用户名: 密码: 验证码:
不同类型水库养殖生态学的比较与放养结构调整的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有关水库水化学、浮游生物及底栖动物的研究是水库水生态系统研究的主要内容,对于保护、维持、恢复水库水生态环境,以及渔业资源开发利用的可持续发展具有重大意义。本文选取湖北省四座不同类型的大中型水库作为研究对象,比较研究了理化因子的分布变化特征,浮游生物、底栖动物的群落结构特点,演替变化规律,分析了差异的成因所在。另外还探讨了浮游动物与浮游植物的相互作用机制,以及环境因子对浮游生物、底栖动物的影响,并通过逐步回归分析、CCA等数量生态学的手段,明确了主要理化性状与浮游生物、底栖动物的相关关系。运用综合营养状态指数(TSIc)对四座水库营养状态进行了综合评价。根据饵料生物的现存量测算出的鱼产潜力大小,浮游植物、浮游动物、底栖动物现存量的特点,利用能量生态学的手段,对四座水库鱼类的放养结构进行调整,并比较了调整前后的鱼产量大小和渔业经济效益。其研究内容和结果如下:
     1、全年库水温度的变化范围为5.5-31.0℃,平均16.5℃;DO时空变化明显,且各水层DO充足,稳定,均维持在6.5 mg/L以上;DIN的水平分布和季节变化明显,但无水层分布现象;PO3-P极度匮乏,P是营养盐的主要限制因子;TN的值在冬季时为夏春季的3-5倍,除金沙河为0.392 mg/L外,其余三座水库均在0.700 mg/L以上,说明水体已受到不同程度的N污染;N/P偏大,变化范围为7.6-142.6,平均值在38.0左右;ALK、TH的变化范围为1.0-2.6 mmol/L,属软水;各库在10m左右均出现温跃层,上下温差达10℃。按照相关加权综合营养状态指数法(TSIc),结合湖库营养类型划分标准,对四座水库的水质进行综合营养类型评价。结果是:金沙河为中营养型,道观河为富营养型,徐家河和桃园河为中-富营养型。
     2、四座水库共鉴定出浮游植物215种,从组成来看,四座水库均属于硅藻-绿藻型,蓝藻含量居第3位。蓝藻主要分布在SD以上的水层,硅藻主要分布在SD-2SD之间水层,其余各门藻类基本上集中分布在2 SD以上水层,绿藻门中的栅藻(Scenedesmus),裸藻门中囊裸藻(Trachelomonas)则广泛分布于深水层中。表层和底层的差异很大,一般在2-3倍以上。浮游植物生物量的水层分布除道观河为表层>SD>2 SD>3 SD>底层,其余三座水库均为SD>表层>2SD>3SD>底层。金沙河Chl-a的年平均含量为2.04μg/L,变化范围1.25-2.93μg/L;道观河为17.9μg/L,变化范围5.31-36.56μg/L,是金沙河的7倍之多;徐家河和桃园河平均含量分别为9.64μg/L、7.26μg/L,变化范围分别为2.64-15.51μg/L、2.13-14.19μg/L。各库的Chl-a值季节差异大,且变化明显,达到了极显著水平(P<0.01)。除徐家河的Simpson多样性指数(d)为中游最高外,其余三座水库均为上游>中游>下游,且差异不显著(P>0.5)。从水库之间来看,金沙河的Shannon-Wiener多样性指数(H)、Margalef多样性指数(D)、Simpson多样性指数(d)、Pielou均匀度指数(J)与其它三座水库各指数之间均达到了极显著水平(P<0.01),而道观河、徐家河、桃园河两两之间差异不明显。TN与浮游植物呈负相关,但相关系数低,其回归方程y=-0.33x+2.86,p=0.442>0.05,R2=0.033,R2=0.021,r=-0.182;TP与浮游植物呈正相关,其回归方程y=19.9x+2.14,p=0.06>0.05,R2=0.183,R2=0.138,r=0.478,虽相关系数达到0.478,但未达到显著水平(P>0.05)。水体的营养水平不同是四座水库浮游植物群落结构差异的主要原因。
     3、四座水库共鉴定出浮游动物147种,从种类组成上来看,原生动物和轮虫占优势。四座水库含共有种15种,其中原生动物6种,轮虫4种,枝角类3种,桡足类2种,分别占40.0%,26.7%,20.0%,13.3%。金沙河浮游动物多样性明显高于其它三座水库,Shannon-Wiener指数(H)和Simpson指数(d)分别达到2.99、5.16,与其余三座水库均差异极显著(P<0.01);道观河浮游动物多样性指数最低,Shannon-Wiener指数(H)和Simpson指数(d)分别为1.80、2.48;徐家河和桃园河比较接近,Shannon-Wiener指数(H)依次为2.08、2.07,Simpson指数(d)依次为3.58、3.72。徐家河、桃园河的Simpson指数(d)与道观河差异显著(P<0.05)。原生动物和轮虫的生物量与COD、TN、TP呈显著的正相关(P<0.01),与DO呈显著的负相关(P<0.01)。由于枝角类、桡足类密度低,个体差异大,与COD、DO、TN、TP相关性不明显。优势种与浮游动物丰度有显著的相关性。浮游动物对浮游植物丰度的影响在金沙河中表现明显,在道观河反而呈现正相关,相关系数r=0.45,在其它两座水库无明显相关性。
     4、共采集底栖动物38种,其中寡毛类14种,占36.8%;水生昆虫18种,占47.4%;软体动物6种,占15.8%。道观河优势种为强耐污种类的霍甫水丝蚓Limnodrilus hoffmeisteri、大红德永摇蚊Tokunagayusurika akamusi;桃园河是典型的山谷型水库,底栖动物的组成、密度、生物量也符合这一特征;寡污带的长跗摇蚊Tanytarsus sp.、劳氏摇蚊Lauterbornia sp.,β-中污带的多毛管水蚓Aulodrilus pluriseta等一些较清洁的种类在水质良好的金沙河广泛分布,且金沙河周年均可采集到方格短卷螺Semisulcospira cancellata、梨形环棱螺Bellamya purificata、河蚬Corbicula fluminea等软体动物;徐家河属于典型的中-富营养型水体,其优势种类为β-中污带的瑞士水丝蚓Limnodrilus helveticus,α-中污带的前突摇蚊Procladius sp.。寡毛类与COD呈负相关,达到了极显著水平(P<0.01),与DO、SD呈正相关,达到了显著水平(P<0.05);水生昆虫与COD、DO、SD相关性不明显。通过相关矩阵分析,发现水生昆虫与水深呈负相关关系,随着水深的增加,其密度和种类下降,水深超过10m,随着深度增加下降幅度增大;寡毛类有从属于TN和TP含量的趋势,TP对底栖动物的影响较TN明显。广泛用于湖泊水质评价的底栖动物的Shannon-Wiener和Margalef生物多样性指数,评价水库水质时需对评价标准加以修正和完善;Simposon多样性指数完全不适宜对深水水库的水质进行评价。
     5、根据浮游生物现存量估测水库鱼产潜力时,浮游生物要分水层多层采样(至少5层以上),计算平均值。并根据浮游植物、浮游动物的现存量的大小和特点,以及鲢、鳙的摄食特性,确定鲢、鳙放养的数量和比例,切记盲目追求高经济效益的鳙产量,而忽视鲢的渔业生产作用。我们所研究的四座水库鲢、鳙的放养比例均在0.6:1以上,其生长情况良好。
Studies on water chemistry, plankton and zoobenthos in reservoirs which are the main research aspects of aquatic ecosystem have played a significant role in the conservation, maintenance and recovery of aquatic ecological environment as well as the sustainable development of fishery resources exploit. The present study was aimed at distribution features of physico-chemical factors, community structure, succession rules, and casual analysis of plankton and zoobenthos of the four reservoirs with different trophic types in Huhei province. Interaction mechanism of phytoplankton and zooplankton, and the influence of environmental factors upon both of them were analyzed as well. The correlation between main physical and chemical factors and plankton and zoobenthos was established by means of gradual regression analysis, CCA and other quantitative ecological ways. Comprehensive assessment on trophic states of the four reservoirs was conducted via the comprehensive Trophic State Index(TSIc). Fish productivity and standing crops of phytoplankton, zooplankton and zoobenthos were calculated based on standing crops of biotic organisms. Adjustment proposal of stocking structure of the four reservoirs was suggested by energy-ecological means and comparison of fish production and economical profits of fishery was conducted before and after the adjustment. The results indicated that:
     1. The water temperature of all reservoirs ranged from 5.5 to 31.0℃and average value was 16.5℃. The content of DO in each layer was abundant, stable, and no less than 6.5 mg/L, featuring stark spatio-temporal variations. DIN presented obvious horizontal distribution and seasonal variations without layer distribution. There was extreme deficiency in PO3-P content wherein P was the principal restriction factor of trophic minerals. The content of TN in winter was 3 to 5 times to that of spring and summer, which was more than 0.700 mg/L in three reservoirs except Jinshahe reservoir with content of 0.392 mg/L, suggesting that the water body had suffered the pollution of N. The mean value of N/P was about 38.0 with a scope from 7.6-142.6, which was higher than usual. The value of ALK and TH of all reservoirs varied from 1.0-2.6 mmol/L, indicating that all water bodies belonged to soft water. Thermocline with a temperature gap of 10℃was found in the depth of 10 m in all reservoirs. Comprehensive trophic type evaluation on water quality was conducted according to the relative comprehensive Trophic States Index(TSIc) and definitive criterion of trophic type of lakes and reservoirs. The results revealed that Jinshahe reservoir belonged to medium-trophic level, Daoguanhe reservoir eutrophication state, and Xujiahe and Taoyuanhe sites medium-eutrophic types.
     2. There were 215 species of phytoplankton in the four reservoirs, in which diatom, chlorella, and blue-green algae ranked 1,2, and 3, respectively. Blue-green algae was mostly found in the layer above SD, diatom in the layer between SD and 2 SD, whereas other algae including Scenedsmus and Trachelomonas were mainly found in the layer above 2 SD. Layer distribution of phytoplankton biomass was characterized as SD> surface> 2 SD>3 SD> bottom except surface>SD>2 SD>3 SD>bottom in Daoguanhe reservoir. Content of Chl-a varied from 1.25-2.93μg/L with an annual average of 2.04μg/L in Jinshahe reservoirs,5.31-36.56μg/L and 17.9μg/L in Daoguanhe site,2.64-15.51μg/L and 9.64μg/L in Xujiahe sites, and 13-14.19μg/L and 7.26μg/L in Taoyuanhe site respectively, wherein seasonal variations showed extremely significant difference (P<0.01) between all reservoirs. Simpson diversity index (d) was upper stream>middle stream>downstream without no significant difference (P<0.05) except the highest in middle stream in Xujiahe site. It revealed extremely significant difference (P<0.01) in Shannon-Wiener diversity index (H), Margalef diversity index (D), Simpson diversity index (d) and Pielou evenness index (J) between Xujiahe site and other three sites while there was no significant difference (P>0.05) among Daoguanhe site, Taoyuanhe site and Jinshahe site. Negative correlation was found between TN and phytoplankton with the regression equation of y=-0.33x+2.86, p=0.442>0.05, R2=0.033, R2=0.021,γ=-0.182. Positive correlation existed between TP and phytoplankton with the regression equation of y=19.9x+2.14, p=0.06> 0.05, R2=0.183,R2=0.138,γ=0.478(P>0.05). It was the difference in water trophic levels that attributed to the variations of phytoplankton community structure in the four reservoirs.
     3. There were 147 species of zooplankton in all reservoirs wherein protozoa, rotifers, cladoceran and copepods accounted for 40.0%,26.7%,20.0% and 13.3% respectively. Shannon-Wiener diversity index (H) and Simpson diversity index (d) was 2.99 and 5.16 in Jinshahe sites, which were higher than those of other sites with extremely significant difference (P<0.01). The two indices were 1.80 and 2.48 in Daoguanhe site, featuring significant difference (P<0.05) to that of Xujiahe site with data of 2.08 and 3.58 and Taoyuanhe site with data of 2.07 and 3.72. Biomass of protozoa and rotifers was positively correlated to COD, TN and TP, but negatively correlated to DO(P<0.01). No pronounced correlation was monitored between biomass of cladoceran and copepods and COD, DO, TN and TP, as a result of low density and remarkable individual difference. Pronounced correlation was (P<0.05) found between dominant species and abundance of zooplankton. Obvious impact was seen of zooplankton upon phytoplankton abundance in Jinshahe site whereas positive correlation (r=0.45) was revealed in Daoguanhe site, and no stark correlation was observed in other two reservoirs.
     4. There were 38 species(genus) of zoobenthos, wherein oligochaeta (14), aquatic sects(18) mollusca(6) accounted for 36.8%,47.4% and 15.8%, respectively. Dominant species in Daoguanhe site were Limnodrilus hoffmeisteri and Tokunagayusurika akamusi with super resistance to pollution, which was similar to that of Taoyuanhe site, a kind of valley-type reservoir. Some zoobenthos like Tanytarsus sp. and Lauterbornia sp. in non-polluted zone, Aulodrilus pluriseta in P-medium-polluted zone et al. widely spread in Jinshahe site with good water quality where some kinds of mollusks were the trophies in sample collection all the year such as Semisulcospira cancellata, Bellamya purificata, Corbicula fluminea and so on. Limnodrilus helveticus inβ-medium-polluted zone and Procladius sp. inα-pollution zone were the dominant species in Xujiahe site, a kind of medium-eutrophic reservoir. Oligochaeta was negatively correlated to COD (P<0.01) and positively correlated to DO and SD (P<0.05). No pronounced correlation was found between aquatic insects and COD, DO and SD. Negative correlation existed between density and species diversity of aquatic insects and water depth via matrix analysis, to the extent where a more drastic decline occurred below the depth of 10 m. Oligochaeta seemed proportional to the content of TN and TP and TP had a more obvious impact upon zoobenthos than TN. Shannon-Wiener and Margalef biodiversity index of zoobenthos, which were widely employed to assess lake water quality, shall be revised when used in evaluation on water quality of reservoirs. Simposon diversity index was absolutely adoptable in evaluation on water quality of deep reservoirs.
     5. Sample collection of plankton in multi-layer (no less than 5 layers) was suggested in estimation on fish productivity of reservoirs based on mean values of plankton standing crops. Stocking density and proportion of Hypophthalmichthys molitrix and Aristichthys nobilis were calculated based on standing crops and cibating features of two kinds of fish. The function in fishery production of Hypophthalmichthys molitrix should not be overlooked in hot pursuit of the production of highly-valued Aristichthys nobilis. All stocking proportion (calculated as weight) in the four reservoirs was above 0.6:1,where the two kinds of fish presented good growth.
引文
1. 蔡庆华.武汉东湖浮游生物间相互关系的多元分析.中国科学院研究生院学报,1995,12(1): 97-102
    2. 蔡庆华.湖泊富营养化综合评价方法.湖泊科学,1997,9(1):89-94
    3.蔡晓明,任久长,宗志祥,尚玉昌,杨俭美,许崇任,李松岗,柯兵.青龙河底栖无脊椎动物群落结构及其水质评价.应用生态学报,1992,3(4):364-370
    4.柴夏,史加达,刘从玉,谢贻发.大钟岭水库氮磷营养盐季节变化及其与水质的关系.安徽农业科学,2008,36(1):5398-5399
    5. 陈义.中国动物图谱:环节动物.北京:科学出版社,1959
    6.陈立婧,彭自然,孙家平,王武,杨义辉,陈华.安徽南漪湖大型底栖动物群落结构.动物学杂志,2008,43(1):63-68
    7. 陈绵润.白鲢和尼罗罗非鱼混养对热带水库浮游动物群落影响—大型围隔实验.[硕士学位论文].武汉:华中农业大学图书馆,2007
    8. 陈其羽,梁彦龄,吴天惠.武汉东湖底栖动物群落结构和动态的研究.水生生物学集刊,1980,7(1):41-56
    9.陈其羽.武汉东湖铜锈环棱螺种群变动和生产量的初步观察.水生生物学报,1987,11(2):117-130
    10.陈其羽,谢翠娴,梁彦龄,王士达.望天湖底栖动物种群密度与季节变动的初步观察.海洋与湖沼,1982,13(1):78-86
    11.陈其羽,梁彦龄,王贵保,王士达.武昌东湖软体动物的生态分布及种群密度.水生生物学集刊,1975,5(3):371-379
    12.陈伟民,陈宇炜,秦伯强,高锡芸,高光,季江,许秋瑾.模拟水动力对湖泊生物群落演替的实验.湖泊科学,2000,12(4):346-352
    13.成水平,吴振斌,夏宜琤.水生植物的气体交换与输导代谢.水生生物学报,2003,27(4):413-417
    14.戴友芝,唐受印,张建波.利用底栖动物群落特征评价洞庭湖污染的研究.湘潭大学自然科学学报,1999,21(4):83-87
    15.戴泽贵,曹克驹,高志发,杨文宏.全国部分水库渔业营养类型划分研究.水利 渔业,1984,4:9-11
    16.杜瑜,闫洪山,张艳萍.碧流河水库底栖动物及其鱼产力的研究.水利渔业,2006,26(3):45-47
    17.冯胜,高光,朱广伟,张运林,秦伯强.基于16SrDNA-DGGE和FDC技术对富营养化湖泊不同生态修复工程区细菌群落结构研究.应用与环境生物学报,2007,13(4):535-540
    18.高丽,杨浩,周健民.湖泊沉积物中磷释放的研究进展.土壤,2004,36(1):12-15
    19.高宏.苏州某湖水体细菌污染状况及分析.上海环境科学,1998,17(2):18-21
    20.高坤乾,顾继光,韩博平.三座不同营养类型水库春季细菌生理群分布特征.生态环境,2006,15(3):469-474
    21.龚志军,谢平,唐汇涓,王士达.水体富营养化对大型底栖动物群落结构及多样性的影响.水生生物学报,2001,25(3):210-216
    22.何明海.东山湾潮下带多毛类的分布.台湾海峡,1990,9(3):206-211
    23.何志辉,李永函.清河水库的浮游生物.水生生物学集刊,1983,8(1):71-84
    24.何志辉,王喜庆.碧流河水库的水化学、浮游生物和初级生产力.大连水产学院学报,1992,7(2/3):1-18
    25.何志辉.内陆水域渔业生产力问题.水产科技情报,1980,4:8-12
    26.何志辉.湖泊水库鱼产力的估算.水产科技情报,1982,4:2-5
    27.何志辉.中国湖泊和水库的营养分类.大连水产学院学报,1987,1:1-10
    28.洪小筠.古田溪一级水库水质变化研究.福建水利发电,1997,2:20-23
    29.洪一平,叶闽,藏小平.三峡水库水体中氮磷影响研究.中国水利,2004,20:23-24
    30.侯继灵.不同氮源和铁对浮游植物生长影响的围隔实验研究.[硕士学位论文].武汉:华中农业大学图书馆,2007
    31.胡韧,林秋奇,王朝晖,韩博平.广东省典型水库浮游植物组成与分布特征.生态学报,2002,22(11):1939-1944
    32.胡韧,林秋奇,段舜山,韩博平.热带亚热带水库浮游植物叶绿素a与磷分布的特征.生态科学,2002,21(4):310-315
    33.湖北省水库调查队.湖北省水库渔业生产性能调查.水库渔业,1982,4:10-45
    34.黄波,薛钦昭,李军.环境因子对菲律宾蛤仔摄食生理生态的影响,海洋与湖沼, 2000,31(6):636-642
    35.黄文钰.中国主要湖泊叶绿素与总磷关系.污染防治技术,1997,10(1):11-12
    36.姜新耀,王丽卿,陈马康.滆湖水域水细菌生长速率的测定及其动态研究.上海水产大学学报,1997,6(4):258-262
    37.姜作发,夏重志,赵春刚,田丰声,王忠斌,余光辉.蛤蟆通水库底栖动物.水产学杂志,1996,9(1):32-34
    38.姜作发,夏重志,董崇智,赵春刚.蛤蟆通水库水位变化对浮游植物初级生产力及能量转化效率的影响.中国水产科学,2001,8(4):23-26
    39.姜作发,夏重志,董崇智,赵春刚.水位变化对蛤蟆通水库浮游动物种群动态的影响.水产学杂志,2003,16(1):50-52
    40.蒋俊,李华芝,李秀艳.治理富营养化水体的生物栅中浮游动物群落特征.上海化工,2008,33(5):1-5
    41.焦念志,王荣,李超伦.东海春季初级生产力与新生产力的研究.海洋与湖沼,1998,29(2):135-140
    42.金送笛,刘绣景,毕凤山,李永函.内蒙古克旗地区四座水库的水化学和水生生物调查.大连水产学院学报,1995,10(4):1-12
    43.金相灿,刘鸿亮,屠清瑛.中国湖泊富营养化.北京:中国环境科学出版社,1990
    44.金相灿,朱萱.我国主要湖泊和水库水体的营养特征及其变化.环境科学研究,1991,4(1):11-20
    45.金相灿,王圣端,赵海超,颜昌宙.磷形态对磷在水-沉水植物-底质中分配的影响.生态环境,2005,14(5):631-635
    46.金香琴.长春地区不同湖泊(水库)叶绿素a垂直分布特征研究.[硕士学位论文].武汉:华中农业大学图书馆,2006
    47.况琪军,毕永红,广杰,蔡庆华,胡征宇.三峡水库蓄水前后浮游植物调查及水环境初步分析.水生生物学报,2005,29(4):353-358
    48.李维,张灼,王丽珍.生物操纵法治理富营养化湖泊的细菌类群研究.云南大学学报(自然科学版),1996,18(2):131-134
    49.李宝林,王玉亮,张路增.以浮游植物评价达赉湖水质污染及营养水平.水生生物学报,1993,17(1):27-34
    50.李长春.水库养鱼与捕捞.北京:科学出版社,1984
    51.李德尚,焦念志,周春生,李静,卢敬让,刘长安,任敬明,刘新,曹光辉.山东省大中型水库渔产力的综合评估.水产学报,1993,17(2):95-104
    52.李共国,虞左明.千岛湖浮游动物的群落结构.生态学报,2002,22(2):156-162
    53.李锦秀,廖文根.三峡库区富营养化主要诱发因子分析.科技导报,2003,9:49-52
    54.李勤生,华俐.武汉东湖磷细菌种群结构的研究.水生生物学报,1989,13(4):340-347
    55.李勤生,申权.主要生物群落结构及其演替(一):细菌.东湖生态学研究(一).北京:科学出版社,1990
    56.李思发,徐森林.水库养鱼与捕捞.上海:上海科技出版社,1988
    57.李维贤,武德方,高兴明,徐忠华,许坤.黑龙潭水库浮游植物资源及鱼产力研究.水产学杂志,1999,12(1):7-13
    58.李伟,钟扬.湖北斧头湖湖滨湿地水田碎米荠群落的定量分析.水生生物学报,1995,19(3):250-256
    59.李伟,周进,王徽勤,钟扬.斧头湖挺水植被的群落学研究.武汉植物学研究,1992,10(3):273-279
    60.李文朝.东太湖沉积物中氮的积累与水生植物沉积.中国环境科学,1997,17(5):418-421
    61.李秀梅,王云祥,孙龙仪,信世花,常洪敏,马淑敏.鱼类对碳酸盐碱度耐受能力的研究.天津水产,1997,15-18
    62.李夜光,李中奎,耿亚红,胡鸿钧,段春涛,欧阳叶新,桂建平.富营养化水体中N、P浓度对浮游植物生长繁殖速率和生物量的影响.生态学报,2006,26(2):317-325
    63.李钟玮,魏云慧,柳淼,张言顺.干旱季节水库水质pH值增高原因探析.环境科学与管理,2007,32(2):80-81
    64.李祚泳,张辉军.我国若干湖泊水库的营养状态指数TSIc及其与各参数的关系.环境科学学报,1993,13(4):391-397
    65.梁彦龄,刘伙泉.草型湖泊资源、环境与渔业生态学管理(一).北京:科学出版社.1995
    66.林炜,钟海莹,唐以杰.硇洲岛潮间带不同生境底栖软体动物物种多样性研究. 热带海洋学报,2002,21(3):14-22
    67.林秋奇,胡韧,段舜山,韩博平.广东省大中型供水水库营养现状及浮游生物的响应.生态学报,2003,23(6):1101-1108.
    68.林秋奇.流溪河水库后生浮游动物多样性与群落结构的时空异质性.[博士学位论文].武汉:华中农业大学图书馆,2007
    69.林秋奇,赵帅营,韩博平.广东流溪水库后生浮游动物生物量谱时空异质性.湖泊科学,2006,18(6):661-669
    70.林志华,柴雪良,方军,张炯明,谢起浪.硬壳蛤对环境因子适应性试验.宁波大学学报(理工版),2002,15(1):19-22
    71.刘保元,梁小民.太平湖水库的底栖动物.湖泊科学,1997,9(3):237-243.
    72.刘春广,乔光建.朱庄水库水体富营养化机理分析及治理对策.南水北调与水利科技,2003,1(5):44-46
    73.刘国才,包文忡,刘振奇,申玉春.鱼塘内细菌数量消长和季节变动.水产学报,1992.16(1):24-31
    74.刘国才.吐尔吉山水库养殖季细菌数量动态及其鱼产力的研究.生态学报,1999,19(2):278-282
    75.刘家寿,胡传林.论鲟鱼在水库渔业中的地位和作用.水利渔业,2000,20(1):1-4
    76.刘建康,谢平.揭开武汉东湖蓝藻水华消失之谜.长江流域资源与环境,1999,3:312-319
    77.刘瑞秋,张水元.长江中下游地区若干湖泊水质的多元分析与比较.水生生物学报,2000,24(5):439-445
    78.刘娴.广东典型城市湖泊浮游植物特征及其对水生植被修复的响应.[硕士学位论文].武汉:华中农业大学图书馆,2007
    79.刘新,李德尚,李静.山东省大中型水库水化学性状研究—几种主要水化因子的变化及其在评价水库鱼产力中的作用.青岛海洋大学学报,1994,24(4):497-504
    80.刘玉,Vermaat J E, Ruyter E D, Kruijf H A M.珠江、流溪河大型底栖动物分布和氮磷因子的相关分析.中山大学学报(自然科学版),2003,42(1):95-99
    81.刘玉,Vermaat J E, Ruyter E D, Kruijf H A M. ISO-BMWP底栖动物监测法在中国河流有机污染评价中的修正及应用.中山大学学报(自然科学版),2004,43(4): 102-105
    82.刘月英.中国经济动物志—淡水软体动物.北京:科学出版社,1979
    83.刘正文,吴庆龙,陈源高,王卫民.徐家河水库枝角类优势种群与近太湖新银鱼关系的初步研究.海洋与湖沼,23(2):160-166
    84.马溪平,徐宏远,张敬樵,宁美玲,何容信.汤河水库水质状况及微生物区系的研究.辽宁大学学报(自然科学版),1998,25(1):73-79
    85.马徐发,熊邦喜,王明学,王银东,王卫民,刘小玲,徐森生,张林林,胡秋生,王喜波.湖北道观河水库大型底栖动物的群落结构及物种多样性.湖泊科学,2004,16(1):49-55
    86.马徐发,刘小玲,熊邦喜.道观河水库的细菌数量及其与环境因子的关系.水利渔业,2005,25(2):58-60
    87.蒙仁宪,刘贞秋.以浮游植物评价巢湖水质污染及富营养化.水生生物学报,1988,12(1):13-26
    88.Overbeck J.浮游植物和异养水生细菌的代谢偶联—了解湖沼物质循环的关键.微生物学通报,1990,17(3):158-164
    89.彭近新,陈慧君.水质富营养化与防治.北京:中国环境科学出版社,1988.
    90.杞桑,黄伟建.珠江三角洲底栖动物群落与水质关系.环境科学学报,1993,13(1):80-86
    91.屈建航,袁红莉,黄怀曾,汪恩涛.官厅水库沉积物中细菌群落纵向分布特征.中国科学D辑,地球科学,2005,35(增刊Ⅰ):233-240
    92.饶钦止,章宗涉.武汉东湖浮游生物的演变(1956-1975年)和富营养化问题.水生生物学集刊,1980,7(1):1-17
    93.饶群,芮孝芳.富营养化机理及数学模拟研究进展.水文,2001,21(2):15-19
    94.任淑智.京津及邻近地区底栖动物群落特征与水质等级.生态学报,1991,11(3):262-268
    95.沈东升.平原水网水体富营养化的限制因子研究.浙江大学学报(农业与生命科学版),2002,28(1):94-97
    96.沈继红,林学政,李光友,刘发义.光照对细胞融合藻Tetraselmis sp.—1混合培养的影响.中国水产科学,2002,9(3):239-242
    97.沈韫芬,章宗涉,龚循矩.微型生物监测技术.北京:中国建筑工业出版社, 1990
    98.史玉强,李树莹,崔双发,曹月坤,唐伟,孙晓怡,来永斌.辽宁大伙房水库水质及水生生物群落结构的研究.大连水产学报,2003,18(1):23-28.
    99.孙刚,盛连喜,李明全.长春南湖底栖动物群落特征及其与环境因子的关系.应用生态学报,2001,12(2):319-320
    100.孙军,刘东艳,王宗灵,朱明远.浮游动物摄食在赤潮生消过程中的作用.生态学报.2004,24(7):1514-1522
    101.孙宁波,王宇庭,孙春光,隋方功.黄河三角洲水库底泥中氮、磷特征及其与水体磷富营养化关系.青岛农业大学学报(自然科学版),2007,24(4):274-278
    102.孙向卫.铁、磷和光照强度对三种浮游植物生长的影响.[博士学位论文].武汉:华中农业大学图书馆,2006
    103.孙小静,秦伯强,朱广伟,张战平,高永霞.持续水动力作用下湖泊底泥胶体态氮、磷的释放.环境科学,2007,28(6):1223-1229
    104.童君,赵馨,朱孝林,徐轶.辽宁大伙房水库水生生物特征及水质生态学评价.环境保护科学,2002,28(2):10-12
    105.万成炎,吴晓辉,胡传林,于涛,郭和清,朱德伦.江苏省水库底栖动物调查及其综合评价.湖泊科学,2004,16(1):43-48
    106.万丽华.河流水质对底栖动物群落结构的影响调查.上海环境科学.1990,9(12):37-41
    107.王春生,杨关铭,朱根海,何德华.南鹿列岛附近海域浮游动物的分布及其与浮游藻类和营养盐的关系.东海海洋,1998,16(2):41-48
    108.王桂廷.底层库水溶解氧与水田灌溉关系.农田水利与水电,1991,6:28-29
    109.王华,逢勇,陈晓峰,赵伟.潮汐型湖泊水体透明度灰关联分析.中山大学学报(自然科学版),2008,47(1):108-111
    110.王家骧,严朝辉,史为良.大伙房水库叶绿素a的周年分布.水利渔业,1993,6:8-10
    111.王松波.长江中下游浅水湖泊的浮游动物生态学研究.[博士学位论文].武汉:中国科学院水生生物研究所,2008
    112.王明学,林可椒,邢鲁明,周友森.丹江口水库的水化学,初级生产力和鱼产力的研究.水利渔业,1990,6:26-31
    113.王卫民,魏青山,张世萍,朱邦科,李金诚,甘大舜.宿鸭湖水库浮游植物初级生产力和鲢、鳙生产潜力的估算.水利渔业,1992,2:7-10
    114.王卫民,苏加勋.三道河水库浮游生物现状及其鱼产力的估算.湖泊科学,1994,6(1):46-54
    115.王小冬.胶州湾浮游动物对浮游植物选择性摄食的初步研究.[硕士学位论文].武汉:华中农业大学图书馆,2007
    116.王晓东,陈雪初,黄莹莹,应建光,计显索,陶丽娜,孔海南.泽雅水库热成层形成过程及其对水体溶解氧的影响.给水排水,2008,3:37-38
    117.王永玲.官厅水库细菌监测及其分析.北京水利,1997,1:50-51,56
    118.翁笑艳.山仔水库叶绿素a与环境因子的相关分析及富营养化评价.干旱环境监测,2006,20(2):73-78
    119.吴天惠.保安湖底栖动物资源及季节动态的研究.湖泊科学,1989,1(1):71-78
    120.向启华.江西五湖水库的底栖动物.四川动物,1990,9(2):8-10
    121.肖红,李钟玮,包军,肖荣欣.大庆水库底栖动物群落调查及生物学评价.环境科学与管理,2006,31(9):181-183
    122.谢凤君.密云水库浮游植物的演变及人为活动对水库水质的影响(下).环境保护,1992,4:37
    123.谢平,诸葛燕,戴莽,高村典子.水体富营养化对浮游生物群落多样性的影响.水生生物学报,1996,20(增刊):30-37
    124.谢山,常绣龄,张庆,杨汉运,黄道明,谢文星.隔河岩水库浮游植物叶绿素a周年变动及评价.水利渔业,2008,28(1):85-87
    125.谢志才,梁彦龄,吴天惠.长江中游湖泊底栖动物多样性的研究.水生生物学报,1996,20(增刊):103-113.
    126.谢志才.湖群大型底栖动物的生态学特征及生态系统健康评价.[博士学位论文].武汉:华中农业大学图书馆,2003.
    127.谢志才,马凯,叶麟,陈静,蔡庆华.保安湖大型底栖动物结构与分布格局研究.水生生物学报,2007,31(2):174-183.
    128.谢祚浑,周一兵.中国北方盐碱水域中的底栖动物.大连水产学院学报,2002,17(3):176-186
    129.熊邦喜,丁庆秋,张献利.高关水库浮游生物现存量及鲢,鳙鱼产潜力的研究.水 利渔业,1989,5:25-28
    130.熊金林.不同营养水平湖泊浮游生物和底栖动物群落多样性的研究.[博士学位论文].武汉:华中农业大学图书馆,2005
    131.熊金林,梅兴国,胡传林.不同污染程度湖泊底栖动物群落结构及多样性比较.湖泊科学,2003,15(2):160-168.
    132.徐宁,段舜山,林秋奇,胡韧,韩博平.广东大中型供水水库的氮污染与富营养化分析.生态学杂志,2004,23(3):63-67
    133.徐宁,段舜山,林秋奇,王朝晖,韩博平.广东大中型供水水库的磷污染与富营养化分析.生态科学,2003,22(4):341-345.
    134.徐京萍,张柏,蔺钰,宋开山,段洪涛,王宗明.结合高光谱数据反演吉林石头口门水库悬浮物含量和透明度.湖泊科学,200719(3):269-274
    135.徐镜波.热排放对水库溶解氧的影响.环境科学学报,1993,13(3):339-346.
    136.徐轶群,熊慧欣,赵秀兰.底泥磷的吸附与释放研究进展.重庆环境科学,2003,25(11):147-149
    137.许木启.从浮游动物群落结构与功能的变化看府河——白洋淀水体的自净效果.水生生物学报,1996,20(3):212-220
    138.许巧情,王洪铸,张世萍.河蟹过度放养对湖泊底栖动物群落的影响.水生生物学报,2003,27(1):41-46
    139.许炎生.沉积物再悬浮对浮游植物群落结构的影响.[硕士学位论文].武汉:华中农业大学图书馆,2007
    140.杨顶田.浅水湖泊水下光照对藻类生长及初级生产力的影响.[博士学位论文].武汉:中国科学院南京地理与湖泊研究所,2005
    141.叶麟.三峡水库香溪河库湾富营养化及春季水华研究.[博士学位论文].武汉:华中农业大学图书馆,2006
    142.尤仲杰,王一农.几种环境因子对不同发育阶段的泥螺Bullacta exarata的影响.浙江水产学院学报,1994,13(2):78-85
    143.于洪贤,蒋超.放养河蟹对黑龙江东湖水库底栖动物和水生维管束植物的影响.水生生物学报,2005,29(4):430-434
    144.于洪贤.泥河水库底栖动物群落的研究.水利渔业,2001,21(5):36-38
    145.余立华.秋季长江口不同辐照和氮、磷浓度水平下浮游植物营养盐吸收动力学及 生长变化研究.[硕士学位论文].武汉:华中农业大学图书馆,2006
    146.袁文权,张锡辉,张丽萍.不同供氧方式对水库底泥氮磷释放的影响.湖泊科学,2004,16(1):28-34
    147.曾辉.长江和三峡库区浮游植物季节变动及其与营养盐和水文条件关系研究.[博士学位论文].武汉:华中农业大学图书馆,2006.
    148.曾祥波,黄邦钦.台湾海峡微型浮游动物的摄食压力及其对营养盐再生的贡献.厦门大学学报(自然科学版),2007,46(2):231-235
    149.张丽萍,袁文权,张锡辉.底泥污染物释放动力学研究.环境污染治理技术与设备,2003,4(2):22-26
    150.张晟,刘景红,黎莉莉,李松,徐静,高吉喜.三峡水库成库初期营养盐与浮游植物分布特征.环境科学,2006,27(6):1056-1061
    151.张霞.上、下行作用对浮游植物群落结构影响的生态学研究.[博士学位论文].武汉:中国科学院水生生物研究所,2008.
    152.张远,郑丙辉,刘鸿亮.三峡水库蓄水后的浮游植物特征变化及影响因素.长江流域资源与环境,2006,15(2):254-258
    153.张运林.大型浅水湖泊水体生物—光学特性及其生态环境意义.[博士学位论文].武汉:华中农业大学图书馆,2005
    154.章宗涉,黄祥飞.淡水浮游生物研究方法.北京:科学出版社,1991
    155.赵匠,李霞.仁科三湖底栖动物及其现存量的研究.东北师大学(自然科学学版),1999,4:59-61
    156.赵爱萍.镇江金山湖及附近水体浮游生物群落结构及其与环境因子关系的研究.[硕士学位论文].武汉:华中农业大学图书馆,2006
    157.赵帅营,韩博平.基于个体大小的后生浮游动物群落结构分析——以广东星湖为例.生态学报,2006,26(8):2646-2654
    158.赵英时.遥感应用分析原理与方法.北京:科学出版社,2003:419-421
    159.朱广伟,秦伯强,高光,张路,罗潋葱.灼烧对沉积物烧失量及铁、磷测定的影响.分析实验室,2004,23(9):72-76
    160.Acea M J, Carballas T. Changes in physiological groups of microorganisms in soil following wildfire. FEMS Microbiology Ecology,1996,20:33-39
    161.Ahlgren G. Phosphorus as growth-regulating factor relation to other environmental factors in cultured algae. Hydrobiologia,2004,170:191-210
    162. Allen J D. The effects of reduction in trout density on the invertebate community of a mountain stream. Ecology,1982,63:1444-1455
    163.Andersen T, Hessen D O. Carbon, nitrogen and phosphorus content of freshwater zooplankton. Limnology and Oceanography,1991,36(4):807-817
    164. Anderson D H, Benke A C. Growth and reproduction of the cladoceran Ceriodaphnia dubia from a forested floodplain swamp. Limnology and Oceanography,1994,39(7): 1517-1527
    165.Armitage P D, Moss D, Wright J F. The performance of the new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running water sites. Water Research,1983,17:333-347
    166.Auer B, Elzer U, Arndt H. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects:influence of resource and predation. Journal of Plankton Research,2004,26(6),697-709.
    167.Wobus A, Bleul C, Maassen S, Scheerer C, Schuppler M, Jacobs E, Roske I. Microbial diversity and functional characterization of sediments from reservoir of different trophic state. FEMS Microbiology Ecology,2003,46(3):331-347.
    168.Bakanov A I. Present-day state of zoobenthos in the upper volga reservoirs. Water Resources,2003,30(5):559-568
    169.Baldwin D S, Whittington J, Oliver R. Temporal variability of dissolved P speciation in a eutrophic reservoir-implicatins for predicting algal growth. Water research,2003, 37(19):4595-4598
    170.Bays J S, Crisman T L. Zooplankton and tropic state relationships in Florida lakes. Can. J. Fish. Aquat. Sci,1983,40:1813-1819
    171.Bell R K, Ward F J. Incorporation of organic carbon by Daphnia pulex. Limnology and Oceanography,1970,15:713-726
    172.Bell T. The ecological consequences of unpalatable prey:phytoplankton response to nutrient and predator additions. Oikos,2002,99(1):59-68
    173.Benke A C, Martien R F. Distribution and production of two crustaceans in a wetland pond. Am Midl Nat 1977,98:162-175
    174.Benke A C. Interactions among coexisting predators-a field experiment with dragonfly larvae. J Anim Ecol,1978,47:335-350
    175.Beyruth Z. Periodic disturbances, trophic gradient and phytoplankton characteristics related to cyanbacterial growth in Buarapiranga Reservoir, Sao Paulo State, Brazil. Hydrobiologia,2000,424:51-65
    176.Bogdan K G, Gilbert J J. Body size and food size in freshwater zooplankton. Proc Natl Acad Sci,1984,81:6427-6431
    177.Bradt P T. Limestone to Mitigate Lake acidification:macrozoobenthos response in treated and referece lakes. Hydrobiologia,1996,317(2):115-126
    178.Brown A V, Aguilay Y, Brownk B, Fowler W P. Responses of benthic macroinvertebrates in small intermittent streams to silvicultural practices. Hydrobiologia,1997,347:119-125
    179.Chrzanowski T H, Sterner R W, Elser J J. Nutrient enrichment and nutrient regeneration stimulate bacteriopankton growth. Microb Ecol,1995,29(3):221-230
    180.Cleber C F, Giani A. Seasonal variation in the diversity and species richness of phytoplankton in a tropical eutrophic reservoir. Hydrobiologia,2001,445:165-174
    181.Cole R A, Weigmann D L. Relationships among zoobenthos, sediments, and organic matter in littoral zones of western lake Erie and Saginaw Bay. J Great Lakes Res, 1983,9(4):568-581
    182.Connell J H. Diversity in tropical rain forest and coral reefs. Science,1978,199: 1302-1310
    183.Coulter G W, Davies J, Pickmere S. Seasonal limnological change and phytoplankton production in Ohakuri. A hydro-electric lake on the Waikato River. N. Z. J.Mar Freshwat. Res.,1983,17:169-183
    184.Cummins K W. Trophic relations of aquatic insects. Annu. Rev. Ent.,1973,18, 183-206
    185.Demaster D J, Smith W O, Nelson D M, Aller J Y. Biogeochemical processes in Amazon shelf waters:chemical distributions and uptake rates of silicon, carbon and nitrogen. Continental Shelf Research,1996,16:617-643
    186.Demott W R. The role of competition in zooplankton succession. In Plankton ecology: Succession in Plankton communities, U. Sommer (ed.), Berlin. Springer-Verlag,1989, 195-252
    187.Demott. W R. The influence of prey hardness on Daphnia's selectivity for largy prey. Hydrobiologia,1995,307:127-138
    188.Dermott R M, Kalff J, Leggett W C, Spence J. Production of chironomus, Procladius and Chaoborus at different levels of phytoplankton biomass in lake memphremagog, Quebec-Vermont. J Fish Res Bd Can,1977,34:2001-2007
    189.Devine J A Vanni M J. Spatial and seasonal variation in nutrient excretion by benthic invertebrates in a eutrophic reservoir. Freshwater Biology,2002,47:107-121
    190.Diaz M M, Pedrozo F L, Temporetti P F. Phytoplankton of two Araucanian lakes of differing trophic status(Argentina). Hydrobiologia,1998,369:45-57.
    191.Diehl S. Fish predation and benthic community structure:The role of omnivory and habitat complexity. Ecology,1992,73(5):1646-1661
    192.Diehl S. Foraging efficiency of three freshwater fishes:effects of structural complexity and light, Oikos,1988,53:207-214
    193.Digiovanni M V, Goretti E, Tamanti V. Macrobenthos in montedoglio reservoir, central italy. Hydrobiologia,1996,321:17-28
    194.Dodson S I, Silva-Briano M. Crustacean zooplankton species richness and associations in reservoirs and ponds of Aguascalientes State, Mexico. Hydrobiologia, 1996,325:163-172
    195.Domaizon I, Devaux J. Experiment study of the Impacts of silver carp on plankton communities of eutrophic Villerest reservoir (France). Aquatic Ecology.1999,33: 193-204
    196.Drenner R W, Novelles F Jr, Kellte D. Selective impact of filter-feeding gizzard shad on zooplankton community structure. Limnol Oceanogr,1982,27(5):965-968
    197.Elser J J, Goldman C R. Zooplankton effects on phytoplankton in lakes of contrasting tropic status. Limnol Oceanogr,1991,36(1),64-90
    198.Elser J J, Urabe J. The stoichiometry of consumer-driven nutrient recycling:theory, observations, and consequences. Ecology,1999,80,735-751
    199.France R L. Biomass and production of amphipods in low alkalinity lakes affected by acid precipitation. Environmental Pollution,1996,94(2):189-193
    200.Fernando C H. The species and size composition of tropical freshwater zooplankton with special reference to the Oriental Region (South East Asia). Int. Revue ges. Hydrobiol,1980,65:411-426
    201.Flecker A S, Allan J D. The importance of predation, substrate and spatial refugia in determining lotic insect distributions. Oecoldgia (Berlin),1984,64:306-313
    202.Frost B W. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepods Calanus pacificus. Limnol Oceanogr,1972,17: 805-825
    203.Fryer G, Smyly J P. Some remaks on the resting stages of freshwater cyclopoida and harparcticoid copepods. Ann Mag Nat Hist Ser,1954,127(73):65-72
    204.Gaedke U. The size distribution of plankton biomass in a large lake and its seasonal variability. Limnol Oceanogr 1992,37(6):1202-1220
    205.George D G, Taylor A H. UK lake plankton and the Gulf Stream. Nature,1995,378: 139
    206.Gilbert J J. Suppression of rotifer populations by Daphnia:A review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnol Oceanogr,1988a,33(6):1286-1303
    207.Giovanni M, Goretti E, Tmanti V. Macrobenthos in Montedoglio Reservoir, Central Italy. Hydrobiologia,1996,321:17-28
    208.Gliwicz Z M, Pijanowska J. The role of predation in zooplankton succession. In Sommer U. (ed.), Plankton ecology:Succession in plankton communities. Springer-Verlag, New York,1989
    209.Gliwicz Z M. Food size selection and seasonal succession of filter feeding zooplankton in an eutrophic lake. Ekol Pol,1977,25(2):179-225
    210.Goldman C R. Primary productivity and limiting factors in three lakes of the Alaska peninsula. Ecol Monogr,1960,30:207-230
    211.Gong Z J, Xie P, Wang S D. Macrozoobenthos in 2 shallow, mesotrophic Chinese lakes with contrasting sources of primary production. Journal of the North American Benthological Society,2000,19(4):709-724
    212.Goodnight C J, Whitley L S. Oligochaetes as indicators of pollution, Proceedings of the 15th annual industrial waste conference. Purdue University, Lafayette, Indiana, 1960
    213.Guillaud J F, Andrieux F, Menesguen A. Biogeochemical modelling in the Bay of Seine (France):an improvement by introducing phosphorus in nutrient cycles. Journal of Marine Systems,2000,25:369-386
    214.Gyorgy Devai, Moldovan J. An attempt to trace eutrophication in a shallow lake(Balaton, Hungary) using chironomids. Hydroblologia,1983,103:169-175
    215.Hall D J, Cooper W E, Werner E E. An experimental approach to the production dynamics and structure of freshwater animal communities. Limnol Oceanogr,1970, 15:839-928
    216.Hall D O, Rao K K. Photosynthesis. Studies in Biology,1977,37:1-37
    217.Hamill S E, Qadri S U, Mackie G L. Production and turnover ratio of Pisidium casertanum(Pelecypoda:Sphaeriidae) in the Ottawa River near Ottawa-Hull, Canada. Hydrobiologia,1979,62:225-230
    218.Harper D. Eutrophication of freshwater:principles, problems and restoration. Chapman & Hall, London,1992
    219.Havens K E. Comparative analysis of lake plankton structure vs. function. Aquatic Science,1999,61,150-167
    220.Havens K E, Hwang S J, Steinman A D. Phosphorus uptake by plankton and periphyton in relation to irradiance and phosphate availability in a subtropical lake (Lake Okeechobee, Florida, USA). Archiv Fur Hydrobiologie,2001,151(2): 177-201
    221.Home A J, Goldman C R. Limnology(second edition). New York, Mcgraw-Hill, Inc. 1994
    222.Humpesch U H. Life cycle and growth fates of Baetis spp (Ephemeroptera:Baetidae) in the laboratory and in two stone streams in Austria. Fresh Ecol,1979,9:467-479
    223.Huszar V L M, Silva L H S, Domingos P,Marinho M, Melo S. Phytoplankton species composition is more sensitive than OECD criteria to the trophic status of three Brazilian tropical lakes. Hydrobiologia,1998,369:59-71
    224.Imteaz M A, Asaeda T. Artificial mixing of lake water by bubble plume and effects of bubbling operations on algal bloom. Water Res,2000,34(6):919-1929
    225.Iwakuma T, Yasuno M. Fate of the univoltine chironomidae, Tokunagayusurika akamusi (Diptera:Chironomidea) at emergence in lake kasumigaura, Japan. Arch Hydrohiol,1983,99:37-59
    226.Jannasch H W. In:M Shilo(ed.) Strategies of microbio life in extreme environments. Weinheim, New York,1979
    227.Jonasz M, Prandke H. Comparison of measured and computed light scattering in the Baltic. Tellus B,1986,38:144-157
    228.Karner M, Fuks D, Herndl G J. Bacterial activity along a trophic gradient. Microb Ecol,1992,24:243-257
    229.Komarkova J, Hejzlar J. Summer maxima of phytoplankton in the Rimov reservoir in relation to hydrologic parameters and phosphorus loading. Archiv fur Hydrobiologie, 1996,136(2):217-236
    230.Kitagawa N. A classification of Japanese lakes based on hypolimnetic oxygen and benthonic fauna. Jap J Limnol,1978,39:1-8
    231.Lars H, Viktor V, Boulion. Modelling production and biomasses of zoobenthos in lakes. Aquatic Ecology,2003,27(3):277-306
    232.Lehman J T. Selective herbivory and its role in the evolution of phytoplankton growth strategies. Michigan Univ, Ann Arbo (USA),1986
    233.Lenatt D R. Water quality assessment of stream using a qualitative colletion methed for benthic macroinvertebrates. J North Am. Benthol. Soc,1988,73:222-223.
    234.Lewis W M. Eutrophication and Land use, Lake Dillon,Colorado. New York: Springer-Verlag,1984.
    235.Lin Q Q, Hu R, Han B P. Effect of hydrodynamics on nutrient and phytoplankton distribution in Liuxihe Reservoir. Acta Ecol Sin,2003,23(11):2278-2284
    236.Mark J Butler I V. Community responses to variable predation:field studies with sunfish and freshwater macroinvertebrates. Ecological Monographs,1989,59(3): 311-328
    237.Marian M P, Pandian T J. Interference of chironomus in an open culture system for Tubifex tubifex. Aquaculture,1985,44:249-251
    238.Mccauley E, Kalff J. Empirical relationships between phytoplankton and zooplankton biomass in lakes. Canadian Journal of Fisheries and Aquatic Sciences,1981,38: 458-463
    239.Mcintire C D, Carrison R L, Phinney H K, Warren C E. Primary production in laboratory streams. Limnology and Oceanography,1964,9(1):92-102
    240.Morris D P, Lewis W M J. Nutrient limitation of bacterioplankton growth in Lake Dillon, Colorado. Limnol Oceanogr,1992,37:1179-1192
    241.Morris D P. Nutrient limitation of phytoplankton in selected Colorado lakes. M. S. thesis, Univ. Colorado,1985
    242.Morse J C,, Yang L F, Tian L X. Aquatic insects of China useful for monitoring water quality. Nanjing, China:Hohai University Press,1994
    243.Nalepa T F, Thomas N A. Distribution of macrobenthic species in Lake Ontario in relation to sources of pollution and sediment parameters. J Great Lakes Res,1976, 2:150-163
    244.Nogueira M G Phytoplankton composition, dominance and abundance as indicator of environmental compartmentalization in Jurumirim reservoir (Paranapanema River), (Sao Paulo, Brazil). Hydrobiologia,2000,431:115-128
    245.Oliver R L, Ganf G G. Freshwater blooms. In:whitton B A, potts M, eds. The ecology of cyanobacteria their diversity in time and space, Dordrecht:Kluwer Academic Publisher,2000
    246.Patalas K. Crustacean plankton and the eutrophication of St. Lawrence Great lakes. Journal Fisheries Research Board of Canada,1972,29:1451-1462
    247.Patton D R. Is the use of "management indicator species" feasible? Western Journal of Applied Forestry,1987,2:33-34
    248.Perrow M R, Moss B, Stansfield J. Trophic interactions in shallow lake following a reduction in nutrient loading:a long-term study. Hydrobiologia.1994.275/276: 43-52
    249.Poindexter J S. Oligotrophy. Feast and famine existence. Adv Microb Ecol,1981,5: 63-89
    250.Porter K. G. Selective grazing and differential digestion of algae by zooplankton. Nature,1973,244:179-180
    251.Queimalinos C P, Modenutti B E. and Balseiro E G. Phytoplankton responses to experimental enhancement of grazing pressure and nutrient recycling in a small Andean lake. Freshwater Biology,1998,40:41-49
    252.Rahman A K M Bakri D A. Limnological characteristics, eutrophication and cyanobacterial blooms in an inland reservoir, Australia, Lake & Reservoirs,2005, 10(4):211-220
    253.Razumov A S. Tr. Hydrobiol. Obsch.1962,12:60-190
    254.Resh V H. Habitat and substrate influences on population and production dynamics of a stream caddisfly, Ceraclea ancylus (Leptoceridae). Freshwater Biology,1977,7: 261-277
    255.Reynolds C S. Physical determinants of phytoplankton succession. In:Sommer U (ed.), Plankton Ecology. Orlando:Springer-verlag,1989
    256.Reynolds C S. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia,1998,369/370:11-26
    257.Reynolds C S. Phytoplankton periodicity:the interactions of form, function and environmental variability. Freshwater Biology,1984a,14:111-142
    258.Reynolds C S. The ecology of freshwater phytoplankton. Cambridge University press, New York.1984b
    259.Romanenko V I, Nikiforova E P. Growth of bacteria on dissolved organic matter of freshwater reservoirs. Microbioloiya.1974,43:112-115
    260.Sarma S S S, Nandini S, Gulati R D. Life history strategies of cladocerans: comparisons of tropical and temperate taxa. Hydobiologia,2005,542:315-333
    261.Schindler D W. Whole-lake fertilization experiments with phosphorus, nitrogen and carbon. Int. Ver. Theor Angew Limnol. Verh,1975,19:3221-3231
    262.Schweitzer B, Simon M. Growth limitation of planktonic bacteria in a large mesotrophic lake. Microb Ecol,1995,30:89-104
    263.Semina H J. The size of phytoplankton cells in the Pacific Ocean. Int. Revue, ges. Hydrobiol,1972,57:177-205
    264. Shapiro J, Lammara V, Lynch M. Biomanipulation:an ecosystem approach to lake restoration. In:Brezonik P L, Fox J L eds., Proceeding of a symposium on water quality management through biological control. University of Florida, Gainesville, 1975:85-89
    265.Scheffer M, Rinaldi S, Gragnani A, Mur L R, Van Nes E H. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology,1997,78:272-282
    266.Simith V H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science,1983,221:669-671
    267.Sommer U, Sommer F, Santer B, Zollner E, Jurqens K, Jamieson C, Boersma M, Gocke K. Daphnia versus copepod impact on summer phytoplankton:functional compensation at both trophic levels. Oecologia,2003,135:639-647
    268.Sprules W G, Munawar M. Plankton size spectra in relation to ecosystem productivity, size and perturbation. Can. J. Fish. Aquat. Sci.1986,43:1789-1794
    269.Starling F L R M. Control of eutrophication by silver carp (Hypophthalmichthys molitrix) in the tropical Paranoa reservoir (Brasilia, Brazil):a mesocosm experiment. Hydrobiologia,1993,257:143-152
    270.Sterner R W, Elser J J, Hessen D O. Stoichiometric relationships among producers, consumers and nutrient cycling in pelagic ecosystems. Biogeochemistry,1992,17, 49-67
    271.Suttle C A, Harrison P J. Ammonium and phosphate uptake rates, N:P supply ratios, and evidence for N and P limitation in some oligotrophic lakes. Limnol. Oceanogr, 1987,33:186-202
    272.Syrett P J. Nitrogen metabolism of miroalgae. Can Bull Fish Aquat Sci,1981,210: 182-210
    273.Thorp J H, Bergey E A. Field experiments on responses of a freshwater, benthic macroinvertebrate community to vertebrate predators. Ecology,1981,62:365-375
    274.Tokeshi M. Production ecology. In:Armitage P D, Cranston P S and Pinder L C V (eds). The Chironomidae:the biology and ecology of non-biting midges. London: Chapman and Hall,1995
    275.Torgny, Wiederholm. Chirnomidae of the Holarctic region:keys and Diagnoses. Borgstroms Tryckeri AB, Motala,1993
    276.Tudorancea C. Studies on Unionid population from the Crapina-Jijila complex of pools (Nanube zone liable to inundation). Hydrobiologia,1972,39:527-561
    277.Vallentyne J R. The algal bowl-lakes and man. misc. special publication 22 Dept of the Environment, Fisheries and Marine Services,Ottawa,1974
    278.Wallace J B, Benke A, Lingle A H, Parsons K. Trophic pathways of macroinvertebrate primary consumers in subtropical blackwater streams. Archiv fur Hydrobiologie,1987,74(suppl):423-451
    279.Wang L, Miller T D, Priscu J C. Bacterioplankton nutrient deficiency in a eutrophic lake. Arch Hydrobiol,1992,125:423-439
    280.Welch H E, Jorgenson J K, Curtis M E. Emergence of chironomidae (Diptera) in fertilized and natural lakes at Saqvaqjuac N W T. J Fish Aquat Sci,1988a,45: 731-737
    281.Wetzel R G Limnology. Saunders College Publishing (2nd ed), Philadelphia,1983
    282.Whitford L A, Schumacher G J. Effect of current on mineral uptake and respiration by a freshwater alga. Limnol. Oceanogr,1961,6:423-425
    283.Winberg G G Some interim results of Soviet IBP investigations on lakes. Productivity problems of freshwaters,1972

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700