3~- inhibited the arsenic adsorption process. The IR analysis results indicate that the surface of RFM has rich hydroxyl groups. The arsenic removal was supposed as the common results of electrostatic adsorption and ligand exchange reactions, and the ligand exchange reactions are the main sorption mode.
引文
[1] 李青山,李怡庭.水环境监测实用手册[M].中国水利水电出版社,2003.
    [2] 朱强.水资源可持续发展和雨水集蓄利用[J].防渗技术,2002,8(1):1-5.
    [3] 石辉,彭可珊.我国的水资源问题与可持续利用[J].中国人口、资源与环境,2002,12(6):23-25.
    [4] 2003年中国环境公报(淡水环境).新华网,2004.06-15.
    [5] 陈静生,周家义.中国水环境重金属研究[M].北京:中国环境科学出版社,1992.
    [6] 国家环保总局,2000年环境状况公报,环境教育,2000,(4):46-47.
    [7] 朱圣清,减小平.长江主要城市江段重金属污染状况及特征[J].人们长江,2001,32(7):23-25.
    [8] http://www.cigem.gov.cn/ReadNews.asp?NewsID=2123
    [9] Nickson R, MeArthur J, Burgess W, et al. Arsenic poisoning of Bangladesh groundwater[J]. Nature, 1998, 395(6700): 338.
    [10] Ng K S, Ujang Z, Pierre L C. Arsenic removal technologies for drinking water treatment[J]. Environmental Science and Bio/Technology., 2004, 3: 43-53.
    [11] Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Appl. Geochem., 2002, 17:517-568.
    [12] Ritehie S.M.C., Bhattaeharyya D. Membrane-based hybrid processes for high water recovery and selective inorganic pollutant separation[J]. J. Hazard. Mater., 2002, 92: 21-32.
    [13] Vilensky M Y, Berkowitz B, Warshawsky A. In Situ Remediation of Groundwater Contaminated by Heavy- and Transition-Metal Ions by Selective Ion-Exchange Methods[J]. Environ. Sci. Technol., 2002, 36: 1851-1855.
    [14] Amara M, Kerdjoudj H. Separation and recovery of heavy metals using a cation-exchange resin in the presence of organic macro-cations[J]. Desalination, 2004, 168: 195-200.
    [15] 范延臻,时双喜,王宝贞.美国饮用水标准和最有效技术[J].给水排水,2001,127(14):8-20.
    [16] AWWA Inc. Water quality and treatment. 3rd ed. New York, AWWA Inc.,1971:27-28.
    [17] 许保玖.给水处理理论[M].中国建筑工业出版社,2000.
    [18] National Interim Primary Drinking Water Regulations. Final Rule Fed. Reg., 1975, 40 (248):59556.
    [19] National Interim Primary Drinking Water Regulations. Trihalomethanes. Final Rule Fed.Reg., 1979,44 (231):6862
    [20] National Interim Primary Drinking Water Regulations. Volatile Synthetic Organic Chemicals. Final Rule Fed. Reg., 1987,52 (130): 23690.
    [21] USEPA. Disinfectants and Disinfection By products. Final Rule. Fed. Reg., 1998, 63 (241): 69478.
    [22] USEPA. National Primary Drinking Water Regulations. Arsenic and clarification to compliance and new source contaminations monitoring. Final Rule Fed. Reg., 2001, 66 (14): 6976.
    [23] 李伟英,李富生,高乃云等.日本最新饮用水水质标准及相关管理[J].中国给水排水,2004,20(5):104-106.
    [24] WHO, 2003. (http://www.who.int/water_sanitation_health/dwq/en/arsenicun5.pdf)
    [25] 高娟,李贵宝,刘晓茹等.国内外生活饮用水水质标准的现状与比对[J].水利技术监督,2005,3:61-64.
    [26] 张荣,田向红,刘保华.我国饮用水现状及卫生标准发展[J].中国卫生工程学,2004,3(3):185-187.
    [27] 中华人民共和国卫生部卫生法制与监督司.生活饮用水卫生规范.2001,6:8-12.
    [28] 赵璇,聂海生,云桂春等.从高背景的常规阳离子中有选择性地去除痕量重金属离子[J].给水排水,1999,25(10):13-15.
    [29] 羊依金,张雪乔,邹长武.矿物材料在重金属废水处理中的应用[J].四川有色金属,2006,1:36-42.
    [30] 高翔,鲁安怀,等.锰的氧化物和氢氧化物在污染水体净化中的应用研究现状[J].矿物岩石,2002,22(1):77-82.
    [31] 谢晓风,王京刚.粘土矿物材料在水处理中的应用[J].国外金属矿选矿,2002,1:22-24
    [32] Mier M V,Callejas R L ,Gehr R,et al. Heavy metal removal with mexican clinoptiloline: multi-component ionic exchange[J]. Wat. Res., 2001, 35(2): 373-378.
    [33] 霍爱群,姜华.改性天然沸石用于饮用水体除铅机理探讨[J].给水排水,1997,23(6):16-18.
    [34] 王正兴,沈耀良.受污水体水生植物修复技术的应用及其发展[J].四川环境,2006,25(3):77-80.
    [35] 宋世炜,黄韵,冯本秀.微生物吸附废水中金属的研究进展[J].化学工业与工程技术,2006,27(1):53-55.
    [36] 周军,方少明,张宏忠,陈绍伟.反渗透膜在水处理中的研究进展[J].过滤与分离,2006,16(2):12-15.
    [37] 张显球,张林生,杜明霞.纳滤去除水中的有害离子[J].水处理技术,2006,32(1):6-9.
    [38] 刘萍,曾光明,黄瑾辉等.膜技术在饮用水深度处理上的应用[J].环境科学与技术,2004,27(6):100-104.
    [39] Kopylova V D, Saldadze K M, Asambadze G D. Coppercomplexes with polyethylene-polyamine-based anion exchange resins[J]. Russ J Anal Chem 1970, 25:1069-1075.
    [40] Trochimczuk A, Kolarz B N, Wojacynska M. Acrylic anion exchangers and their sorption properties towards copper(Ⅱ) and cobalt(Ⅱ) [J]. Reactive Polymers 1987, 7: 197-202.
    [41] Hudson M J. Coordination chemistry of selective ion exchange resins. In: Rodrigues AE, editor. Ion Exchange, Science, and Technology, NATO ASI Series. Boston: Martinus Nijhoff, 1986. p. 35-66.
    [42] Rivas B L, Maturana H A, Perich I M, et al. Polyethyleneimine supports for resins with retention properties for heavy metals, Part Ⅰ[J]. Polymer Bull 1985; 14:239-243.
    [43] Holl W H. Elimination of heavy metals from water by means of weakly basic anion exchange resins[J]. Proc. IEX'96, Soc ofChem, Harrwells Ltd. Bodmin, UK. 1996.
    [44] Holl W H. Elimination of heavy metal salts from waters by means of adsorption onto weakly basic anion exchangers (Elimination yon Schwermetallsalzen aus Wassem dutch Adsorption an schwach basischen Anionenaustauschem).Vom Wasser., 1997;89: 13-24.
    [45] Vilensky M Y, Berkowitz B, Warshawsky A. In Situ Remediation of Groundwater Contaminated by Heavy- and Transition-Metal Ions by Selective Ion-Exchange Methods. Environ. Sci. Technol., 2002, 36(8): 1851-1855.
    [46] 赵璇,吴天宝,叶裕才.我国饮用水源的重金属污染及治理技术深化问题[J].给水排水,1998,24(10):22-25.
    [47] 仝贵婵,云桂春.微污染水源水中重金属和有机污染物的去除[J].清华大学学报(自然科学版),2000,12(40):67-70.
    [48] 仝贵婵,金光宇,云桂春等,应用弱碱性阴离子交换树脂去除饮用水源中的微量重金属及有机污染物[J].给水排水,2000,3(26):9-11.
    [49] Zhao X, Holl W H, Yun Guichun. Elimination of cadmium trace contaminations from drinking water[J]. Wat. Res., 2002,36:851-858.
    [50] 何仕均,赵璇,叶裕才等,利用弱碱性阴离子交换树脂去除饮用水源中微量铬(Ⅵ)[J]清华大学学报(自然科学版),2002,5(42):662-664.
    [51] 石长恩.弱碱性阴离子交换树脂去除饮用水中微量重金属离子及再生试验研究.2002.
    [52] 陈维芳,刘晓玲.弱碱性阴离子交换树脂去除饮用水中重金属的研究[J].城镇供水,2000,1:7-9.
    [53] 栾兆坤.碳酸铁氧化物的表征及其对重金属吸附作用的研究[J].环境科学学报,1994,14(2):129-136.
    [54] Balistrieri L S, Murray J W. The adsorption of Cu, Pb, Zn, and Cd. "goethite from major ion seawater[J]. Geochim Cosmochim. Acta., 1982, 46:1253-1265.
    [55] 陆雅海,朱祖祥,袁可能,黄吕勇等.针铁矿对重金属高子的竞争吸附研究[J].土壤学报,1996,33:78-84.
    [56] 赵谨,鲁安怀,姜浩,陈沽,郑德圣,侯华丹.天然磁铁矿处理含Hg(Ⅱ)废水实验研究[J].岩石矿物学杂志,2001,20(4):549-554.
    [57] Environ J. The use of hematite for chromium(Ⅱ) removal[J]. Journal of Environmental Science and Health, Part A: Environmental Science and Engineering. 1993, 28 (8):1813~1826.
    [58] 孙振亚,祝春水,陈和生等,几种不同类型的FeOOH吸附水溶液中铬离子研究[J].岩石矿物学杂志,2003,22(4):352-354.
    [59] Lazaridis N K, Bakoyannakis D N, Deliyanni E A. Chromium(Ⅵ) sorptive removal from aqueous solutions by nanocrystalline akaganeite[J]. Chemosphere, 2005, 58(1): 65-73.
    [60] Deliyanni E A, Matis K.A. Sorption of Cd ions onto akaganeite-type nanocrystals[J]. Sep. Purif. Technol., 2005, (45) 2: 96-102.
    [61] Mckenzie R M. The reaction of cobalt with manganese dioxide minerals[J]. J. Soil Res., 1970, 8: 97-106.
    [62] Loganathan P, Burau R G. Sorption of heavy metal ions by a hydrous manganese oxide[J]. Geochimiea et Cosmochimica Acta., 1973, 37:1277-1293.
    [63] 郑德圣,鲁安怀,秦善等.天然锰钾矿吸附水溶液中Hg~(2+)的实验研究[J].岩石矿物学杂志,2001,20(4):559-567.
    [64] 郑德圣,鲁安怀,高翔等.天然锰钾矿处理含Cd~(2+)废水实验研究[J].岩石矿物学杂志,2003,22(4):360-364.
    [65] Kanungo S B, Sushree S T, Rejeev. Adsorption of Co, Ni, Cu. and Zn on hydrous manganese dioxide from complex electrolyte solutions resembling sea water in major ion cotent[J]. J. Colloid Interface Sci., 2004a, 269:1-10.
    [66] Kanungo S B, Tdpathy S S, M ishra S K, et al. Adsorption of Co~(2+), Ni~(2+), Cu~(2+), and Zn~(2+) onto amorphous hydrous manganese dioxide from simple (1-1) electrolyte solutions[J]. J. Colloid Interface Sci., 2004b, 269:11-21.
    [67] Spark K M, Johnson B B, Wells J D. Characterizing heavy-metal adsorption on oxides and oxyhydroxides[J]. European Joural of Soil Science, 1995, 46: 621-631.
    [68] 谭文峰,刘凡,李学垣,等.几种土壤铁铁锰结核Cr(Ⅲ)的氧化特Ⅰ.氧化锰矿物类型与吸附态离子的影响[J].环境科学学报,2001,21(5):592~596.
    [69] 陈英旭,朱祖祥,何增耀.环境中氧化锰对Cr(Ⅲ)氧化机理的研究[J].环境科学学报,1993,13(1):45-50.
    [70] 陈红,叶兆杰,方士,等不同状态MnO_2对废水中As(Ⅲ)的吸附研究[J].中国环境科学.1998,2:126.
    [71] Atia A A, Donia A M, Shahin A E. Studies on the uptake behavior of a magnetic Co_3O_4-containing resin for Ni(Ⅱ), Cu(Ⅱ) and Hg(Ⅱ) from their aqueous solutions[J]. Sep. Purif. Technol., 2005, 46:208-213.
    [72] Fan Huan-Jung, Paul R. Anderson. Copper and cadmium by Mn oxide-coated granular activated carbon[J]. Sep. Purf. Technol., 2005, 45: 61-67.
    [73] Runping Han, Weihua Zou, Hongkui Li, et al. Copper(Ⅱ) and lead(Ⅱ) removal from aqueous solution in fixed-bed columns by manganese oxide coated zeolite[J]. J. Hazard. Mater., 2006, 137(2): 934-942.
    [74] Barrow N J, Bowden J W, Posner A M, et al. Describing the adsorption of copper, zinc, and lead on a variable charge mineral surface[J]. Australian J. Soil Res., 1981, 19: 309-321.
    [75] Hayes K F, Leckie J O. Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces[J]. J. Colloid Interface Sci., 1987, 115: 564-572.
    [76] Muiier B, Sigg L. Adsorption of Lead (Ⅱ) on the goethite: Voltametric evaluation of surface eomplexation parameters[J]. J. Colloid Interface Sci., 1992, 148:517-531.
    [77] Roe A L, et al. In-situ X-ray absorption study of lead ion surface complexes at the goethite-water interface[J]. Langrnuir, 1991, 7: 367-373.
    [78] Randall S R, Sherman D M, Ragarsdottir K V. An extended X-ray absorption fine structure spectroscopy investigation of cadmium sorption on cryptomelane[J]. Chemical geology, 1998, 151: 95-106.
    [79] 潘纲,秦延文,李贤良等.用EXAFS研究Zn在水锰矿上的吸附-解析机理[J].环境科学,2003a,24(3):1-7.
    [80] 潘纲,李贤良,秦延文等.用EXAFS研究Zn在δ-MnO_2上的吸附-解析机理[J].环境科学,2003b,24(4):54-59.
    [81] The International Agency for Research on Cancer. Monographs on the Evaluation of the Carcinogenic Risk to Humans and Their Supplements: Some Metals and Metallic Compounds, 1980, Vol.23. IARC, Lyon.
    [82] The U.S. Environmental Protection Agency. Special Report on Ingested Inorganic Arsenic. Skin Cancer ; Nutritional essentiality. 1988, EPA 625-3-87-013, USEPA, Washington, DC.
    [83] 孟紫强主编,环境毒理学[M].中国环境科学出版社,2000.
    [84] WHO. Guildlines for drinking water quality. Volumn 1. Reeommendations, 1993.
    [85] USEPA. National primary drinking water regulations; Arsenic and clarification to compliance and new source contaminants monitoring; Final rule, Federa Register, 2001, 66(14):6976.
    [86] WHO, 2003. (http://www.who.int/water sanitation health/dwq/en/arsenicun5.pdf)
    [87] 国家环境保护总局《水和废水监测分析方法》编委会 水和废水监测分析方法[M]第四版.北京:中国环境科学出版社,2001.
    [88] Gulledge J H, O'Connor J T. Removal of As(Ⅴ) from water by adsorption on aluminium and ferric hydroxide. J Am Water Works Assoc, 1973, 65:548-552.
    [89] Beuhler M D, Cheng R C, Sun L L,et al. Enhanced coagulation for arsenic removal[J]. J Am Water Works Assoc. 1994, 86: 79-90.
    [90] Do H D, Green J F, McLean S J, et al. Arsenic removal by coagulation[J]. J Am Water Works Assoc. 1995,86:79-90.
    [91] Singh P, Singh T S, Pant K K. Removal of arsenic from drinking water using activated alumina. Research Journal of Chemistry and Environment. 2001, 5(3):25-28.
    [92] Hiavay J, Foldi-Polyak K, Inczedy J. Application of new adsorbents for removal of arsenic from drinking water. Studies in Environmental Science. 1988, 34:119-30.
    [93] Davis S A, Misra M. Transport Model for the Adsorption of Oxyanions of Selenium (Ⅳ) and Arsenic (Ⅴ) from Water onto Lanthanum- and Aluminum-Based Oxides[J]. J. Colloid Interface Sci., 1997,188: 340.
    [94] Lin T F, Wu J K. Adsorption of Arsenite and Arsenate within Activated Alumina Grains: Equilibrium and Kinetics[J]. Wat. Res., 2001,35(8): 2049-2057.
    [95] Singh T S, Pant K K. Equilibrium, kinetics and thermodynamic studies for adsorption of As(Ⅲ) on activated alumina[J]. Sep. Purif. Technol., 2004, 36(2):139-147.
    [96] Rosenblum E, Clifford D. The equilibrium arsenic capacity of activate alumina, U S Environ. Prot. Agency [Rep] EPA. EPA-6001 s2-83-107.1984.
    [97] Hingston F J, Posner A M, Quirk J P. Competitive adsorption of negatively charged ligands on oxide surfaces[J]. Discuss. Faraday Soc., 1971, 52:334-342.
    [98] Ferguson J F, Anderson M A. Chemical forms of arsenic in water supplies and their removal[J]. Chemistry of water supply treatment and distribution, 1974, 137-158.
    [99] Pierce M L, Moore C B. Adsorption of arsenite and arsenate on amorphous iron hydroxide[J]. Wat. Res. 1982, 16:1247-1253.
    [100] Grossl P R, Sparks D L. Evaluation of contaminant ion adsorption/desorption on goethite using pressure-jump relaxation kinetics[J]. Geoderm. 1995, 67: 87-101.
    [101] Matis K A , Zouboulis A 1, Malamas F B, et al. Flotation removal of As(Ⅴ) onto goethite[J]. Environ. Pollut., 1997, 97: 239-245.
    [102] Deliyanni E A, Bakoyannakis D N, Zouboulis A I, et al. Sorption of As(V) ions by akaganeite-type nanocrystals[J]. Chemosphere. 2003, 50:155-163.
    [103] Singh D B, Prasad G, Rupainwar D C. Adsorption technique for the treatment of As(Ⅴ)-rich efffluents[J]. Colloid Surf., 1996, A 111: 49-56.
    [104] Dixit S, Hering J G. Comparison of arsenic(Ⅴ) and arsenic(Ⅲ) sorption onto iron oxide minerals: implications for arsenic mobility[J]. Environ. Sci. Technol., 2003, 37: 4182-4189.
    [105] Raven K P, Jain A, Loeppert R H. Arsenite and Arsenate Adsorption on Ferrihydrite: Kinetics, Equilibrium, and Adsorption Envelopes[J]. Environ. Sci. Technol., 1998, 32:344-349.
    [106] 汉景泰,Fyfe W S.硫化铁矿物处理水体砷污染[J].科学通报,2000,45(10):1100-1104.
    [107] Driehaus W, Jekel M, Hiildebrandt U. Granular ferric hydroxide—a new adsorbent for the removal of arsenic from natural water[J]. J. Water SRT Aqua., 1998,47: 30-35.
    [108] Driehaus W, Seith R, Jekel M. Oxidation of arsenic(Ⅲ) with manganese oxides in water treatment[J]. Wat. Res., 1995, 29(1):297-305.
    [109] Lenoble V, Laclautre C, Serpaud B, et al. As(Ⅴ) retention and As(Ⅲ) simultaneous oxidation and removal on a MnO_2-1oaded polystyrene resin[J]. Sci.Total Environ., 2004,326:197-207.
    [110] 田军,乔秀丽.新生态δ-MnO_2对废水中As(Ⅴ)的吸附研究[J].佳木斯大学学报(自然科学版),2004,22(4):508-510.
    [111] 梁慧锋,马子川,张杰等.新生态MnO_2对水中As(Ⅴ)的吸附作用研究[J].安全与环境学报,2005,5(1):50-53.
    [112] 刘锐平,杨艳玲,夏圣骥等.水合二氧化锰界面特性及其除污染效能[J].环境化学,2005,24(3):338-341.
    [113] Chakravarty S, Dureja V, Bhattacharyya G,et al. Removal of arsenic from ground water using low cost ferruginous manganese ore[J]. War. Res., 2002, 36(3): 625-632.
    [114] Deschamps E, Ciminellia V S T, Holl W H. Removal of As(Ⅲ) and As(Ⅴ) from water using a natural Fe and Mn enriched sample[J].Wat. Res., 2005, 39: 5212-5220.
    [115] Zhang Y, Yang M, Huang X. Arsenic removal with a Ce(Ⅵ)-doped iron oxide adsorbent[J]. Chemosphere. 2003, 51(9): 945-952.
    [116] 武荣成,曲久辉,吴成强.磁性吸附材料CuFe_2O_4吸附砷的性能[J].环境科学,2003,24(5):60-64.
    [117] Tokunaga S, Wasay S A, Park S W. Removal of arsenic(Ⅴ) ion from aqueous solutions by lanthanum compounds[J]. Water Sci. Technol., 1997, 35(7): 71-78.
    [118] 欧阳通.稀土材料氢氧化铈吸附水中亚砷酸与砷酸阴离子的特性效果[J].环境科学.2004,25:43-47.
    [119] 喻德忠,邹菁,艾军.纳米二氧化锆对砷(Ⅲ)和砷(Ⅴ)的吸附性质研究[J].武汉化工学院学报,2004,26(3):1-3.
    [120] 肖亚兵,钱沙华,黄淦泉等.纳米二氧化钛对砷(Ⅲ)和砷(Ⅴ)吸附性能的研究[J].分析科学学报,2003,19(2):172-174.
    [121] Jegadeesan G, Kanchan M, Shashi B L. Arsenate remediation using nanosized modified zerovalent iron particles[J]. Enviromental progress. 2005,24(3): 289-296.
    [122] Bang S, Patel M, Lippincott L. Removal of arsenic from groundwater by granular titanium dioxide adsorbent[J]. Chemosphere. 2005,60: 389-397.
    [123] 刘瑞霞,王亚雄,汤鸿霄.新型离子交换纤维去除水中砷酸根离子的研究[J].环境科学.2002,23(5):88-91.
    [124] Su C. Plus R W. Arsenate and Arsenite Removal by Zerovalent Iron: Kinetics, Redox Transformation, and Implications for in Situ Groundwater Remediation[J]. Environ. Sci. Technol., 2001, 35: 1487-1492.
    [125] Hongwen S, Lei W, Ruihua Z, et al.Treatment of groundwater polluted by arsenic compounds by zero valent iron[J]. J. Hazard. Mater., 2006, B129: 297-303.
    [126] Bang S, Korfiatis G P, Meng X. Removal of arsenic from water by zerovalent iron[J]. J. Hazard. Mater., 2005, 121, 67-67.
    [127] Ramaswami A, Tawachsupa S, Isleyen M. Batch-Mixed Iron Treatment of High Arsenic Waters[J]. War. Res., 2001, 35(18): 4474-4479.
    [128] Zhang W, Singh P, Paling E, et al. Arsenic removal from contaminated water by natural iron ores[J]. Minerals Engineering, 2004,17(4): 517-524.
    [129] Altundogan H S, Altundogan S, Tumen F, et al. Arsenic adsorption from aqueous solution by activated red mud[J]. Waste Manage., 2002,22 (3): 357-363.
    [130] Frost R R, Griffin R A. Effect of pH on adsorption of arsenic and selenium from landfill leachate by clay minerals[J]. Soil Sci.Soc.Am.J. 1977,41:53-57.
    [131] Gao S, Goldberg S, Herbel M J, et al. Sorption processes affecting arsenic solubility in oxidized surface sediments from Tulare Lake Bed, California. 2006,228(1-3): 33-43.
    [132] Yadava K P, Tyagi B S, Singh V N. Removal of As (III) from aqueous solution by china clay[J]. Environ. Technol. Lett., 1988, 9: 1233-1244.
    [133] Manning B A, Goldberg S. Adsorption and Stability of Arsenic(III) at the Clay Mineral-Water Interface[J]. Environ. Sci. Technol., 1997,31:2005-2011.
    [134] Balaji T, Yokoyama T, Matsunaga H. Adsorption and removal of As(V) and As(III) using Zr-loaded lysine diacetic acid chelating resin[J]. Chemosphere, 2005, 59: 1169-1174.
    [135] Balaji T, Matsunaga H. Adsorption characteristics of As(III) and As(V) with Titanium dioxide loaded Amberlite XAD-7[J]. ANALYTIC SCIENCE. 2002,18:1345-1349.
    [136] Suzuki T M, Bomani J O, Matsunaga H, et al. Preparation of porous resin loaded with crystalline hydrous zirconium oxide and its application to the removal of arsenic[J]. Reactive Funct. Polymer. 2000,43(1-2): 165-172.
    [137] Rau I, Gonzalo A. Valiente M. Arsenic(V) removal from aqueous solutions by Fe(III) loaded chelating resin[J]. Journal of Radioanalytical and nuclear chemistry. 2000, 246(3): 597-600.
    [138] DeMarco M J, SenGupta A K, Greenleaf J E. Arsenic removal using a polymeric/inorganic hybrid sorbent[J]. Wat. Res., 2003, 37: 164-176.
    [139] Lenoble V, Laclautre C, Serpaud B, et al. As(V) retention and As(III) simultaneous oxidation and removal on a MnO_2-loaded polystyrene resin[J]. Science of the Total Enviroment. 2004,326:197-207.
    [140] Guo X J, Chen F H. Removal of Arsenic by Bead Cellulose Loaded with Iron Oxyhydroxide from Groundwater[J]. Environ. Sci. Technol., 2005,39: 6808-6818.
    
    [141] 赵雅萍,王军峰,陈甫华.载铁(III)-配位体交换棉纤维吸附剂去除饮用水中 As(v) 的研究[J].上海环境科学.2003, 22(7): 468-471.
    [142] Xu Y H, Nakajima T, Ohki A. Adsorption and removal of arsenic(V) from drinking water by aluminum-loaded Shirasu-zeolite[J]. J. Hazard. Mater., 2002, B92: 275-287.
    [143] Baipai S, Chaudhury M. Removal of arsenic from manganese dioxide coated sand. J Environ Eng ASCE. 1999, 125(8): 782-784.
    [144] Thirunavukkarasu O S, Viraraghavan T, Subramanian K S. Removal of arsenic in drinking water by iron oxide-coated sand and ferrihydrite, batch studies[J]. Water Qual Res J Can, 2001,36: 55-70.
    [145] Mun~oz JA, Gonzalo A, Valiente M. Arsenic adsorption by Fe(III)-loaded open-celled cellulose sponge. Thermodynamic and selectivity aspects[J]. Environ, Sci. Technol., 2002, 36:3405-3411.
    [146] Kundu S, Gupta A K. Adsorptive removal of As(III) from aqueous solution using iron oxide coated cement (IOCC): Evaluation of kinetic, equilibrium and thermodynamic models[J]. Sep. Purif. Technol., 2006, 51(2): 165-172.
    [147] Hansen H K, Ribeiro A, Mateus E. Biosorption of arsenic(Ⅴ) with Lessonia nigrescens[J]. Minerals Engineering. 2006, 19: 486-490.
    [148] Koretsky C. The significance of surface complexation reactions in hydrologic systems: a geochemist's perspective[J]. J. Hydrol., 2000, 230: 127-171.
    [149] 陆宗淇,王光信,徐贵英.胶体与界面化学[M],北京:高等教育出版社,2001.
    [150] Langmuir I. J Am Chem Soc, 1916, 38:2221; 1918,40:1361.
    [151] Freundlich H, Colloid and capillary chemistry. London: Metheum, 1926, p, 883.
    [152] Rengaraj S, Seung-Hyeon Moon. Kinetics of adsorption of Co(Ⅱ) removal from water and wastewater by ion exchange resins[J]. Wat. Res., 2002, 36:1783-1793.
    [153] Lagergren S, Zur theode der sogenannten adsorption geloster stoffe[J], K. Sven. Vetenskapsakad. Handl. 1898, 24: 1-39.
    [154] Blanchard G, Maunaye M, Martin G. Removal of heavy-metals from waters by means of natural zeolites[J], Water Res. 1984,18: 1501-1507.
    [155] Mahramanlioglu M, KizilcikliI I, Bicer O. Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth[J], J. Fluor. Chem. 2005, 115: 41-47.
    [156] Zeldowitsch J. Uber den mechanismus der katalytischen oxidation yon CO an MnO_2[J], Acta Physicochim. 1934, URSS1: 364-449.
    [157] Michelson L D, Gideon P G, Pace E G, et al. Removal of soluble mercury from wastewater by complexing techniques[J]. U. S. NTIS, PB Rep., 1975, (PB-244890): 168.
    [158] Lee C K, Low K S, Chew S L. Removal of anionic dyes by water hyacinth roots[J]. Adv. Environ. Res., 1999, 3: 343-351.
    [159] HO Y S, Ng J C, McKay G. Kinetics of pollutants sorption by biosorbents: review[J]. Separation Purif. Method., 2000, 29: 189-232.
    [160] Tripathy S S, Kanungo S B. Adsorption of Co~(2+),Ni~(2+),Cu~(2+) and Zn~(2+) from 0.5M NaCl and major ion sea water on a mixture of μ- MnO_2 and amorphous FeOOH[J]. J. Colloid Interface Sci., 2005, 284: 30-38.
    [161] 车越,杨凯,吴阿娜,袁雯.上海城市水源战略与水源地保护:格局、问题与展望[J].自然资源学报,2005,20(5):651-659.
    [162] 奚旦立,孙裕生,刘秀英.环境监测[M].北京:高等教育出版社,1995.
    [163] Ure A M, Quevauviller Ph, Muntau H, et al. Speciation of heavy metals in solids and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities[J]. International Journal of Environmental Analytical Chemistry, 1993, 51:135.
    [164] 李健,郑春江.环境背景值数据手册[M].北京:中国环境科学出版社,2003.
    [165] Davidson C M, Thomas R P, Mcvey S E, Perala R, Littlejohn D, Ure A M. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments[J]. Analytica Chimic. & Acta., 1994, 291: 277-286.
    [166] 车越,杨凯,范群杰,张勇.黄浦江上游水源地水环境演变规律及其影响因素研究[J].2005,20(2):163-171.
    [167] 阮仁良.上海市水环境研究[M].北京:科学出版社,2000.
    [168] Comell R M, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2003.
    [169] Trivedi P, Axe L. Modeling Cd and Zn sorption to hydrous metal oxides[J], Environ.Sci.Technol, 2000, 34:2215-2223.
    [170] Axe L, Anderson P. Experimental and theoretical diffusivities of Cd and Sr in hydrous ferric oxide[J], J. Colloid Interface Sci., 1997,185: 436-448.
    [171] O'Reill S E, Strawn D G, Sparks D L. Residence time effects on arsenate adsorption/resorption methanisms on goethite[J]. Soil Sci Soc Am .J., 2001, 65: 67-77.
    [172] Fuller C C, Davis J A, Waychunas G A. Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation[J]. Geochim. Cosmochim. Acta., 1993, 57:2271-2282.
    [173] Raven K P, Jain A, Loeppert R H. Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes[J]. Environ. Sci. Technol., 1998, 32: 344-349.
    [174] Arai Y, Sparks D L. Residence time effects on arsenate surface speciation at the aluminum oxide-water interface[J]. Soil Sci., 2002, 167:303-314.
    [175] Buchter B, Davidoff B, Amacher C, et al. Correlation of Freundlich Kd and n retention parameters with soils and elements[J]. Soil Sci., 1989, 148: 370-379.
    [176] Manning B A, Goldberg S. Arsenic(Ⅲ) and arsenic(Ⅴ) adsorption on three California soils[J]. Soil Sci., 1997, 162: 886-895.
    [177] Selim H M, Ma Liwang. Modeling nonlinear kinetic behavior of copper adsorption-resorption in soil. SSSA Special Publication, 2001, 56(Physical and Chemical Processes of Water and Solute Transport/Retention in Soils): 189-212.
    [178] Chiu V Q, Hering J G. Arsenic Adsorption and Oxidation at Manganite Surfaces. 1. Method for Simultaneous Determination of Adsorbed and Dissolved Arsenic Species[J]. Environ Sci. Technol., 2000,34:2029-2034.
    [179] Darland J D, Inskeep W P. Effects of pH and phosphate competition on the transport of arsenate[J]. J. Environ. Qual., 1997, 26(4):1133-1139.
    [180] Al-Abed S R, Jegadeesan G, Purandare J, et al. Arsenic release from iron rich mineral processing waste: Influence of pH and redox potential[J]. Chemosphere, 2007, 66(4): 775-782.
    [181] Davenport J P, Peryea F J. Wat. Air Soil Poll., 1991,57-58:101-110.
    [182] Mok W M, Wai C M. Mobilization of arsenic in contaminated river waters[J]. Advances in Environmental Science and Technology, 1994, 26: 99-117.
    [183] Appelo C A J, Van Der Weiden M J J, Tournassat C, et al. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic[J]. Eniron. Sci. Technol., 2002, 36:3096-3103.
    [184] Harvey C F, Swartz C H, Badruzzaman A B M, et al. Arsenic mobility and groundwater extraction in Bangladesh[J]. Science. 2002, 298: 1602-1606.
    [185] 杨莉丽,康海彦,李娜等.离子交换树脂吸附镉的动力学研究[J].离子交换与吸附,2004,20(2):138-143.
    [186] Battacharya A K, Venkobachar C. Removal of cadmium (Ⅱ) by low cost adsorbent[J]. J Environ. Eng. Div., ASCE Proc 1984, 110:110-22.
    [187] Katsumata H, Harada T, Kaneeo S, et al. Removal of heavy metals in water by adsorption onto sintering porous materials from sea bottom sediments[J]. New Technologies & Medicine. 2004, 5(6): 573-576.
    [188] 龙志成.流动注射在线预浓集-原子吸收法用于铬的形态分析(硕士论文)南开大学 20020501.
    [189] Gode F, Pehlivan E. Removal of Cr(Ⅵ) from aqueous solution by two Lewatit-anion exchange resins[J]. J. Hazard. Mater., 2005, B119(1-3): 175-182.
    [190] 无机化合物合成手册,第一卷[M].日本化学会.1983.
    [191] Pretorius P J, Linder P W. The Adsorption Characteristics of 5-Manganese Dioxide: a Collection of Diffuse Double Layer Constants for the Adsorption of H~+,Cu~(2+),Ni~(2+),Zn~(2+),Cd~(2+) and Pb~(2+)[J]. Applied Geochem., 2001, 16:1067-1082.
    [192] Parida K M, Kanungo S B, Sant B R. Studies on MnO_2 chemical composition, microstucture and other characteristics of some synthetic MnO_2 of various crystalline modification[J]. Electrochemical Acta., 1981, 26: 435-443.
    [193] Ostergren J D, Trainor T P, Bargar J R, et al. Inorganic ligand effects on Pb(Ⅱ) sorption to goethite (a-FeOOH) I. Carbonate[J]. J. Colloid Interface Sci., 2000, 225(2): 466-482.
    [194] Ishikawa T, Miyamoto S, Kandori K, et al. Influence of anions on the formation of β-FeOOH rusts [J]. Corrosion Sci., 2005, 47(10): 2510-2520.
    [195] Villalobos M, Trotz M A, Leckie J O. Surface complexation modeling of carbonate effects on the adsorption of Cr(Ⅴ), Pb(Ⅱ), and U(Ⅵ) on goethite[J]. Environ. Sci. Technol., 2001, 35: 3849-3856.
    [196] Nakamoto K, 1978.Infrared and Raman Spectra of Inorganic and Coordination Compound, 3rd, New York: John Wiley.
    [197] Li F, Zhang L H, Evans D G, et al. Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects., 2004, 244: 169-177.
    [198] Sposito G, 1984. The surface Chemistry of Soils. Oxford University Press, New York(234pp).
    [199] 沈雁峰,孙殿军,赵新华等.中国饮水型地方性砷中毒病区和高砷区水砷筛查报告[J].中国地方病学杂志.2005,24(2):172-175.
    [200] 章兴华,周丽芸,汤敏.聚合氯化铝铁的红外光谱研究[J].光谱学与光谱分析,2002,22(1):39-42.
    [201] Grossl P R, Eick M, Sparks D L, et al. Arsenate and Chromate Retention Mechanisms on Goethite. 2. Kinetic Evaluation Using a Pressure-Jump Relaxation Technique[J]. Environ. Sci. Technol., 1997, 31: 321-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700