用户名: 密码: 验证码:
鸡腿蘑(Coprinus comatus)防治糖尿病生物活性物质结构鉴定及液体发酵的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡腿蘑(Coprinus comatus),被联合国粮农组织(FAO)和世界卫生组织(WHO)确定为具“天然、营养、保健”三种功能为一体的16种珍稀食用菌之一。现代研究表明,鸡腿蘑具有降低血糖、防止肝损伤、抗肿瘤、提高机体免疫力等功效。本课题以抑制糖尿病非酶糖基化反应为筛选指标,首次对鸡腿蘑发酵液中的抗糖尿病活性成份分进行分离纯化,并以此展开结构分析、生理活性及发酵优化等相关的研究。具体结果如下:
     1、通过AB-8大孔树脂吸附分离与检测表明,鸡腿蘑发酵液中在抑制非酶糖基化反应方面具有高活性的物质是非多糖和非蛋白类物质。对AB-8大孔树脂吸附20%乙醇洗脱组分进行常压C18反相柱分离,获得了一种具有高抑制非酶糖基化活性的物质,将其命名为Comatin。其在2mg/mL浓度下的抑制率达到95.86%,在0.5mg/mL浓度下抑制率达到60.53%。
     2、在常压分离的基础上,通过中压C18反相柱对Comatin进行纯化,获得色谱纯的Comatin。通过核磁共振、质谱、红外、紫外测定,推定Comatin为4,5-二羟基-2-甲氧基苯甲醛(4,5-Dihydroxy-2-Methoxy-Benzaldehyde,4,5-DHMB),为首次从鸡腿蘑中分离获得,进一步有力的证明了鸡腿蘑防治糖尿病的作用。经过量子化学计算4,5-DHMB具有稳定的结构。
     3、建立了HPLC检测鸡腿蘑发酵液中4,5-DHMB的方法,实验表明,鸡腿蘑发酵液采用乙酸乙酯预处理对HPLC的测定具有良好的效果。本文所建立的测定方法,在样品浓度为1.23~123μg·mL~(-1)范围内线性关系良好;在3.8,19.1,114.8μg·mL~(-1)浓度水平上,其日内和日间精度分别为1.5~5.6%,2.5~4.6%;准确度为97.9~110.2%;在4.90,9.80,58.8μ·mL~(-1)。3个添加水平范围内,回收率为93.8~96.6%,相对标准偏差为3.3~8.5%。该方法能够在20min内完成一次分析,具有快速、准确、可靠的特点。
     4、体外试验表明,4,5-DHMB对非酶糖基化抑制作用的半抑制浓度IC_(50)为0.39mg/mL。根据实验结果分析,4,5-DHMB可能与蛋白质某一位点结合,且这种结合是在己二醛与牛血清白蛋白结合之后,同时4,5-DHMB与其结合后改变了非酶糖基化反应产物的结构,表现其荧光消失。根据经过量子化学计算结果以及与相关文献的对比分析,4,5-DHMB对非酶糖基化的抑制并不是在于影响蛋白质中的氨基与糖的醛基的结合,而更有可能是对Amadori产物之后反应过程产生重要的影响,或者是对希夫碱重排产生影响,这与实验结果所推导的结论相吻合。同时,4,5-DHMB在体外还具有抑制α-葡萄糖苷酶作用,其对α-葡萄糖苷酶抑制作用的半抑制浓度IC_(50)为2.96mg/mL,且是一种非竞争性抑制剂,K_m=3.5×10~(-4)mol/L,Dixon曲线表明,K_i值为1.35mg/mL。
     5、口服糖耐量试验表明,4,5-DHMB显著降低口服葡萄糖后2~3 h血糖的水平,说明4,5-DHMB具有降血糖的作用;预防性动物试验表明,4,5-DHMB具有较好的预防小鼠由四氧嘧啶诱导糖尿病的作用。
     6、糖尿病小鼠动物试验表明,4,5-DHMB降低了四氧嘧啶诱导的1型糖尿病小鼠的血糖水平:降低了体内果糖胺水平,说明抑制了体内非酶糖基化反应;降低了小鼠三磷酸甘油酯和胆固醇水平,糖尿病小鼠糖脂代谢得到改善,减轻了糖脂毒性。在一定程度上延缓了胰岛β细胞功能衰竭,从而形成良性循环。
     7、以4,5-DHMB为目的产物,对鸡腿蘑液体发酵及发酵条件进行了优化,Plackett-Burman实验表明,影响4,5-DHMB产量和鸡腿蘑生物量的主要因素不尽相同,且相同因素的正负效应作用也不一致,这表明4,5-DHMB形成与鸡腿蘑菌丝体的生长处于不偶联的状态。通过全因子中心组合实验设计对发酵培养基进行了优化,获得以4,5-DHMB为目的产物的鸡腿蘑最优发酵培养基为:玉米粉15.40g/L,麸皮13.01g/L、KH_2PO_4 4.02g/L、MgSO_4·7H_2O 1.87g/L,葡萄糖5 g/L,在此条件下4,5-DHMB产量达到最大值:674.49μg·mL~(-1)。通过Box-Behnken实验设计对发酵条件进行了优化,获得以4,5-DHMB为目的产物的鸡腿蘑最优发酵条件为:发酵温度26.84℃,发酵时间99.57h,起始pH 6.30,装液量173.93mL/500mL,在此条件下4,5-DHMB产量达到最大值:894.01μg·mL~(-1)。
     8、7L发酵罐规模的发酵实验表明在鸡腿蘑液体发酵过程中,4,5-DHMB的合成与鸡腿蘑菌体的形态有着较为密切的联系;搅拌速度对4,5-DHMB产量的影响主要是由于搅拌所形成的剪切力对鸡腿蘑菌体形态的影响,在较低的搅拌转速下有利于鸡腿蘑产生4,5-DHMB。通风量或溶氧水平对4,5-DHMB产量的影响要远大于对鸡腿蘑生长速度和生物量的影响。在鸡腿蘑发酵过程中,发酵液pH变化较小,说明不产生或极少产生有机酸,同时也不产生类似于灵芝酸类的萜类物质。
     9、研究表明,较优的7L发酵罐鸡腿蘑发酵条件为:装液系数60%,发酵温度27℃,发酵起始pH 6.30,接种量7.5%,搅拌转速为75rpm,起始通风量0.6vvm,发酵到88~96h时降通风量降低到0.4vvm,发酵时间112~120h,4,5-DHMB产量达到最大值830.41μg·mL~(-1)。
Coprinus comatus, a precious macro-fungus, has been designated as natural, nutritious and healthy food by the Food and Agriculture Organization (FAO) and the World Health Organization (WHO). It has recently acquired interests due to its attractive potential application in pharmaceutical industries. It was reported that the immunomodulation activites, such as antihyperg-lycemia, liver injury recovering, immunomodulating, antitumor and hypolipidemic, have been observed in C. comatus. In this dissertation, with inhibition of non-enzymatic glycation reaction as the main index, the separation, purification, structure analysis and high efficiency production process of an antidiabetic substance from C. comatus fermentation broth were investigated in detail. The main results were described as follows:
     1. In this study, a substance which gained from C. comatus fermentation broth with macropopous resin, has been proved that could inhibit the non-enzymatic glycation (NEG) reaction. And this substance was identified to be neither polysaccharide not protein. Comatin, which has high inhibition percentage on the NEG reaction, was obtained from the fermentation broth, which absorbed by macropopous resin and then separated with normal pressure C18 reversed-phase chromatography. It was observed that 95.86% and 60.53% inhibition percentage of comatin at the dose of 2mg/mL, and 0.5mg/mL, respectively. Comatin was further purified through medium pressure C18 RP chromatography to gain chromatographic grade sample.
     2. Based on the spectral data of NMR, MS, infrared and ultraviolet, comatin was identified as 4,5-Dihydroxy-2-Methoxy-Benzaldehyde (4,5-DHMB). The quantum chemistry calculation showed that 4, 5-DHMB has the stable structure. As we best knowledge, this is first report that 4,5-Dihydroxy-2-Methoxy-Benzaldehyde obtained from C. comatus.
     3. A high performance liquid chromatographic procedure was developed to determine the content of 4, 5-DHMB in C. comatus fermentation broth, and has proved to be validated. Chromatographic separation is performed on a C18 column (150mm×2.1mm i.d., 5μm particle).The mobile phase is composed of methanol-water (30:70, v/v) to 100% methanol in 20 min for gradient elution at a flow rate of 0.3mL/min. The method has good liner in the range of 1.23~123μg·mL~(-1) with R2=0.999. Intra- and inter-day precision ranged from 1.5 to 5.6% and 2.5 to 4.6%, respectively. The recovery was within 93.8%-96.6%. The assay procedure is simple, quickly, precise, and assure the continuous research for Coprinus comatus submerged culture and 4, 5-DHMB.
     4. In vitro experiment showed that the IC50 of 4,5-DHMB on inhibition the non-enzymatic glycation reaction was 0.39mg/mL, and also found that 4,5-DHMB could combine with Amadori products to change their structure and finally attenuate their fluorescence intensity. Furthermore, the quantum chemistry calculation showed that the possible mechanism of 4, 5-DHMB inhibition non-enzymatic glycation lie in its influence on the reaction after Amadori reaction or the process of shift base rearrangement. The IC50 of 4, 5-DHMB on inhibiting the a-glycosidase was 2.96, and it has been proved to be a non-competitive inhibitor. The values of Km and Ki were 3.5x 104mol/L and 1.35 mg/mL, respectively.
     5. The blood glucose levels were significantly elevated above initial blood glucose levels in response to the glucose challenge. There was a significant improvement in glucose tolerance of about 21 and 10.3% at 1 h peak value in 4, 5-DHMB mice. The maximum fall in fasting blood glucose (FBG) was after 1 h and maintained up to 2 h during fasting. It therefore appeared that 4, 5-DHMB was effective on FBG and healthy mice.
     6. In vitro experiment demonstrated that: 1) 4, 5-DHMB could protect diabetic mice which induced by alloxan; 2) 4, 5-DHMB could remarkedly decreased the level of fasting blood glucose, plasma fructosamine, triglyceride, cholesterol in 1 type diabetic mice and attenuated the injured degree of 13 cell in pancreatic islet.
     7. The results of Plackett-Burrnan suggested that the conditions for 4, 5-DHMB accumulation and mycelia growth were different. In order to achieve a high concentration, high yield and high productivity of 4,5-DHMB, a response surface methodology (RSM) was developed to optimize the nutritional and environmental conditions of 4,5-DHMB production. Firstly, the medium composition were optimized utilizing CCD design and the optimum medium composition were corn powder 15.40 g/L, wheat bran 13.01 g/L, KH_2PO_4 4.02 g/L, MgSO4·7H_2O 1.87 g/L, glucose 5 g/L. With the optimum medium, 674.49 μg/mL 4,5-DHMB was achieved. The optimum environmental conditions for 4,5-DHMB production were described as follows: Temperature 26.84"C, fermentation time 99.57h, initial pH 6.30, volume of medium 173.93 mL/500 mL. 894.01μg/mL 4, 5-DHMB was production under the optimized conditions.
     8. Fermentations were carried out in a 7 i fermentor (71, Bioflo 101, NBS, USA) with 4 1 fermentation medium. It was found that the broth state play key role on the 4,5-DHMB production. A low agitation speed was facilitated the secretion of 4,5-DHMB from C. comatus, This may be due to the fact that shearing force severely change the state of mycelia in fermentation broth. Litter influence was observed aeration and dissolved oxygen on the mycelia growth and the biomass accumulation, but aeration and dissolved oxygen play important role on 4, 5-DHMB synthesis. On another hand, a little organic acid was detected in the C. comatus fermentation broth.
     9. The optimized fermentation conditions for the 7 1 fermentor were determined: 4 1 fermentation medium, temperature 27℃, initiate pH 6.30, inoculum concentration 7.5%, agitation speed 75rpm, initiate aeration 0.6wm and lowered to 0.4wm after 88~6h, fermentation time112~120h. A highest 4,5-DHMB concentration (830.41μg/mL) was achieved by combinational consideration of the optimum nutritional and environmental conditions in 7 1 fermentor.
引文
[1] 曾民.中药葛根防治糖尿病血管病变的研究[D].上海,华东师范大学,2001.
    [2] C J Bailey, Susan L Turner, K J Jakeman, et al. Effect of Coprinus comatus on plasma glucose concentrations in Mice[J]. Planta Medica, 1984: 525-526.
    [3] 贾蕊,刘风兰.鸡腿菇研究现状及发展前景[J].食品科学,2006,27(12):890-894.
    [4] 许曼音,陆广华,陈名道.糖尿病学[M].上海,上海科技出版社,2003.
    [5] Katsuya Ishihara, Kae Tsutsumi, Shiho Kawane, et al. Interaction between the polyol pathway and non-enzymatic glycation on aortic smooth muscle cell migration and monocyte adhesion[J]. Life Science, 2004, 76: 445-459.
    [6] Nadja Alt, James A. Carson, Nathan L, et al. Chemical modification of muscle protein in diabetes [J]. Archives of Biochemistry and Biophysics, 2004, 425: 200-206.
    [7] Paul A C Cloosa, Stephan Christgaua. Non-enzymatic covalent modifications of proteins: mechanisms, physiological consequences and clinical applications[J]. Matrix Biology, 2002, 21: 39-52.
    [8] 肖和兰,蔡国平.糖基化终端产物的病理意义及其抑制性药物开发原理的研究进展[J].免疫学杂志,2003,19(3):104-109.
    [9] 韩莹,史道华.非酶糖基化终末产物所致疾病的中药干预[J].中草药,2005,36(6):938-941.
    [10] Anthony Cerami, Victor J Stevens, Vincent M Monnier. Role of nonenzymatic glycosylation in the development of the sequelae of diabetes mellitus: Metabolism[J]. Metabolism, 1979, 28 (4 Supplement 1): 431-437.
    [11] Malladi Prabhakaram, Martin L Katz, Beryl J Ortwerth. Glycation mediated crosslinking between alpha-crystallin and MP26 in intact lens membranes[J]. Mechanisms of Ageing and Development, 1996, 91:65-78.
    [12] 蒋国彦.糖尿病与眼病.实用糖尿病学.人民卫生出版社,1992.
    [13] Beisswenger P J, Makita Z, Curphey T J, et al. Formation of immunochemical advanced glycosylation end products precedes and correlates with early manifestations of renal and retinal disease in diabetes[J]. Diabetes, 1995, 44: 824-829.
    [14] Vlassara H. Recent progress on the biologic and clinical significance of advanced glycosylation end products[J]. Journal of Laboratory and Clinical Medicine, 1994, 124:19-30.
    [15] Araki N, Greenberg J H, Sladky J T, et al. The effect of hyperglycemia on intracellular calcium in stroke[J]. Journal of Cerebral Blood Flow & Metabolism, 1992, 12: 469-476.
    [16] Soulis T, Thallas V, Youssef S, et al. Advanced glycation end products and their receptors co-localise in rat organs susceptible to diabetic microvascular injury[J]. Diabetologia, 1997, 40: 619-628.
    [17] 李向阳,章俊.晚期非酶糖基化终末产物与糖尿病肾病[J].国外医学(泌尿系统分册),1998,18:259-263.
    [18] Katayama Y, Akatsu T, Yamamoto M, et al. Role of nonenzymatic glycosylation of type I collagen in diabetic osteopenia[J]. Journal of Bone and Mineral Research, 1996, 11:931-937.
    [19] Yamamoto T, Ozono K, Miyauchi A, et al. Role of advanced glycation end products in adynamic bone disease in patients with diabetic nephropathy[J]. American Journal of Kidney Disease, 2001, 38 (4 supplement 1): S161-164.
    [20] S V Sambasivarao, Love K Soni, Arun K Gupta, et al. Quantitative structure-activity analysis of 5-arylidene-2,4-thiazolidinediones as aldose reductase inhibitors[J]. Bioorganic & Medicinal Chemistry Letters. 2006. 16:512-520.
    [21] 王琦,周玲仙,罗晓东.植物中醛糖还原酶抑制剂的研究进展[J].中草药,2005,36(2):298-303.
    [22] Ellis E A, Dennis LG, Brenda H, et al. Time Course of NADH Oxidase, Inducible Nitric Oxide Synthase and Peroxynitrite in Diabetic Retinopathy[J]. Biology and Chemistry, 2002, 6: 295-304.
    [23] Peter M Abuja, Riccardo Albertini. Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins[J]. Clinica Chimica Acta, 2001, 306:1-17.
    [24] Ali Taghizadeh Afshari, Alireza Shirpoor, Amirabbas Farshid, et al. The effect of ginger on diabetic nephropathy, plasma antioxidant capacity and lipid peroxidation in rats[J]. Food Chemistry, 2007, 101:148-153.
    [25] 张志才.金耳抑制糖尿病活性物质及转化黄酮类中药的研究[D].无锡:江南大学,2006.
    [26] 张翠欣,王中孝.降糖药的研究进展[J].中国药学杂志.2002,37(5):328-320.
    [27] 崔浩,钟武,李松.AGEs交联蛋白裂解剂的研究进展[J].军事医学科学院院刊.2004,28(2): 194-199.
    [28] 陈睿杰,刘允坚.糖尿病治疗药物的研究现状[J].广东药学院学报.2001,17(2):131-132.
    [29] A Gugliucci, T Menini. The botanical extracts of Achyrocline satureoides and Ilex paraguariensis prevent methylglyoxal-induced inhibition of plasminogen and antithrombin Ⅲ[J]. Life Sciences. 2002, 72: 279-292.
    [30] John W. Baynes. Pyridoxarnine, a versatile inhibitor of advanced glycation and lipoxidation reactions[J]. International Congress Series, 2002, 1245:31-35.
    [31] Thomas O Metz, Nathan L Alderson, Suzanne R Thorpe, et al. Pyridoxamine, an inhibitor of advanced glycation and lipoxidation reactions: a novel therapy for treatment of diabetic complications[J]. Archives of Biochemistry and Biophysics, 2003, 419: 41-49.
    [32] Sara Vasan, Peter Foiles, Hank Founds. Therapeutic potential of breakers of advanced glycation end product-protein crosslinks[J]. Archives of Biochemistry and Biophysics, 2003, 419: 89-96.
    [33] Tolman K G, Chandramouli J. Hepatotoxicity of the thiazolidinediones[J]. Clinics in Liver Disease, 2003, 7: 369-379.
    [34] J T Xie, J A Wu, S Mehendale, et al. Anti-hyperglycemic effect of the polysaccharides fraction from American ginseng berry extract in ob/ob mice[J]. Phytomedicine, 2004, 11:182-187.
    [35] F J Alarcon-Aguilar, M Jimenez-Estrada, R Reyes-Chilpa, et al. Hypoglycemic activity of root water decoction, sesquiterpenoids, and one polysaccharide fraction from Psacalium decompositum in mice[J]. Journal of Ethnophannacology, 2000, 69: 207-215.
    [36] 赵素容,卢兖伟,吴祖泽.天然产物中降血糖活性成分研究进展[J].军事医学科学院院刊,2005,29(3):280-283.
    [37] Chen W C, Satoshi H, Tatsuo Y, et al. Mediation of 13-endorphin by the isoflavone puerarin to lower plasma glucose in streptozotocin-induced diabetic rats[J]. Planta Medica, 2004, 70(2): 113-116.
    [38] Mahmood Vessal, Mina Hemmati, Mohammad Vasei. Antidiabetic effects of quercetin in streptozocin- induced diabetic rats[J]. Comparative Biochemistry and Physiology Part C, 2003, 135: 357-364.
    [39] Takuya Katsube, Naoto Imawaka, Yasuhiro Kawano, et al. Antioxidant flavonol glycosides in mulberry (Morus alba L.) leaves isolated based on LDL antioxidant activity[J]. Food Chemistry, 2006, 97:25-31.
    [40] 俞灵莺,李向荣,方晓.桑叶总黄酮对糖尿病大鼠小肠双糖酶的抑制作用[J].中华内分泌代谢杂志,2002,18(4):313-315.
    [41] Hye Young Kim, Byung Ho Moon, Hak Ju Lee, et al. Flavonol glycosides from the leaves of Eucommia ulmoides O. with glycation inhibitory activity[J]. Journal of Ethnopharmacology, 2004, 93: 227-230.
    [42] Penchom Peungvicha, Rungravi Temsiririrkkul, Jeevan Kurmar Prasain, et al. 4-Hydroxybenzoic acid: a hypoglycemic constituent of aqueous extract of Pandanus odorus root[J]. Journal of Ethnopharmacology, 1998, 62: 79-84.
    [43] Sabu M C, Kuttan K R. Anti-diabetic activity of green tea polyphenol and their role in reducing oxidative stress in experimental diabetes[J]. Journal of Ethnopharmacology, 2002, 83: 109-116.
    [44] 全吉淑,尹学哲,金明,等.大豆皂苷对α-糖苷酶抑制作用的研究[J].中药材,2003,26(9):654-656.
    [45] Takii H, Kometani T, Nishimura T, et al. Antidiabetic effect of glycyrrhizin in genetically diabetic KK-Ay mice[J]. Biological and Pharmaceutical Bulletin, 2001,24(5): 484-487.
    [46] 郭洁文,廖惠芳,潘竞锵,等.荔枝核皂苷对地塞米松致胰岛素抵抗糖尿病大鼠血糖血脂的影响[J].广东药学,2003,13(5):32-35.
    [47] 张一波,陈名道.黄连素降血糖及防治糖尿病慢性并发症的作用和机制[J].中国中医药信息杂志,2003,10(1):83-85.
    [48] Luo J, Fort D M, Carlson T J, et al. Cryptolepis sanguinolenta: an ethnobotanieaI approach to drug discovery and the isolation of a potentially useful new antihyperglycaemic agent[J]. Diabetic Medicine, 1998, 15(5): 367-374.
    [49] Kubo H, Kobayashi J, Higashiyama K, et al. The hypoglycemic effect of (7R~*, 9aS~*)-7-phenyl-octahydroquinolizin-2-one in mice [J]. Biological and Pharmaceutical Bulletin, 2000, 23(9): 1114-1117.
    [50] 杨艳,郑志国,吉民,等.吲哚里西啶和喹诺里西啶生物碱的来源及药理作用[J].药学进展,2001,25(3):152-155.
    [51] Perez R M, Perez C, Zavala M A, et al. Hypoglyeemie efects of lactuein-8-O-methylacrylate of Parmentiera edulis fruit[J]. Journal of Ethnopharmacology, 2000, 71 : 391-394.
    [52] Silva R M, Santos F A, Rao V S, et al. Blood glucose and triglyceride-lowering effect of transdehydr-ocrotonin, a diterpene from Croton cajucara Benth, in rats[J]. Diabetes Obesity & Metabolism, 2001, 3(6): 452-456.
    [53] 吴志成,吴斌,春城.糖尿病食物疗法[M].上海,科学技术出版社,2000.
    [54] Yoshikawa M, Morikawa T, Matsuda H, et al. Absolute stereo-structure of potent α-glucosidase inhibitor, alacinol, with unique thiosugar sulfonium sulfate inner salt structure from Salacia reticulata[J]. Bioorganic and Medicinal Chemistry, 2002, 10(5): 1547-1554.
    [55] Hye-Jin Hwang, Sang-Woo Kim, Jong-Min Lim, et al. Hypoglycemic effect of crude exopolysaccharides produced by a medicinal mushroom Phellinus baumii in streptozotocin-induced diabetic rats[J]. Life Sciences, 2005, 76: 3069-3080.
    [56] Chin-Hang Shu, Ming-Yeou Lung. Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorata in batch cultures[J]. Process Biochemistry, 2004, 39:931-937.
    [57] Jong-Min Lim, Jong-Won Yun. Enhanced production of exopolysaccharides by supplementation of toluene in submerged culture of an edible mushroom Collybia maculata TG-1 [J]. Process Biochemistry, 2006, 41: 1620-1626.
    [58] Ya-Jie Tang, Jian-Jiang Zhong. Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid[J]. Enzyme and Microbial Technology, 2002, 31: 20-28.
    [59] E B Kurbanoglu, O F Algur, A Zulkadir. Submerged production of edible mushroom Agaricus bisporus mycelium in ram horn hydrolysate[J]. Industrial Crops and Products, 2004, 19: 225-230.
    [60] Jin-zhong Wu, Peter C K Cheung, Ka-hing Wong, et al. Studies on submerged fermentation of Pleurotus tuber-regium (Fr.) Singer. Part 2: effect of carbon-to-nitrogen ratio of the culture medium on the content and composition of the mycelial dietary fibre[J]. Food Chemistry, 2004, 85: 101-105.
    [61] H O Kim, J M Lim, J H Joo, et al. Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea[J]. Bioresource Technology, 2005, 96: 1175-1182.
    [62] Elena V. Emelyanova. Effects of cultivation conditions on the growth of the basidiomycete Coriolus hirsutus in a medium with pentose wood hydrolyzate[J]. Process Biochemistry, 2005, 40:1119-1124.
    [63] Chienyan Hsieh, Chia-Jang Liu, Mei-Hua Tseng, et al. Effect of olive oil on the production of mycelial biomass and polysaccharides of Grifolafrondosa under high oxygen concentration aeration[J]. Enzyme and Microbial Technology, 2006, 39: 434-439.
    [64] Jing Wu, Zhong-Yang Ding, Ke-Chang Zhang. Improvement of exopolysaccharide production by macro-fungus Auricularia auricula in submerged culture[J]. Enzyme and Microbial Technology, 2006, 39: 743-749.
    [65] Eun Jae Cho, Jung Young Oh, Hyun You Chang, et al. Production of exopolysaccharides by submerged mycelial culture of a mushroom Tremella fuciformis[J]. Journal of Biotechnology, 2006, 127: 129-140.
    [66] Leifa Fan, Andrea Thomaz Soccol, Ashok Pandey, et al. Effect of nutritional and environmental conditions on the production of exo-polysaccharide of Agaricus brasiliensis by submerged fermentation and its antitumor activity[J]. LWT- Food Science and Technology, 2007, 40: 30-35.
    [67] Yun-Xiang Wang, Zhao-Xin Lu. Optimization of processing parameters for the mycelial growth and extracellular polysaccharide production by Boletus spp. ACCC 50328[J]. Process Biochemistry, 2005, 40: 1043-1051.
    [68] Ing-Lung Shih, Kun-Lin Tsai, Chienyan Hsieh. Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris[J]. Biochemical Engineering Journal, 2007, 33: 193-201.
    [69] R Kaneno, L M Fontanari, S A Santos, et al. Effects of extracts from Brazilian sun-mushroom (Agaricus blazei) on the NK activity and lymphoproliferative responsiveness of Ehrlich tumor-bearing mice. Food and Chemical Toxicology, 2004, 42: 909-916.
    [70] 高虹,谷文英,丁霄霖,等.巴西蘑菇菌丝体中抑瘤活性甾醇的分离和结构鉴定[J].食品研究与开发,2006,27(6):52-55.
    [71] 孙亦阳,沈业寿,杨兆芬.姬松茸多糖对非电离辐射损伤的恢复效应[J].中国食用菌,2005,24(3):55-57.
    [72] 陈少英,王卫东,章龙.茶树菇菌丝体孢内多糖的抗氧化活性[J].食用菌,2006(6):57-58.
    [73] Mao Yea, Ji-kai Liu, Zhong-xin Lu, et al. Grifolin, a potential antitumor natural product from the mushroom Albatrellus confluens, inhibits tumor cell growth by inducing apoptosis in vitro[J]. FEBS Letters, 2005, 579: 3437-3443.
    [74] 刘明华,卿晨,刘吉开,等.Albaconol的抗肿瘤活性及对DNA拓扑异构酶Ⅱ的影响[J].中国药理学通报,2004,20(11):1224-1228.
    [75] 张秀娟,于慧茹,耿丹,等.黑木耳多糖对荷瘤小鼠细胞免疫功能的影响研究[J].中成药,2005,27(6):691-693.
    [76] Peter C K Cheung. The hypocholesterolemic effect of two edible mushrooms: Auricularia auricular (tree-ear) and Tremella fuciformis (white jelly-leaf) in hypercholesterolemic rats[J]. Nutrition Research, 1996, 16(10): 1721-1725.
    [77] Lisheng Fan, Shenghua Zhang, Lin Yu, et al. Evaluation of antioxidant property and quality of breads containing Auricularia auricula polysaccharide flour[J]. Food Chemistry, 2006, 101: 1158-1163.
    [78] 王一心,杨桂芝,狄勇.黑牛肝菌对高脂血症大鼠血脂及抗氧化能力的影响[J].中华预防医学杂志,2004,38(5):355.
    [79] Mahfuz Elmastas, Omer Isildak, Ibrahim Turkekul, et al. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms[J]. Journal of Food Composition and Analysis, 2007, 20: 337-345.
    [80] Alberto Arnone, Adriana Bava, Giovanni Fronza, et al. Concavine, an unusual diterpenic alkaloid produced by the fungus Clitocybe concaval[J]. Tetrahedron Letters, 2005, 46: 8037-8039.
    [81] 王允祥.杯伞(Clitocybe sp.)ASS.112胞外多糖发酵、生物活性及结构分析[D].南京:南京农业大学,2004.
    [82] Jian Yong Wu, Qiao Xia Zhang, Po Hong Leung. Inhibitory effects of ethyl acetate extract of Cordyceps sinensis mycelium on various cancer cells in culture and B16 melanoma in C57BL/6 mice[J]. Phytomedicine, 2007, 14: 43-49.
    [83] S P Li, G H Zhang, Q Zeng, et al. Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia[J]. Phytomedicine, 2006, 13: 428-433.
    [84] Jin Woo Bok, Leonard Lermer, Jeff Chilton, et al. Antitumor sterols from the mycelia of Cordyceps sinensis[J]. Phytochemistry, 1999, 51: 891-898.
    [85] Prasat Kittakoop, Juntira Punya, Palangpon Kongsaeree, et al. Bioactive naphthoquinones from Cordyceps unilateralis[J]. Phytochemistry, 1999, 52: 453-457.
    [86] Won-Sik Choi, Chang-Jin Kim, Byeoung-Soo Park, et al. Inhibitory effect on proliferation of vascular smooth muscle cells and protective effect on CCl4-induced hepatic damage of HEAI extract[J]. Journal of Ethnopharmacology, 2005, 100: 176-179.
    [87] 黄达明,连宾,赵杰文,等.银杏叶提取物的猴头菌转化产物降血糖作用的研究[J].食品科学,2006,27(12):718-722.
    [88] Shwu-Bin Lin, Chyi-Hann Lia, Shiuh-Sheng Lee, et al. Triterpene-enriched extracts from Ganoderma lucidum inhibit growth of hepatoma cells via suppressing protein kinase C, activating mitogen-activated protein kinases and G2-phase cell cycle arrest[J]. Life Sciences, 2003, 72: 2381-2390.
    [89] Xiao-Ling Zhu, Alex-F Chen, Zhi-Bin Lin. Ganoderrna lucidurn polysaccharides enhance the function of immunological effector cells in immunosuppressed mice[J]. Journal of Ethnopharmaeology, 2007, 111:219 -226.
    [90] 阮芳铭,赵岚,周昌艳,等.食药两用菌及植物对实验性糖尿病小鼠血糖的影响[J].解放军预防医学杂志,2005,23(5):327-330.
    [91] 唐粉芳,郭豫,张静.灵芝菌丝体降脂作用的实验研究[J].食品科学,2003,24(4):145-149.
    [92] X L Li, A O Zhou, X M Li. Inhibition of Lycium barbarum polysaccharides and Ganoderma lucidum polysaccharides against oxidative injury induced by c-irradiation in rat liver mitochondria[J]. Carbohydrate Polymers, 2007, 69: 172-178.
    [93] 李雁群,章克昌.灵芝转化苦参水提物的3个新生成分体外抗乙型肝炎病毒作用[J].微生物学报,2005,45(4):643-646.
    [94] F J Cui, W Y Tao, Z H Xu, et al. Structural analysis of anti-tumor heteropolysaccharide GFPS1b from the cultured mycelia of Grifola frondosa GF9801 [J]. Bioresource Technology, 2007, 98:395-401.
    [95] 袁德云,章克昌.灰树花发酵液及其胞内纯化物的降血脂作用[J].中国药学杂志,2003,38(7):507-508.
    [96] 陈向东,刘晓雯,吴梧桐.灰树花多酚的提取和活性研究[J].食品与生物技术学报,2005,24(4):26-30.
    [97] Yun-Hee Shon, Kyung-Soo Nam. Antimutagenicity and induction of anticarcinogenic phase Ⅱ enzymes by basidiomycetes [J]. Journal of Ethnopharmacology, 2001, 77:103-109.
    [98] 郑媛,沈业寿.桑黄胞内多糖抗衰老作用的研究[J].中国食用菌,2006,25(3):38-41.
    [99] 李宜明,沈业寿,季俊虬,等.桑黄菌质多糖的固态发酵及其抗氧化作用[J].合肥工业大学学报(自然科学版),2006,29(12):1580-1583.
    [100] 王稳航,李玉,刘安军.松木层孔菌多糖的提取及抗氧化性研究[J].食品研究与开发,2006,27(11):53-56.
    [101] 王谦,张俊会,闫蕾蕾.刺芹侧耳液体培养及其多糖的抗氧化活性研究[J].河北农业大学学报,2004,27(1):40-43.
    [102] 杨立红,史亚丽,王晓洁.杏鲍菇多糖的分离纯化及生物活性的研究[J].食品科技,2005(6):18-21.
    [103] 田金强,朱克瑞,李新明,等.阿魏菇多糖的抗氧化功能及其对果蝇寿命的影响[J].食品科学,2006,27(4):223-226.
    [104] 郑琳,黄荫成,高清祥,等.白阿魏蘑粗提物抗氧化和抗肿瘤活性的研究[J].菌物学报,2005,24(1):71-78.
    [105] Yong Jin, Lina Zhang, Mei Zhang, et al. Antitumor activities of heteropolysacch- arides of Poria cocos mycelia from different strains and culture media[J]. Carbohydrate Research, 2003, 338: 1517-1521.
    [106] Leslie Gapter, Zaisen Wang, Jan Glinski, et al. Induction of apoptosis in prostate cancer cells by pachymic acid from Poria cocos[J]. Biochemical and Biophysical Research Communications, 2005, 332: 1153-1161.
    [107] 段会平,侯安继,陆付耳.羧甲基茯苓多糖对HBV转染细胞表达功能影响的实验研究[J].中华实验和临床病毒学杂志,2005,19(3):290-292.
    [108] 张雯,瞿伟菁,张晓玲.金耳菌丝体多糖降血糖作用研究[J].营养学报,2004,26(4):300-303.
    [109] 郭华,侯冬岩,回瑞华,等.环棱褐孔菌多糖的提取、含量测定及抗氧化性分析[J].时珍国医国药,2006,17(5):729-730.
    [110] 袁静.毛头鬼伞的选育及生理特性的研究[D].陕西,西北农林科技大学,2000.
    [111] 董庸行,王海胜,邱立友,等.鸡腿菇液体培养基优化试验研究[J].食用菌学报,2006,13(3):25-28.
    [112] 赵桂云,律凤霞,龚振杰,等.鸡腿蘑液体培养基配方筛选[J].食用菌,2004(6):15-16.
    [113] 邓功成,刘朝贵等.鸡腿蘑菌丝体液态培养条件的研究[J].食用菌,2004(2):7-9.
    [114] 刘艳芳,杨焱,张劲松,等.鸡腿蘑菌株筛选及深层发酵培养基的优化[J].食品与生物技术学报,2005,24(2):14-17.
    [115] 辛晓林,黄清荣,董洪新.鸡腿菇菌丝体液体深层培养条件优化研究[J].浙江农业科学, 2003(6):307-308.
    [116] 赵启美,何佳,侯军.鸡腿蘑深层发酵培养基的研究[J].食用菌,2002(1):7-8.
    [117] 杜宇,樊美珍,李增智.鸡腿菇胞外多糖发酵条件的研究[J].安徽农业大学学报,2005,32(3):323-327.
    [118] 曾嵋涓,章克昌.营养因子对鸡腿蘑分泌胞外多糖的影响[J].无锡轻工大学学报,2002,21(2):135-139.
    [119] 王锋,丁重阳,王玉红,等.9味中药对鸡腿蘑深层发酵的影响[J].食品科学,2005,26(10):144-147.
    [120] 王锋,丁重阳,章克昌.中药鸡腿蘑发酵液对α-葡萄糖苷酶及体外非酶糖基化的抑制作用[J].中国医药工业杂志,2006,37(6):384-387.
    [121] Chunchao Han, Junhua Yuan, Yingzi Wang, et al. Hypoglycemic activity of fermented mushroom of Coprinus comatus rich in vanadium[J]. Journal of Trace Elements in Medicine and Biology, 2006(20): 191-196.
    [122] 王玉萍,李翔太,尹进,等.富铬鸡腿蘑菌丝发酵液急性毒性和降血糖作用的初步研究[J].山东大学学报(自然科学版),2000,35(1):117-120.
    [123] 形福国,王海霞,韩春超,等.鸡腿蘑多糖免疫功能的初步研究[J].食品科学,2003,24(6):139-141.
    [124] 李师鹏,安利国,张红梅.鸡腿蘑多糖对昆明小鼠血清溶菌酶活性影响的研究[J].中国食用菌,2001,20(4):36-38.
    [125] 崔曼,张好建,安利国.鸡腿蘑多糖对肿瘤生长的抑制作用[J].世界华人消化杂志,2002,10(3):287-290.
    [126] Byeung-Hun-Lee, Hyun-Jeong-Kim, Jong-Sun-Chang, et al. Inhibitory effect of Coprinus comatus ethanol extract on the liver damage in benzopyrene-treated mice[J]. Journal of the Korean Society of Food Science and Nutrition, 1999, 28(6): 1364-1368.
    [127] Hyun-Jeong-Kim, Byeung-Hun-Lee, Ok-Mi-Kim, et al. Antimutagenic effect of the fruiting body and the mycelia extracts of Coprinus comatus[J]. Journal of the Korean Society of Food Science and Nutrition, 1999, 28(2): 452-457.
    [128] 王灿琴,何铁光.鸡腿菇的营养与食疗[J].食用菌,2004(6):4.
    [129] 杨宁波,张建民.鸡腿菇营养成分及应用价值[J].特种经济动植物,2000(5):31.
    [130] JunMin Fan, JingSong Zhang, QingJiu Tang, et al. Structural elucidation of a neutral fucogalactan from the mycelium of Coprinus comatus[J]. Carbohydrate Research, 2006(341): 1130-1134.
    [131] 王锋.添加中药的鸡腿蘑发酵及发酵液活性成分的研究[D].无锡:江南大学,2005.
    [132] 吴丽萍,吴祖建,林奇英,等.毛头鬼伞(Coprinus comatus)中一种碱性蛋白的纯化及其活性[J].微生物学报,2003,43(6):793-798.
    [133] Garicia M A, Alonso J, Fernandez M I, et al. Lead content in edible wild mushroom in northwest Spain as indicator of environmental contamination[J]. Archives of Environment Contamination and Toxicology, 1998, 34: 330-335.
    [134] Brander KA, Borbely P, Crameri R, et al. IgE-binding proliferative responses and skin test reactivity to Cop c1, the first recombinant allergen from the basidiomycete Coprinus comatus[J]. The Journal of Allergy and Clinical Immunology, 1999, 104(3 Pt 1):630-636.
    [135] H X Wang, T B Ng. Purification of castamollin, a novel antifungal protein from Chinese chestnuts[J]. Protein Expression and Purification, 2003, 32:44-51.
    [1] 贾存勤.药用大孔吸附树脂及其在中药分离纯化方面的应用[D].甘肃农业大学硕士学位论文.甘肃.2003.
    [2] 刘荣华,汪洋,陈兰英.CDA-40大孔树脂提取胆红素工艺研究[J].中成药.2000,22:1 87.
    [3] 中国医学科学院药物研究所植化室.大孔吸附树脂在中草药化学成分提取分离中的一些应用[J].中草药.1980,11:138.
    [4] 张江义,卢爱民,张国栋等.AB-8型大孔树脂分离提纯葛根素的研究[J].分析试验室.2005,25(11):13-15.
    [5] Boqiang Fu, Jie Liu, Huan Li, et al. The application of macroporous resins in the separation of licorice flavonoids and glycyrrhizic acid[J]. Journal of Chromatography A, 2005, 1089:18-24.
    [6] 李春美,钟朝辉,窦宏亮等.大孔树脂分离纯化柚皮黄酮的研究[J].农业工程学报.2006,22(3):153-157.
    [7] Yujie Fu, Yuangang Zu, Wei Liu, et, al. Optimization of luteolin separation from pigeonpea [Cajanus cajan (L.) Millsp.] leaves by macroporous resins[J]. Journal of Chromatography A, 2006, 1137:145-152.
    [8] 朱洪梅,韩永斌,顾振新等.大孔树脂对紫甘薯色素的吸附与解吸特性研究[J].农业工程学报.2006,22(5):153-156.
    [9] L R Snyder,J J Kirkland,J L Glajch著.张玉奎,王杰,张维冰译.实用高效液相色谱法的建立 [M].第二版.北京,华文出版社,2001.
    [10] D Indra, K Ramalingam, Mary Babu. Isolation, purification and characterization of collagenase from hepatopanereas of the land snail Achatina fulica[J]. Comparative Biochemistry and Physiology, Part B, 2005, 142: 1-7.
    [11] Seung Ki Lee, Kyung Ho Row. Optimum separation condition of peptides in reversed-phase liquid chromatography[J]. Journal of Chromatography B, 2004, 800:115-120.
    [12] A Jang, M Lee. Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates[J]. Meat Science, 2005, 69:653-661.
    [13] A J Oudes, C M Herr, Y Olsen, et al. Age-dependent accumulation of advanced glycation end- products in adult Drosophila melanogaster[J]. Mechanisms of Ageing and Development, 1998, 100: 221-229.
    [14] Hye Young Kim, Byung Ho Moon, Hak Ju Lee, et al. Flavonol glycosides from the leaves of Eucommia ulmoides 0. with glycation inhibitory activity[J]. Journal of Ethnopharmacology, 2004, 93: 227-230.
    [15] 赵瑶兴,孙祥玉.光谱解析与有机结构鉴定[M].合肥,中国科学技术大学出版社,1992.
    [16] J Hyotylainen. Chemical degradation products of lignin and humic substances part Ⅱ: synthesis, structure verification and liquid chromatographic separation of chlorinated Protocatechualdehydes (3,4- Dihydroxy-benzaldehydes), 5-Hydroxyvanillins (3,4-Dihydroxy-5-methoxy-benzaldehydes) and Gallaldehydes (3,4,5- Trihydroxybenzaldehydes)[J]. Chemosphere, 1994, 28(9): 1641-1656.
    [1] Hong Liu, Hong-Chun Pan, Li Peng, et al. RP-HPLC determination of recombinant human interferon omega in the Pichia pastoris fermentation broth[J]. Journal of Pharmaceutical and Biomedical Analysis, 2005, 38: 734-737.
    [2] Milos Blazsek, Marián Kubis. HPLC determination of salinomycin and related compounds in fermentation media of Streptomyces albus and premixes[J]. Journal of Pharmaceutical and Biomedical Analysis, 2005, 39: 564-571.
    [3] D Lefebvre, V Gabriel, Y Vayssier, et al. Simultaneous HPLC Determination of Sugars, Organic Acids and Ethanol in Sourdough Process[J]. LWT- Food Science and Technology, 2002, 35:407-414.
    [4] 姚汝华.微生物工程工艺原理[M].第二版.广州:华南理工大学出版社,2005.
    [5] S Ajikumaran Nair, B S Shylesh, B Gopakumar, et al. Anti-diabetes and hypoglycaemic properties of Hemionitis arifolia (Burm.) Moore in rats[J]. Journal of Ethnopharmacology, 2006, 106:192-197.
    [6] Cintia Sorane Good Kitzberger, Artur Smamia Jr, Rozangela Cuff Pedrosa, et al. Antioxidant and antimicrobial activities of shiitake (Lentinula edodes) extracts obtained by organic solvents and supercritical fluids[J]. Journal of Food Engineering, 2007, 80:631-638.
    [7] L R Snyder,J J Kirkland,J L Glajch著.张玉奎,王杰,张维冰译.实用高效液相色谱法的建立[M].第二版.北京:华文出版社,2001.
    [1] 陈海敏,严小军,林伟.α-葡萄糖苷酶抑制剂类药物的研究进展[J].海洋科学,2005(29):73-76.
    [2] Thomas O. Metz, Nathan L. Alderson, Suzanne R. Thorpe, et al. Pyridoxarnine, an inhibitor of advanced glycation and lipoxidation reactions: a novel therapy for treatment of diabetic complications[J]. Archives of Biochemistry and Biophysics, 2003, 419: 41-49.
    [3] Tsang-Pai Liu, Shiow-Wen Juang, Juei-Tang Cheng, et al. The role of sorbitol pathway and treatment effect of aldose reductase inhibitor ONO2235 in the up-regulation of cardiac M2-muscarinic receptors in streptozotocin-induced diabetic rats[J]. Neuroscience Letters, 2005, 383: 131-135.
    [4] B. Jayakar, B. Suresh. Antihyperglycemic and hypoglycemic effect of Aporosa lindleyana in normal and alloxan induced diabetic rats[J]. Journal of Ethnopharmacology. 2003, 84: 247-249.
    [5] Chunchao Han, Junhua Yuan, Yingzi Wang, et al. Hypoglycemic activity of fermented mushroom of Coprinus comatus rich in vanadium[J]. Journal of Trace Elements in Medicine and Biology. 2006, 20:191-196.
    [6] 刘颖,金宏,许志勤,等.南瓜多糖对糖尿病大鼠血糖和血脂的影响[J].中国应用生理学杂志,2006,22(3):358-361.
    [7] K Sriplang, S. Adisakwattana, A Rungsipipat, et at Effects of Orthosiphon stamineus aqueous extract on plasma glucose concentration and lipid profile in normal and streptozotocin-induced diabetic rats[J]. Journal of Ethnopharmacology, 2007, 109:510-514.
    [8] Hauh-Jyun, Candy Chen, Anthony Cerami. Mechanism of inhibition of advanced glycosylation by aminoguanidine in vitro[J]. Journal of Carbohydrate Chemistry, 1993, 12: 732-742.
    [9] W K Offermans, A P J Jansen, R A van Santen. Ammonia activation on platinum {111}: A density functional theory study[J]. Surface Science, 2006, 600: 1714-1734.
    [10] Piotr Cysewskia, Claire Vidal-Madjar, Rainer Jordan, et al. Structure and properties of hydroxyl radical modified nucleic acid components II: 8-Oxo-adenine and 8-oxo-2'-deoxy-adenosine[J]. Journal of Molecular Structure (Theochem): 1997, 397: 167-177.
    [11] 吴洪,吴清辉,柯惠堂.取代苯并咪唑的电子结构与抗病毒活性关系的研究[J].医用化学,2006,19(2):184-185.
    [12] Rosanna Maccari, Rosaria Ottana, Carmela Curinga, et al. Structure-activity relationships and molecular modelling of 5-arylidene-2,4-thiazolidinediones active as aldose reductase inhibitors[J]. Bioorganic & Medicinal Chemistry, 2005, 13: 2809-2823.
    [13] Daniel Cervantes-Laurean, Derek D Schramm, Elaine L Jacobson, et al. Inhibition of advanced glycation end product formation on collagen by rutin and its metabolites[J]. Journal of Nutritional Biochemistry, 2006, 17: 531-540.
    [14] 陈海敏,严小军,林伟.α-葡萄糖苷酶抑制剂类药物的研究进展[J].海洋科学,2005(29):73-76.
    [16] 许曼音,陆广华,陈名道.糖尿病学[M].上海,上海科技出版社,2003.
    [15] Asayamak, Nyfeler F, Eenglish D, et al. Alloxan-induced free radical production in isolated cells, selective effect on islet[J]. Diabetes, 1984, 33(10): 1008-1011.
    [1] Yasser R, Abdel-Fattah, Zakia A Olama. L-asparaginase production by Pseudomonas aeruginosa in solid-state culture: evaluation and optimization of culture conditions using factorial designs[J]. Process Biochemistry, 2002, 38:115-122.
    [2] 孙力军,陆兆新,陈磊,等.金银花内生菌EJH-1抗菌作用发酵培养基响应面法优化[J].南京农业大学学报,2006,29(3):108-113.
    [3] 常亚飞,陈守文,喻子牛.苏云金素发酵培养基的优化设计[J].中国生物防治,2006,22(3):190-194.
    [4] Febe Francis, Abdulhameed Sabu, K. Madhavan Nampoothiri, et al. Use of response surface methodology for optimizing process parameters for the production of a-amylase by Aspergillus oryzae[J]. Biochemical Engineering Journal, 2003, 15: 107-115.
    [5] Murat Elibol. Response surface methodological approach for inclusion of perfluorocarbon in actinorhodin fermentation medium[J]. Process Biochemistry, 2002, 38: 667-673.
    [6] K Adinarayana, P Ellaiah, B Srinivasulu, et al. Response surface methodological approach to optimize the nutritional parameters for neomycin production by Streptomyces marinensis under solid-state fermentation[J]. Process Biochemistry, 2003, 38: 1565-1572.
    [7] Ing Lung Shih, Kun Lin Tsal, Chienyan Hsieh. Effects of culture conditions on the myeelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris[J]. Biochemical Engineering Journal, 2007, 33: 193-201.
    [8] J B Almeida e Silva, U A Lima, M E S Taqueda. Use of response surface methodology for selection of nutrient levels for culturing Paecilomyces variotii in eucalyptus hemicellulosie hydrolyzate [J]. Bioresource Technology, 2003, 87: 45-50.
    [9] 谢志鹏.发酵法生产米多霉素的菌种选育、培养条件优化和动力学研究[D].杭州:浙江大学,43-44.
    [1] 伦世仪.生化工程[M].北京:中国轻工业出版社,1993.
    [2] Po-Min Kao, Chih-I Chen, Shu-Chen Huang, et al. Effects of shear stress and mass transfer on ehitinase production by Paenibacillus sp. CHE-NI[J]. Biochemical Engineering Journal, 2007, 34: 172-178.
    [3] 张星元.发酵原理[M].北京:科学出版社,2005.
    [4] 刘坤.三种药用真菌富微量元素的初步研究[D].无锡:江南大学,2005.
    [5]. Ghose TK. Measurement of cellulase activities[J]. Pure and Applied Chemistry, 1987, 59(2): 257- 268.
    [6] 李平作.灵芝深层发酵生产生物活性物质的研究[D].无锡:江南大学(无锡轻工大学),1997.
    [7].曾嵋涓,章克昌.营养因子对鸡腿蘑分泌胞外多糖的影响[J].无锡轻工大学学报,2002,21(2):135-139.
    [8] 杜宇,樊美珍,李增智.鸡腿菇胞外多糖发酵条件的研究[J].安徽农业大学学报,2005,32(3):323-327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700