用户名: 密码: 验证码:
植物细菌性青枯病颉颃菌筛选策略研究及生防机理初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由青枯劳尔氏菌(Ralstonia solanacearum Yabuuchi et al.)引起的作物细菌性萎蔫病是一种毁灭性的土传病害,是中国南方许多省份农业生产中的一大威胁。目前生产上主要是采用抗病品种和轮作套种等农业措施和化学药物来防治青枯病,但由于受到各种条件和原因的限制,防治效果仍很不理想。这使得青枯病的生物防治受到了国内外的高度重视。已有研究报道,生物防治可以有效地降低青枯病的病害程度并减少其造成的产量损失。尽管在中国已有数种防治青枯的生防活菌制剂投入商业化生产,但生防活菌制剂并没有被广大农户接受。导致这种现象出现的最根本原因就是生防制剂的防效不稳定。本论文就青枯病生防菌筛选策略展开研究,旨在建立一个合理、快速的评价体系,通过一系列温室和大田试验对筛选出的生防菌进行有效性和稳定性验证,并借助分子生物学和遗传学手段对生防菌的生防机理进行初步探讨。
     1.番茄青枯颉颃菌Acinetobacter sp.Xa6和Enterobacter sp.Xy3的筛选与评价
     根据平板上对青枯及其它土传真菌的颉颃试验和温室防效试验结果,我们从14个候选菌株中挑选出两个—Xa6(Acinetobacter sp.,不动杆菌属)和Xy3(Enterobacter sp肠杆菌属)作为番茄青枯病的颉颃细菌。为了寻求到合适的颉颃菌接种方法,我们比较了温室条件下蘸根和土壤浇灌处理后颉颃菌的根围定殖力、防效和促生长作用。结果显示,土壤浇灌处理后颉颃菌的根围定殖力较好、防效和促生长率较高,并且该方法在田间大范围应用时易于操作。我们还发现,无论在温室试验还是大田试验中,菌株Xy3都表现出较高的防效,而菌株Xa6则对番茄表现出较好的促生长作用。在江苏淮安和福建龙岩的大田试验中,生防菌处理后75天时,Xy3的防效都在65%左右,Xa6引起的增产效果则为40.7%和32.4%。本研究也是第一次报道将不动杆菌属细菌作为番茄青枯病的颉颃菌。
     2.一种基于根围定殖能力和对代表不同遗传多样性的青枯菌株的颉颃作用的生防菌株筛选策略研究
     本实验室前期研究中将采集自中国15个省份14中寄主的319个青枯劳尔氏菌菌株进行了遗传多样性分析。选择了10个代表不同遗传多样性群体的青枯病菌开展以下研究。本研究中测定了8个颉颃细菌对上述青枯菌的平板拮抗活性和温室防治效果。结果显示,颉颃细菌对不同青枯菌株表现出的室内(包括平板和温室)拮抗活性有显著差异。我们从8个候选菌株中选择了沙雷氏菌属细菌菌株XY21,因为其在平板拮抗性测试中对10个参试青枯菌均表现出较好的抑制作用,且在番茄植株根围显示出良好的定殖能力。温室条件下,菌株XY21对由具有遗传多样性的不同青枯菌引起的病害的防效19%至70%不等。我们发现,温室防治效果与平板拮抗活性之间相关性良好(相关系数达到0.746)。在淮安(辣椒地)和福州(番茄地)两地的大田试验中,菌株XY21也有效地控制了青枯病的发生,明显增加了番茄和辣椒的产量。本研究首次报道根据菌株对具有遗传多样性的不同青枯菌的拮抗活性和根围定殖力来筛选植物青枯病的生防菌。
     3.颉颃菌株XY21防治植物青枯病的机制初探
     在本章中,首先对颉颃菌XY21进行RFP标记,并确定标记后颉颃菌的拮抗性(主要是针对青枯菌的拮抗性)和产酶活性等与生防相关的特性均未发生变化。通过平板计数与激光共聚焦显微镜观察相结合的方法检测其定殖情况。第一次温室试验结果显示,菌株XY21-RFP(?)(?)种处理后定殖于番茄主根根表;灌根处理后,菌株XY21-RFP在植株根表和根围土壤颗粒中均有分布;而且菌株XY21-RFP的荧光表达不稳定;青枯菌株Rs-GFP荧光表达稳定,在萎蔫植株根内会堵塞维管束组织。第二次温室试验,在只接种颉颃菌的处理组中,即使在颉颃菌处理后27天(播种后41天),菌株XY21-rif和XY21-RFP在番茄根部的定殖量仍能达到107CFU/g RFW。变性梯度凝胶电泳(DGGE)用来分析颉颃菌接种后对番茄根围细菌种群的影响,其结果也显示菌株XY21-rif和XY21-RFP在所有取样时间都可以被检测到,这进一步验证了菌株XY21的优良定殖力。此外,对番茄根围细菌种群的DGGE分析结果显示,菌株XY21-rif和XY21-RFP只在后两次取样时(播种后24天和41天)对细菌种群产生了一些影响;在前两次取样时,颉颃菌处理组中除了属于颉颃菌自身的条带外,与不接菌的对照组没有差异。另外,颉颃菌XY21-rif和XY21-RFP的引入对芽孢杆菌属的种群在所有取样时间点都没有影响,对假单胞菌属的影响也只在取样后期。
     4.总结
     本研究的主要发现与创新:第一、建立了一种基于根围定殖能力和对表现遗传多样性的不同青枯菌株的颉颃作用的生防菌筛选策略;第二、筛选得到了三株对作物青枯病有良好防效的颉颃细菌Xa6、Xy3和XY21,其中不动杆菌属细菌Xa6是首次报道用于青枯病的生物防治;第三、对沙雷氏菌属细菌XY21的生防机理进行了初步探讨,发现其与青枯菌存在位点竞争,并且其引入番茄植株根围后对原本的细菌种群影响不大。
     本研究有两个主要缺点:第一、没有研究颉颃菌XY21野生型对番茄根围细菌种群的影响;第二、对菌株XY21的RFP标记不太成功,荧光表达不稳定。
Bacterial wilt of tomato, Lycopersicon esculentum Miller, caused by Ralstonia solanacearum (Yabuuchi et al.), is a destructive soil-borne disease and a serious threat for agricultural production in many provinces of Southern China. So far, Ralstonia wilt control approaches, including field sanitation, crop rotation and application of resistant varieties, have proven limited success. Applying chemical pesticides is generally considered as the most effective and fastest strategy for plant diseases management, however, no effective chemical product has yet been available for Ralstonia wilt. Therefore, more and more efforts need to be devoted to biological control with living microbes. Biological control is one of the most promising approaches to reduce the disease severity and yield loss caused by the diseases. Although several products have been commercialized, living microbial BCAs have not been widely accepted by farmers, since their biocontrol efficiency is not quite stable. This study was focused on development of a novel screen strategy of antagonist against R.solanacearum, evaluation of antagonists identified by the strategy and investigation of mechanism of the antagonistic strain XY21.
     1. Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against ralstonia wilt of tomato
     Based on antagonistic activity against R. solanacearum and three other soil-borne fungal pathogens as well as biocontrol efficiency in greenhouse, we select from a total of14candidates two bacterial strains Xa6(Acinetobacter sp.) and Xy3(Enterobacter sp.) as potential biocontrol agents. To seek a suitable antagonist inoculation method, root-dipping and drenching treatments were compared for bacterial rhizocompetence, biocontrol efficiencies and plant growth promotion potential under greenhouse conditions. Drenching treatment resulted in higher rhizocompetence, biocontrol efficiency and plant growth promotion, and this method was easier to operate in field in large scale. Field trails were conducted for further evaluation of these two antagonists. In both greenhouse and field experiments, strain Xy3had a better control effect against bacterial wilt than Xa6did, while Xa6caused more yield increase. Biocontrol efficiencies of Xy3were both about65%, and the yield increases caused by Xa6were32.4%and40.7%at the75th day after treatment in two field experiments. This is the first report of an Acinetobacter sp. strain used as a BCA agaisnt R. solanacearum of tomato.
     2. Rhizocompetence and antagonistic activity towards a range of genetically diverse Ralstonia solanacearum strains-a novel approach for selecting biocontrol agents
     Eight antagonistic bacterial strains were tested for their inhibition towards a range of genetically diverse R. solanacearum strains from China and for their efficiency to control Ralstonia wilt of tomato under greenhouse condition. The results indicated that the same antagonists showed markedly different in-vitro antagonistic activity towards different Ralstonia strains, and biocontrol efficiency. From the antagonists tested, Serratia sp. strain XY21was selected because of its good in-vitro inhibition of all ten R. solanacearum strains and its good rhizocompetence on tomato plants. Biocontrol efficacy of XY21towards seven R. solanacearum strains ranged from19%to70%. A good correlation of in-vitro antagonistic activity and the actual biocontrol efficiency towards different R. solanacearum strains was found. Efficient biocontrol and yield increases were observed in field experiments with pepper and tomato. This is the first report to select potential biocontrol strains of R. solanacearum based on their rhizocompetence and their ability to antagonize a range of genetically diverse R. solanacearum isolates.
     3. Mechinisms of antagonist XY21against Ralstonia solanacearum strains
     In this study, antagonistic strain XY21was labeled with RFP firstly. The antagonistic activity towards genetically diverse Ralstonia solanacearum strains and enzyme activity of strain XY21-RFP were tested and compared to that of wild type strain XY21. No difference was found between wild type strain XY21and mutants XY21-RFP and XY21-rif. The results of first greenhouse experiment showed that strain XY21-RFP colonized surface of primary root after seed inoculation, and after root inoculation, the strain XY21-RFP colonized root surface and soil particles. The expression of florescence of antagonistic strain was unstably, but the expression of florescence of pathogen strain Rs-GFP was stable and the vessel of the wilt plant was full of the pathogen bacteria. The results of second greenhouse experiment displayed that the CFU counts of Serratia sp. XY21-rif and XY21-RFP in the rhizosphere of tomato plants determined by selective plating at all sampling time were around107g-1RFW (root fresh weight). DGGE analysis of16S rRNA gene fragments amplified from total community DNA was used to detect shifts in the relative abundance of ribotypes in the tomato rhizosphere as a consequence of inoculation with antagonists. The comparison of the bacterial DGGE fingerprints revealed that at10and17days after seed inoculation, the patterns of all four replicates of both treatments were highly similar except that strong bands corresponding to the electrophoretic mobility16S rRNA gene products of XY21were detected in the profiles of XY21-mutants-inoculated plants. At24and41days after seed inoculation, several differentiating bands were detected. Some of these bands were only observed in the control or the inoculated plants. Remarkably,27days after the last drenching a dominant band resembling XY21mutants was still detected in three of four replicates suggesting that the inoculant established as dominant rhizosphere population. Highly similar Bacillus profiles were found for both the inoculated and control plants indicating that the inoculation had no effect on the Bacillus community composition, while the inoculation with XY21mutants clearly affected the abundance of some Pseudomonas populations.
引文
1. Ahmed Idris, H., Labuschagne, N., and Korsten, L.2007. Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biological Control,40 (1):97-106.
    2. Ahmed Idris, H., Labuschagne, N., and Korsten, L.2008. Suppression of Pythium ultimum root rot of sorghum by rhizobacterial isolates from Ethiopia and South Africa. Biological Control,45 (1): 72-84.
    3. Arwiynto, T., Goto, M., Tsusyumu, S., et al.1994. Biological control of bacterial wilt of tomato by an avirulent strain of Pseudomonas solanacearum isolated from strelit ziareginae. Phytopathological Society of Japan,60 (4):421-430.
    4. Bargabus, R. L., Zidack, N. K., Sherwood, J. E., and Jacobsen, B. J.2003. Oxidative burst elicited by Bacillus mycoides isolate Bac J, a biological control agent, occurs independently of hypersensitive cell death in sugar beet. Molecular Plant-Microbe Interaction,16:1145-1153.
    5. Beavis, A. J., and Kalejta R. F.1999. Simultaneous analysis of the cyan, yellow and green fluorescent proteins by flow cytometry using single-laser excitation at 458 nm. Cytometry,37(1): 68-73.
    6. Berg, G, Fritze, A., Roskot, N., and Smalla, K.,2001. Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb. Journal of Applied Microbiology,91:963-971.
    7. Bhatia, R., Dogra, R. C., Sharma, P.K.2002. Construction of green fluorescent protein (GFP)-marked strains of Bradyrhizobium for ecological studies. Journal of Applied Microbiology, 93:835-839.
    8. Bloemberg, G. V., Wijfjes A. H. M., Lamers G. E. M., Stuurman, N., and Lugtenberg, B. J. J.2000. Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autoflurescent proteins in the rhizosphere:new perspectives for studying microbial communities. Molecular Plant-Microbe Interaction,13 (11):1170-1176.
    9. Bloemberg, G. V., O'Toole, G. A., Lugtenberg, B. J. J., Kolter R.1997. Green fluorescent protein as a marker for Pseudomonas spp. Applied and Environmental Microbiology,63 (11):4543-4551.
    10. Boelens, J., Woestyne, M. V., and Verstraete, W.1994. Ecological importance of motility for the plant growth-promoting rhizopseudomonas strain ANP15. Soil Biology and Biochemistry,26 (2): 269-277.
    11.Bogs, J., Bruchmuller, I., Erbar, C., Geider K.1998. Colonization of host plants by the fire blight pathogen Erwinia amylovora marked with genes for bioluminescence and fluorescence. Phytopathology,88 (5):416-421.
    12. Boucher, C. A., Gough, C. L., and Arlat, M.1992. Molecular genetics of pathogenicity determinants of Pseudomonas solanacearum with special emphases on hrp genes. Annual Review of Phytopathology,30:443-461.
    13. Bowen, C. D., and Rovira, A. D.1976. Microbial colonization of plant root. Annual Review of Phytopathology,14:121-144.
    14. Bowers, J. H., and Parke, J. C.1999. Colonization of pea (pisum sntivum L.) taprats by Pseudomonas fluorescent:effect of soil temperature and bacterial motility. Soil Biology and Biochemistry,25 (12):1693-1701.
    15. Buddenhagen, I. W., Sequeira, L., and Kelman, A.1962. Designation of races in Pseudomonas solanacearum. Phytopathology,52:726.
    16. Bull, C. T., Weller, D. M., and Thomashow, L. S.1991. Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2-79. Phytopathology,81:954-959.
    17. Burnett, S., Chen, J., and Beuchat, L.2000. Attachment of Escherichia coli O157:H7 to the surfaces and internal structures of apples as detected by confocal scanning laser microscopy. Applied and Environmental Microbiology,66 (11):4679-4687.
    18. Cassidy, M. B., Leung, K. T., Lee, H., Trevors J. T.2000. A comparison of enumeration methods for culturable Pseudomonas fluorescens cells marked with green fluorescent protein. Journal of Microbiological Methods,40:135-145.
    19. Chalfie, M., Tu, Y., Euskirchen, G, Ward, W. W., Prasher, D. C.1994. Green fluorescent protein as a marker for gene expression. Science,263 (11):802-805.
    20. Chen, W. Y.1984. Effect of avirulent bacteriocin-producing strains of Pseudomonas solanacearum on the control of bacterial wilt of tomato. Plant Pathology,33:245-252.
    21. Chowdhury, A. K., Mitra, P., and Panj, B. N.2000. Effects of soil amendments and chemicals on bacterial wilt tomato caused by Pseudomonas solanacearum. Environment and Ecology,18: 476-478.
    22. Ciampi-Panno, L., Fernandez, C., Bustamante, P., Andrade, N., Ojeda, S., and Conteras, A.1989. Biological control of bacterial wilt of potatoes caused by Pseudomonas solanacearum. American Potato Journal,66:315-332.
    23. Cook D., Barlow, E., and Sequeira, L.1989. Genetic Diversity of Pseudomonas solanacearum: Detection of restriction fragment length polymorphisms with DNA probes that specify virulence and the hypersensitive response. Molecular Plant-Microbe Interaction,2:113-121.
    24. Costa, R., Gomes N.C.M., Peixoto, R., Rumjanek, N., Berg, G., Mendonca-Hagler, L., and Smalla, K.2006. Diversity and antagonistic potential of Pseudomonas spp. in the rhizosphere of maize grown in a subtropical organic farm. Soil Biology and Biochemistry,38:2434-2447.
    25. Dane, F., and Shaw, J. J.1996. Survival and persistence of bioluminescent Xanthomonas campestris pv. campestris on host and non-host plants in the field environment. Journal of Applied Bacteriology,80 (1):73-80.
    26. Das, K. K., Dubey, L. N., and Hazarika, D. K.1995. Sensitivity test of antibiotics against Pseudomonas solanacearum Smith, incitant of bacterial wilt of brinjal. Plant Health,1:77-79.
    27. Dashti, N., Prithiviraj, B., Hynes, R. K., and Smith, D. L.2000. Root and rhizosphere colonization of Soybean Glycine max (L) Merr by plant growth promoting rhizobacteria at low root zone temperatures and under short season conditions. Journal of Agronomy and Crop Science,185: 15-22.
    28. De, B. K., and Sengupta, P. C.1992. Control of brown rot diseases of potato through cultural practices in West Bengal Plains. Journal of the Indian Potato Association,19:1-2,90-92.
    29. Diogo, R. V. C., and Wydra, K.2007. Silicon-induced basal resistance in tomato against Ralstonia solanacearum is related to modification of pectic cell wall polysaccharide structure. Physiological and Molecular Plant Pathology,70:120-129.
    30. Dubey, L. N., Das, K. K., and Hazarika, D. K.1996. Evaluation of some chemicals against bacterial wilt Sesamum. Indian Journal of Mycology and plant Pathology,26:94-95.
    31. El Albyad, M. S., El Sayed, M.A., and El Shanshoury, A.R.1996. Effect of culture conditions on the antimicrobial activities of UV-mutants of Streptomyces corchorusii and S. spiroverticillatus against bean and banana wilt pathogens. Microbiology Research,151:201-211.
    32. Elphinstone, J. G.2005. The current bacterial wilt situation:a global overview, pp.9-28. Bacterial Wilt Disease and the Ralstonia solanacearum species complex (by Allen, C., Prior, P., and Hayward, A.C ed.), American Phytopathological Society Press, St. Paul, MN, U.S.A.
    33. Eugenia, N. M., and Khris, M. H.1996. The amb2 locus from Serratia entomophila confers anti-feeding effect on larvae of Costelytra zealandica (Coleoptera:Scarabaeidae). Gene,172 (1): 75-79.
    34. Fegan, M., and Prior, P.2005. How complex is the Ralstonia solanacearum species complex? P449-461. Bacterial Wilt Disease and the Ralstonia solanacearum species complex (by Allen, C., Prior, P., and Hayward, A.C ed.), American Phytopathological Society Press, St. Paul, MN, U.S.A.
    35. Feucht, A., and Lewis, P. J.2001. Improved plasmid vectors for the production of multiple fluorescent protein fusions in Bacillus subtilis. Gene,264:289-297.
    36. Fidopiastis, P. M., Miyamoto, C. M., Jobling, M. G., Meighen, E. A,, Ruby, E. G.2002. LitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization. Molecular Microbiology,45 (1):131-143.
    37. Fortnum, B. A., and Martin, S.B.1997. Disease management strategies for control of bacterial wilt of tobacco in the south-east USA. Tous Droits Reserves, France INRA,30.
    38. French, E. R., Aley, P., Torres, E., and Nydegger, U.1993. Diversity of Pseudomonas solanacearum in Peru and Brazil. P70-77. Bacterial Wilt (Hartman, G. L., and Hayward, A. C. ed.), Aust. Cent. Int. Agric. Res. Proc.45.
    39. Garbeva, P., van Veen, J. A. and van Elsas, J. D.2003. Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microbiological Ecology,45: 302-316.
    40. Ghose, T. K.1987. Measurement of cellulase activities. Pure and Applied Chemistry,59:257-268.
    41. Gillings, M. R., and Fahy, P.1994. Genomic fingerprinting:towards a unified view of the Pseudomonas solanacearum species complex.pp.95-112. Bacterial wilt:the disease and its causative agent, Pseudomonas solanacearum (Hayward, A. C., and Hartman, G. L., ed.), CAB International, Wallingford, United Kingdom.
    42. Goodin, M. M., Dietzgen, R. G., Schichnes, D., et al.2002. pGD vectors:versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. The Plant Journal,31 (3):375-383.
    43. Goodman, R. N.1967. Protection of apple stem tissue against Erwinia amylovora infection by avirulent strain and three bacteris. Phytopathology,57:22-24.
    44. Gotz, M., Gomes, N. C. M., Dratwinski, A., Costa, R., Berg, G, Peixoto, R., Mendonc, L.,Hagler, H., and Smalla, K.2006. Survival of gfp-tagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community. FEMS Microbiology Ecology,56: 207-218.
    45. Griffin, B. A., Adams, S. R., Tsien, R. Y.1998. Specific covalent labeling of recombinant protein molecules inside live cells. Science,281:269-272.
    46. Jach, G., Binot, E., Frings, S., Luxa, K., Schell J.2001. Use of red fluorescent protein from Discosoma sp. (dsRED) as a reporter for plant gene expression. The Plant Journal,28 (4):483-491.
    47. Guo, J. H., Qi, H. Y., Guo, Y. H., Ge, H., Gong, L. Y., Zhang, L. X. and Sun, P. H.2004. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control,29:66-72.
    48. Hameeda, B., Harinib, G., Rupela, O. P., Wani, S. P. and Reddy, G.2008. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiology Research,163:234-242.
    49. Hayward, A.C.1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology,29:65-87.
    50. Hayward, A. C.1964. Characteristics of Pseudomonas solanacearum. Journal of Applied Bacteriology,27:265-277.
    51. Hayward, A.C.1995. Pseudomonas solanacearum. pp.139-151. Pathogenesis and Host Specificity in Plant Disease:Histopathological, Biochemical, Genetic and Molecular Bases (Singh, U.S., Singh, R.P., Kohmoto, K., ed.), vol.1. Elsevier, Tarrytown.
    52. He, L. Y., Sequeira, L. and Kelman, A.1983. Characteristics of strains of Pseudomonas solanacearum from China. Plant Disease,67:1356-1361.
    53. Heuer, H., and Smalla, K.1997. Application of denaturing gradient gel electrophoresis and temperature gradient gel electrophoresis for studying soil microbial communities.pp 353-373. Modern Soil Microbiology (van Elsas J. D., Wellington E. M. H., Trevors J. T., ed.), Marcel Dekker, Inc., New York.
    54. Heuer, H., Wieland, J., Schonfeld, J., Schonwalder, A., Gomes, N. C. M and Smalla, K.2001. Bacterial community profiling using DGGE or TGGE analysis.pp.177-190. Environmental Molecular Microbiology:Protocols and Applications (Rouchelle P, ed.), Horizon Scientific Press, Wymondham, UK.
    55. Heuer, H., Yin, Y. N., Xue, Q. Y, Smalla, K., and Guo, J. H.2007. Repeat Domain Diversity of avrBs3-Like Genes in Ralstonia solanacearum Strains and Association with Host Preferences in the Field. Applied and Environmental Microbiology,73 (13):4379-4384.
    56. Horrita, M., and Tsuchiya, K.2001. Genetic diversity of Japanese strains of Ralstonia solanacearum. Phytopathology,91:399-407.
    57. Howie, W. J., Cook, R. J., and Weller, D. M.1987. Effects of soil matric potential and cellmotility on wheat root colonization by fluorescent pseudomonas suppressive to take-all. Phytopathology,77: 286-292.
    58. Jetiyanon, K., and Kloepper, J. W.2001. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biological control,24:285-291.
    59. Jiang, Z. Q., Guo Y. H., Li S. M., Qi H. Y., and Guo J. H.,2006. Evaluation of biocontrol efficiency of different Bacillus preparations and field application methods against phytophthora blight of bell pepper. Biological Control,36:216-223.
    60. Jones, J. P., Gilreath, J. P., and Overman, A. J.1995. Control of soil-borne diseases of muldhed tomato by fumigatin. Proceedings of the Florida State Horticultural Society,5:201-203.
    61. Kamensky, M., Ovadis, M., Chet, I., and Chernin, L.2003. Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biology and Biochemistry,35 (2):323-331.
    62. Kamilova, F., Validov, S., Azarova, T., Mulders, I. and Lugtenberg, B.2005. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environmental Microbiology,7 (11):1809-1817.
    63. Kerr, A.1980. Biological control of crown gall through production of agrocin 84. Plant Disease, 64:25-30.
    64. Kempe, J., and Sequeira, L.1983. Biological control of baterial wilt of potatoes:Attempts to induce resistance by treating tubes with bacteria. Plant Disease,67 (5):499-501.
    65. Kloepper, J. K. and Beauchamp, C. J.1992. A review of issues related to measuring colonization of plant roots by bacteria. Canadian Journal of Microbial,38:1219-1232.
    66. Kloepper, J. K., Schroth, M. N., and Miller, T. D.1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature,286:885-886.
    67. Kobayashi, D. Y., Guglielmoni, M. and Clarke, B. B.1995. Isolation of the chitinolytic bacteria Xanthomonas maltophilia and Serratia marcescens as biological control agents for summer patch disease of turfgrass. Soil Biology and Biochemistry,27 (11):1479-1487.
    68. Korhonen, T. K., Nurmiaho-Lassila. E. L., Laakso, T., Haahtela, K.1986. Adhesion of fimbriated nitrogen fixing enteric bacteria to roots of grasses and cereals. Plant and Soil,90:59-69.
    69. Lam, S. T., Ellis, D. M., and Ligon, J. M.1990. Genetic approaches for studying rhizosphere colonization. Plant and Soil,129:11-18.
    70. Larena, I., Sabuquillo, P., Melgarejo, P., and De Cal, A.2003. Biocontrol of Fusarium and Verticillium wilt of tomato by Penicillium oxalicum under greenhouse and field conditions. Journal of Phytopathology,151:507-512.
    71. Lemessa, F., and Zeller, W.2007. Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biological Control,42 (3):336-344.
    72. Li, J. H., Wang, E. T., Chen, W. F., and Chen, W. X.2008. Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biology and Biochemistry,40:238-246.
    73. Liljeroth, E., Burgers, S. L. G E., and van Veen, J. A.1991. Changes in bacterial populations along roots of wheat seedlings. Biol Fertil Soils,10:276-280.
    74. Loper, J. E., Haack, C. and Schroth, M. N.1985. Population dynamics of soil Pseudomonas in rhizosphere of potato (Solanum tuberosum L). Applied and Environmental Microbiology,49: 416-422.
    75. Loper, J. E., Suslow, T. V., and Schroth, M. N.1984. Lognormal distribution of bacterial populations in the rhizosphere. Ecology and Epidemiology,26:1454-1460.
    76. Lourekovich, L., and Farkas, G. L.1965. Induced protection against wildfire disease in tobacco leaves treated with heat-killed bacteria. Nature (London),205:823-824.
    77. Lugtenberg, B. J. J., Dekkers, L., and Bloemberg, G. V.2001. Molecular determinations of rhizosphere colonization by Pseudomonas. Annual Review of Phytopathology,39:461-490.
    78. Lyon, W. R., Madden, J. C., Levin, J. C., Stein, J. L., Caparon, M. G.2001. Mutation of luxS affects growth and virulence factor expression in Streptococcus pyogenes. Molecular Microbiology, 42(1):145-157.
    79. Maksimow, M., Hakkila, K., Karp, M., Virta, M.2002. Simultaneous detection of bacteria expressing gfp and dsred gene with a flow cytometer. Cytometry,47:243-247.
    80. Marin, J. E., and El-Nashaar, H. M.1993. Pathogenicity and new phenotypes of Pseudomonas solanacearum from Peru. pp.78-84. Bacterial Wilt (Hartman, G. L., and Hayward, A. C., ed.), Aust. Cent. Int. Agric. Res. Proc.45.
    81. Matthysse, A. G., Stretton, S., Dandie, C., Mcclure, N. C., Goodman, A. E.1996. Construction of GFP vector for use in Gram-negative bacteria other than Escherichia coli. FEMS Microbiology Letters,145:87-94
    82. McLaughlin, R. J., and Sequeira, L.1988. Evaluation of an avirulent strain of Pseudomonas solanacearum for biological control of bacterial wilt of potato. American Potato Journal,65 (5): 255-268.
    83. McLaughlin, R. J., Sequeira, L., and Woingartner, D. P.1990. Biocontrol of bacterial wilt of potato with an avirulent strain of Pseudomonas solanacearum. Interations with root-knot nematodes. American Potato Journal,67 (2):93-107
    84. Meziane, H., Gavriel, S., Ismailov, Z., Chet, I., Chernin, L., and Hofte, M.2006. Control of green and blue mould on orange fruit by Serratia plymuthica strains IC14 and IC1270 and putative modes of action. Postharvest Biology and Technology,39 (2):125-133.
    85. Miller, J. H.1992. A short course in bacterial genetics:a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
    86. Milling, A., Smalla, K., Maidl, F. X.; Schloter, M. and Munch, J. C.2004. Effects of transgenic potatoes with an altered starch composition on the diversity of soil and rhizosphere bacteria and fungi. Plant Soil,266:23-39.
    87. Misteli, T., and Spector, D. L.1997. Applications of the green fluorescent protein in cell biology and biotechnology. Nature Biotechnology,15 (10):961-964.
    88. Mohan, L., and Lakshmanan, P.1988. In Gananamanickam, S S, Mahaderan A J (eds.), Advancesin research on plant pathogenic bacteria. New delhi (India):Today and Tomorrow's Printers and Publishers,41-43.
    89. Naseby, D. C.,and Lynch, J. M.1998. Establishment and impact of Pseudomonas fluorescens genetically modified for lactose utilization and kanamycin resistance in the rhizosphere of pea, Journal of Applied Microbiology,84 (2):169-175.
    90. Nejad, P., and Johnson, P. A.2000. Endophytic Bacteria Induce Growth Promotion and Wilt Disease Suppression in Oilseed Rape and Tomato. Biological Control,18 (3):208-215.
    91. Nijhuis, E. H., Maat, M. J., Zeegers, L. W. E., et al.1993. Selection of bacteria suitable for intruduction to the rhizosphere of grass. Soil Biology and Biolchemistry,25:885-895.
    92. Normander, B., Hendriksen, N. B., and Nybroe, O.1999. Green fluorescent protein-marked Pseudomonas fluorescens:location, viability, and activity in the natural barley rhizosphere. Applied and Environmental Microbiology,10:4646-4651.
    93. Palleroni, N. J., and Doudoroff, M.1971. Phenotypic characterization and deoxyribonucleic acid homologies of Pseudomonas solanacearum. Journal of Bacteriology,107:690-696.
    94. Park, K. S., and Kloepper, J. W.2000. Activation of PR-la Promoter by Rhizobacteria That Induce Systemic Resistance in Tobacco against Pseudomonas syringae pv. Tabaci. Biological Control,18 (1):2-9.
    95. Paton, G. I., Palmer, G., Burton, M., Rattray, E. A. S., Mcgrath, S. P., Glover, A., Killham, K.1997. Development of an acute and chronic ecotoxicity assay using lux-marked Rhizobium leguminosarum biovar trifolii. Letters in Applied Microbiology,24(4):296-300.
    96. Paulitz, T. C, and Belanger, R. R.2001. Biological control in greenhouse systems. Annual Review of Phytopathology,39:103-133.
    97. Pegg, K., and Moffet, M.1971. Host range of the ginger strain of Pseudomonas solanacearum in Queensland. Australian Journal of Experimental Agriculture and Animal,11:696-698.
    98. Pieterse, C. M. J., Pelt, J. A. V., Van Wees, S. C. M., Ton, J., Leon-Kloosteriel, K. M., Keurentjes, J. J. B., Verhagen, B. W. M., et al.2001. Rhizobacteria-mediated induced systemic resistance: triggering, signaling and expression. European Journal of Plant Pathology,107:51-61.
    99. Raaijmakers, J. M., Bonsall, R. E., and Weller, D. M.1999. Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology,89:470-475.
    100. Raaijmakers, J. M., Leeman, M., van Oorschot, M. M. P., van der Sluis, I., Schippers, B., and Bakker, P. A. H. M.1995. Dose-response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathology,85:1075-1081.
    101. Rademaker, J. L. W., and DeBruijn, F. J.1997. Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer assisted pattern analysis. DNA Markers:Protocols, Applications and Overviews (Gaetano-Anolles G ed), pp 151-171. Willey and sons, New York.
    102. Rajarao, G. K., Nekhotiaeva, N., and Good, L.2002. Peptide-mediated delivery of green fluorescent protein into yeasts and bacteria. FEMS Microbiology Letters,215:267-272.
    103. Ramos, C., molbak, L., and Molin, S.2000. Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosom content and synthesis rates. Applied and Environmental Microbiology,66 (2):801-809.
    104. Roberts, W. K., and Selitrennikoff, C.P.1988. Plant and bacterial chitinases differ in antifungal activity. Journal of General Microbiology,134:169-176.
    105. Roberts, D. P., Lohrke, S. M., Meyer, S. L. F., Buyer, J. S., Bowers, J. H., Baker, C. J., Li, W., de Souza, J. T., Lewis, J. A. and Chung, S.2005. Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber. Crop Protection,24 (2):141-155.
    106. Roberts, D. P., McKenna, L. F., Lakshman, D. K., Meyer, S. L. F., Kong, H., de Souza, J. T., Lydon, J., Baker, C. J., Buyer, J. S. and Chung, S.2007. Suppression of damping-off of cucumber caused by Pythium ultimum with live cells and extracts of Serratia marcescens N4-5. Soil Biology and Biochemistry,39:2275-2288.
    107. Roy, S., Ojha, P. K., and Ojha, K. L.1998. Integrated management of wilt complex disease banana. Journal of Applied Biology,8:46-49.
    108. Saddler, G. S.2005. Management of bacterial wilt disease, pp.121-132. Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex (Allen C, Prior P, and Hayward AC, ed.), American Phytopathological Society Press, St. Paul, MN, U.S.A.
    109. Scherwinski, K., Grosch, R. and Berg, G.2008. Effect of bacterial antagonists on lettuce:active biocontrol of Rhizoctonia solani and negligible, short-terme effects on nontarget microorganisms. FEMS Microbiology Ecology,64:106-116.
    110. Scherwinski, K., Wolf, A., and Berg, G.2007. Assessing the risk of biological control agents on the indigenous microbial communities:Serratia plymuthica HRO-C48 and Streptomyces sp. HRO-71 as model bacteria. Biocontrol,52 (1):87-112.
    111. Shaw, J. J., Dane, F., Geiger, D., et al.1992. Use of Bioluminescence for detection of genetically engineered microorganisms released into the environment. Applied and Enviromental Microbiologiy,1:267-273.
    112. Shin, S. H., Lim, Y., Lee, S. E., et al.2001. CAS agar diffusion assay for the measurement of siderophores in biological fluids. Journal of Microbiological Methods,44:89-95.
    113. Silveira, E. B., Da, R., Mariano de, L. R., Michereff, S. J.1995. Antagonism of Bacillus spp. against Pseudomonas solanacearum and effect on tomato seedling growth. Fitopatologia Brasileira, 20 (4):605-612.
    114. Simons, M., Brand, I., Wijffelman, C. A., et al.1996. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Molecular Plant-Microbe Interaction,9 (7):600-607.
    115. Sinclair, J. L., and Alexander, M.1989. Effect of protozoan predation relative aboundance of fast and slow growing bacteria. Canadian Journal of Microbiology,35:578-582.
    116. Sisson, V. A.1999, Registration of "Oxford 207" tobacco. Crop science,39:292,
    117. Smith, C. B., Anderson, J. E., Fischer, R. L., Webb, S. R.2002. Stability of green fluorescent protein using luminescence spectroscopy:is GFP applicable to field analysis of contaminants? Enviromental Pollution,120:517-520.
    118. Smith, K. P., and Goodman, R. M.1999. Host variation for interactions with beneficial plant associated microbes. Annual Review of Phytopathology,37:473-491.
    119. Tanaka, H., Negishi, H., and Maeda, H.1990. Control of tobacco bacterial wilt by an avirulent strain of pseudomonas-solanacearum m4s and its bacteriophage. Annuals of the Phytopathological Society of Japan,56 (2):243-246.
    120. Thammakijjawat, P., Thaveechai, N., Kositratana, W., Chunwongse, J., Frederick, R. D., and Schaad, N. W.2004. Genetic analysis of Ralstonia solanacearum strains from different hosts in Thailand using PCR-Restriction Fragment Length Polymorphism. Kasetsart Journal (Nature Science),35:397-408.
    121. Thaning, C., Welch, C. J., Borowicz, J. J., Hedman, R., and Gerhardson, B.2001. Suppression of Sclerotinia sclerotiorum apothecial formation by the soil bacterium Serratia plymuthica: identification of a chlorinated macrolide as one of the causal agents. Soil Biology and Biochemistry, 33:1817-1826.
    122. Thurston, H. D.1976. Resistance to bacterial wilt (Pesudomonas solanacearum). Planning conferences and workshop on the ecology and control of bacterial wilt caused by Pesudomonas solanacearum (Sequeira L. and Kelman A., ed.), Raleigh, North Carolina, NCSU.
    123. Tjamos, S. E., Flemetakis, E., Paplomatas, E. J., and Katinakis, P.2005. Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Molecular Plant-Microbe Interaction,18,555-561.
    124. Toyoda, H., Hashimoto, H., Utsumi, R., et al.1988. Detoxification of fusaric acid by a fusaric acid-resistant mutant of Pseudomonas solanacearum and its application to biological control of Fusarium wilt of tomato. Phytopathology,10:1307-1311.
    125. Trigalet, A., and Demery, D.1990. Use of avirulent mutants of Pseudomonas solanacearum for the biological control of bacterial wilt of tomato plants. Physiological and Molecular Plant Pathology, 36(1):27-38.
    126. Trotel-Aziz, P., Couderchet, M., Biagianti, S., and Aziz, A.2008. Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. Environmental and Experimental Botany,64 (1):21-32.
    127. Tsien, R. Y.1998. The green fluorescent protein. Annual Review of Biochemistry,67:509-544.
    128. Van Elsas, J. D., van Overbeek, L. S., Feldmann, A. M. et al.1991. Survivoral of genetically engineered Pseudomonas fluorescens in soil incompetition with the parents strain. FEMS Microbiology Ecology,85:53-64.
    129. Vesper, S. J., and Bauer, W. D.1986. Role of Pili (fimbriae) in attchment of Brady rhizobium japonicum to soy bean roots. Applied and Environmental Microbiology,52:134-141.
    130. Wagih, E. E.1991. Neither Indole Acetic Acid nor Bacteriocin is Apparently Involved in the in vitro Antagonism between the Virulent and the Avirulent Strains of Pseudomonas solanacearum. Journal of Phytopathology,132(2):153-160.
    131. Wang, J. F., and Berke, T.1997. Source of resistance to bacterial wilt in Capsicum annum. Capsicum and Eggplant Newsletter,16:91-93.
    132. Webb, C. D., Decatur, A., Teleman, A., Losick, R.1995. Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. Journal of Bacteriology,10:5906-5911.
    133.DE Weger, L. A., Dunbar, P., Mahafee, W. F., Lugtenberg, B. J. J., Sayler, G. S.1991. Use of bioluminescence markers to detect Pseudomonas spp. In the rhizosphere. Applied and Environmental Microbiology,57(12):3641-3644.
    134. Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H. and Nishiuchi, Y.1995. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia General Nov. Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov, Ralstonia solanacearum (Smith 1896) comb. Nov and Ralstonia eutropha (Davis 1969) comb. Nov. Microbiology and Immunology,39:897-904.
    135. Yang, J. H., Liu, H. X., Zhu, G. M., Xu, L. P., Pan, Y. L., and Guo, J. H.2008. Diversity analysis of antagonists from rice associated bacteria and their application in biocontrol of rice diseases. Journal of Applied Microbiology,104 (1):91-104.
    136. Yu,Q., Alvarez, A. M., Moore, P. H., Zee, E., Kim, M. S., de Silva, A., Hepperly, P. R. and Ming, R. 2003. Molecular diversity of Ralstonia solanacearum isolated from ginger in Hawaii. Phytopathology,93:1124-1130.
    137. Zhang, S. A., Anne-Laure, M., Reddym, M. S. and Kloepper, J. W.2002. The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biological Control,25 (3):288-296.
    138. Zhu, H. H., Yao, Q., Li, H. H., and Yang, S. Z.2004. Inhibition of Ralstonia solanacearum by AM fungus Glomus versiforme and their effect on phenols in root. Journal of Microbiology,31 (1):1-5.
    139. Zhu, J. D., Musco, M. L., and Grace, M.1999. Three-color flow cytometry analysis of tricistronic expression of eBFP, eGFP, and eYFP using EMCV-IRES Linkages. Cytometry,37:51-59.
    140.蔡燕飞,何成新,廖宗文等.2003.蛭石和沸石对番茄青枯病及土壤微生物的影响.生态环境,12(2):179-181.
    141.陈庆河,翁启勇,胡方平.2003.青枯病原细菌无毒菌株诱导番茄防御酶系及粗提取液抑菌活性的影响.植物病理学报,33(4):334-337.
    142.陈庆河,翁启勇,胡方平.2004.无致病力青枯菌株对番茄青枯病的防治效果.中国生物防治,21(2):42-44.
    143.陈营,夏晓勤,陆承平.1999.绿色荧光蛋白表即可移动载体质粒的构建及其在嗜水气单胞菌的表达.农业生物技术学报,7(4):24-26.
    144.邓正平,匡传富,罗宽.2003.植物性药剂防治烟草青枯病的田间试验.作物研究,17(3):142-143.
    145.董春,曾宪铭,刘琼光.1999.利用无致病力青枯菌株防治番茄青枯病的研究.华南农业大学学报,20(4):1-4.
    146.甘四明,白嘉雨,吴坤明等.1998.尾叶桉作母本的种间控制授粉家系苗期抗青枯病研究.林业科学,11(6):569-573.
    147.郭坚华,孙平华,吴云波.1997.植物细菌性青枯病的生物防治机制和途径.中国生物防治,13(1):42-46.
    148.何红,蔡学清,关雄等.2003.内生菌BS-2菌株的抗菌蛋白及其防病作用.植物病理学报,33(4):373-378.
    149.何礼远,华静月,张长龄等.1983.我国细菌性青枯病的发生与防治.植物保护,9(3):8-10.
    150.何礼远,康耀卫.1990.利用青枯菌无毒菌株和荧光假单胞菌诱导花生产生抗病性.植物保护 学报,17(2):113-116.
    151.江忠明,张玉瑞,顾钢.2000.石硫合剂防治烟草青枯病初探.烟草科技,2:47-48.
    152.孔凡玉,卢平,许永峰等.2004.20%青枯灵可湿性粉剂防治烟草青枯病药效试验初报.中国烟草科学,1:36-37.
    153.李广存,金黎平,谢开云等.2004.马铃薯青枯病研究进展.中国马铃薯,18,350-354.
    154.黎起秦,林纬,陈永宁等.1999.植物土传病害拮抗真菌的筛选.西南农业学报,12(3):81-84.
    155.黎起秦,罗宽,林纬.2003.番茄青枯病内生拮抗细菌的筛选.植物病理学报,33(4):364-367.
    156.李海涛,邹庆道,吕书文.2001a.番茄青枯病的研究进展.园艺学报,28:649-654.
    157.李海涛,邹庆道,吕书文等.2001b.番茄抗青枯病育种方法研究.辽宁农业科学,6:1—4.
    158.刘铭,张敏,戢俊臣等.2005.中国姜瘟病的研究进展.中国农学通报,21,337-341.
    159.梁秀玲.2000.怎样综合防治桑青枯病.广西蚕业,37(2):52.
    160.梁子超,陈小华.1984.木麻黄抗青枯病品系的筛选.华南农学院学报,5(4):53-59.
    161.廖泳梅,张桂英.1997.土壤条件与番茄青枯病发生的关系探讨.广西植保,10(3):13-16.
    162.刘雅婷,李永忠,张世珖.2002.烟草青枯病的防治措施.云南农业,4:15.
    163.龙良鲲,肖崇刚,窦艳霞.2003.防治番茄青枯病内生细菌的分离与筛选.中国蔬菜,2:19-21.
    164.陆民强,陈一航,林美琛等.1992.嫁接防治番茄青枯病研究简报.植物保护学报,18(3):25.
    165.卢同.1997.我国作物细菌性青枯病的研究进展.福建农业学报,13(2):33-40.
    166.吕泽勋,李久蒂,朱至清.2001a.用绿色荧光蛋白基因(gfp)标记产酸克雷伯氏菌SG-11研究其在水稻苗期根部的定殖.农业生物技术学报,9(1):13-18.
    167.吕泽勋,李久蒂,朱至清.2001b.玉米内生固氮菌的回接分离及限菌条件在玉米根内的定殖.应用与环境微生物学报,7(3):207-212.
    168.茆灿泉,杨树德.2000.发光细菌lux报告基因系统的评价及应用.微生物学通报,27(4):297-299.
    169.邱清华,邓绍云,杨文成等.2007茄科植物细菌性青枯病的防治方法与进展.孝感学院学报,27(6):18—22.
    170.任欣正,申道林,谢贻格.1993.番茄青枯病的生物防治.南京农业大学学报,16(1):45-49.
    171.覃新导,罗养.2000.青枯灵防治茄子青枯病初步试验.热带农业科学,4:20-22.
    172.孙思,韦爱梅,伍慧雄等.2004.青枯病的化学和生物防治研究进展。江西植保,27(4):157-162.
    173.于国平,罗宽,廖晓芸,周志成.1996.湖南省青枯病菌生理小种和生化变种的研究.湖南农业大学学报,22:371-374.
    174.王海华,曹赐生,康健等.2002.水杨酸诱导的水稻对白叶枯的系统抗性与未处理叶酶活性的变化.中国水稻科学,16(3):252-256.
    175.王平,胡正嘉,李阜棣.1996.荧光假单胞菌群根部定殖的研究进展.2(4):408-414.
    176.谢道昕,范云六,何礼远.1989.植物青枯菌细菌素的纯化及其性质的研究.微生物学报,29(4):284-292.
    177.杨海莲,孙晓璐,宋未.2000.植物根际促生细菌和内生细菌的诱导抗病性的研究进展.植物病理学报,30(2):106-110.
    178.杨合同,庞定远,任欣正.1990.姜瘟病生物防治试验初报.山东科学,3(1):42-46.
    179.姚革.1989.细菌性青枯病的研究进展.植物保护,1:31-33.
    180.姚革,张帆,李舟.1994.土壤添加剂防治细菌性青枯病初报.生物防治通报,10(3):106-109.
    181.姚震声.2003.枯草芽孢杆菌绿色荧光蛋白标记系统的构建.硕士论文.
    182.张炳欣,张平.2000a.影响引入微生物根部定殖的因素.应用生态学报,11(6):951-953.
    183.张炳欣,张平.2000b.植物根围外来微生物定殖的检测方法.浙江大学学报(农业与生命科学版),26(6):624-628.
    184.张金林,常志卷,李维宽.植物性杀菌剂研究进展.河北农业大学学报,1998,21(3):112-115.
    185.郑惠成,林继强,高雅.普通木麻黄抗青枯病无性系的初步筛选.福建林业科技,1991,18(4):70-74.
    186.郑继法,张建华,许永玉等.1994.烟草细菌性青枯病防治方法研究进展.烟草科技,1:43-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700