用户名: 密码: 验证码:
通塞脉微丸治疗缺血性脑中风的物质基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文由文献综述和实验研究两部分组成。
     文献综述包括中药复方效应物质基础的研究思路与方法及脑微血管内皮细胞和缺血性脑损伤两篇。文献研究为本实验设计提供了思路与方法。
     实验研究按照血清药物化学的研究方法,着眼于中药口服吸收后的血中移行成分,以药物能否透过血脑屏障和对靶细胞-脑微血管内皮细胞的保护作用两个关键环节为切入点来探讨通塞脉微丸治疗缺血性脑中风的效应物质基础。
     第一部分对通塞脉微丸体内外化学成分进行了分析。首先采用HPLC-UV技术,对样品中有UV吸收的部分进行了较全面的定性、定量分析,建立了10批样品的指纹图谱,并对所有特征峰所归属的药材和化合物进行了推断。以HPLC双波长法对通塞脉微丸中含量较高的6个成分进行了定量分析。以此为化学基础,进一步开展通塞脉微丸的血清药物化学的研究,以大鼠为实验动物,灌胃给药后制备含药血清,采用HPLC-UV法比较通塞脉微丸原药液、大鼠灌胃给药后含药血清和空白血清,找出血中移行的色谱峰,并根据各峰的相对保留时间和在线UV光谱图,通过与原方的各单味药制剂含药血清相比较,判定血中移行成分来源的药材和归属的化合物。
     第二部分开展通塞脉微丸有效成分透过大鼠血脑屏障的研究。首先研究通塞脉微丸有关成分透过正常血脑屏障的情况,采用体内法,选用大鼠作为模型动物,灌胃给药后将动物麻醉,于大鼠脑枕骨大孔处抽取脑脊液,适当处理后进行HPLC-UV和HPLC-MS分析。进一步研究了通塞脉微丸中相关成分透过缺血性损伤大鼠血脑屏障的情况。采用线栓法复制大鼠大脑中动脉栓塞(MACO)模型,造成脑缺血损伤而致的血脑屏障通透性改变,灌胃给药后,从心脏灌流冲洗至脑组织中无血液,然后取脑组织,适当处理后以HPLC-UV和HPLC-MS法检测分析透过血脑屏障的成分。
     第三部分以通塞脉微丸复方为研究对象,采用线栓法复制大鼠大脑中动脉栓塞(MACO)模型,以脑组织TTC染色测量脑梗塞面积,神经功能检查法对脑缺血后动物进行行为测评,病理及超微组织观察作为药效评价指标,考察通塞脉微丸对缺血性脑损伤的保护作用。
     第四部分研究通塞脉微丸及其有效成分对大鼠脑微血管内皮细胞缺血性损伤的干预作用。首先进行大鼠脑微血管内皮细胞(CMEC)的原代培养研究:采用出生5~10天的大鼠乳鼠,无菌获取脑组织,以胶原酶组织消化,分离脑微血管段,两次过筛提取脑微血管内皮细胞,并进行传代培养。经倒置显微镜下细胞形态学观察,Ⅷ因子免疫组化检测进行细胞鉴定。然后以化学性缺血的方法模拟建立大鼠CMEC体外缺血性损伤模型,以细胞形态学改变和MTT、LDH值作为细胞活性的评价指标。试验分别考察了通塞脉微丸及其有效成分对正常CMEC的干预作用和在CMEC缺血性损伤情况下药物的保护作用。
     第五部分探讨了通塞脉微丸调控CMEC的黏附机制。采用双抗夹心法,选择性地检测了E-选择素、ICAM-1两个黏附蛋白的表达。
     实验研究结果:
     一.通塞脉微丸体内外化学成分分析结果
     1.通塞脉微丸的HPLC-UV指纹图谱研究标定了以甘草苷为参照峰的18个共有指纹峰,获得了通塞脉微丸的HPLC指纹图谱的技术参数,采用《中药色谱指纹图谱相似度评价系统(2004A版)》,测定了10批样品的指纹图谱,整体相似度在0.968以上。对18个共有指纹峰的来源分析:有1个峰来源于当归药材,鉴定为阿魏酸;有5个峰来源于金银花,其中1个鉴定为绿原酸,其余4个从光谱图上推断可能为类绿原酸类化合物;有3个峰来源于玄参,2个分别鉴定为肉桂酸和哈巴俄苷,另1个未知;有8个峰来源于甘草,其中3个分别鉴定为甘草苷、甘草素和甘草酸铵,另4个峰具有甘草黄酮母核的吸收特征;还有1个未知归属的化合物。
     2.以HPLC双波长法在一定色谱条件下一次进样同时检测通塞脉微丸中相对含量较高的绿原酸、阿魏酸、肉桂酸、哈巴俄苷、甘草苷、甘草素6个成分的含量,所测6个成分的色谱峰与相邻色谱峰均能得到良好的分离,方法学实验结果良好。针对丁基苯酞具有增加缺血区脑血流量、缩小脑梗塞面积、减轻脑水肿等与复方疗效密切相关的作用,特别建立了微丸中丁基苯酞的含量测定方法。为其可能和微丸中其它成分一起发挥抗缺血性脑损伤作用提供了化学基础。
     3.通塞脉微丸血清药物化学研究结果:含药血清、空白血清、通塞脉微丸原液、已知7个混合对照品相比:有12个入血成分,其中有6个以原型吸收入血,经与对照品保留时间和在线UV光谱对照,发现绿原酸、阿魏酸、甘草素和肉桂酸四个已知成分以原型吸收入血,另各有一个来源于金银花和甘草的未知成分以原型吸收入血。有3个为代谢产物吸收入血,经与单味药制剂含药血清对照,探明有1个来源于当归的代谢产物,另2个来源于甘草的代谢产物。含药血清中尚有3个入血成分归属不明确。
     二.通塞脉微丸有效成分透过大鼠血脑屏障的研究结果
     1.对于正常大鼠,经HPLC-UV和HPLC-MS法检测,含药脑脊液与空白脑脊液相比,含药脑脊液中未检测到通塞脉微丸中相关成分。但在T_8=51.6min、56.2min、60.1min和61.9min处脑脊液中四个内源性物质色谱峰强度明显增强(从峰面积比值来看分别增加了为4.5倍、4倍、3.3倍和4.5倍)。
     2.正常组与假手术组大鼠脑组织中可检测到有微量通塞脉微丸的成分,经HPLC-UV和HPLC-MS鉴定为阿魏酸、甘草素、肉桂酸;在线栓法复制大鼠MACO模型所致的脑缺血损伤情况下,阿魏酸、甘草素、肉桂酸进入脑组织的量显著增加,组间比较有显著性差异(p<0.05)。该研究结果提示阿魏酸、甘草素、肉桂酸作为通塞脉微丸的部分药效学物质基础,在缺血损伤时可透过血脑屏障较大量进中枢神经系统,达到相应损伤区域,作用于中风病的关键部位上而发挥作用。
     三.通塞脉微丸对MACO模型大鼠的保护作用研究
     MACO术后所有试验动物均出现了不同程度的神经功能障碍。在24h后,通塞脉微丸各剂量组动物的行为学评分均呈下降趋势,且显著低于模型组(p<0.05),提示通塞脉微丸可以改善模型动物的行为学障碍。各给药组大鼠的脑梗塞面积和梗塞率均明显低于模型组(p<0.05),提示通塞脉微丸可明显缩小模型大鼠的脑梗塞面积,降低梗塞率。模型大鼠脑指数和含水量均明显高于假手术组,通塞脉微丸高剂量可降低模型大鼠的脑指数及脑含水量(p<0.05),提示通塞脉微丸可以减轻脑水肿,高中剂量组作用尤为显著。病理组织学观察,线栓法缺血性脑中风大鼠模型,表现为脑组织不同程度坏死,胶质细胞及间质水肿。通塞脉微丸对脑中风模型在不同程度上有减轻脑组织损伤作用。
     四.通塞脉微丸及其有效成分对大鼠脑微血管内皮细胞的干预作用
     1.本实验原代培养的大鼠CMEC呈长梭形或多角形,单层汇合呈铺路石征象;Ⅷ因子免疫细胞化学染色阳性。经鉴定符合脑微血管内皮细胞的特征。
     2.以化学性缺氧的方法建立CMEC体外模拟缺血损伤模型,模型组细胞缺氧损伤后,从形态学观察细胞先肿胀,折光度减弱,然后皱缩。MTT法测定细胞OD值,造模后6~12h均处于明显下降阶段(P<0.05),最终确定终浓度为0.85mg·mL~(-1) Na_2S_2O_4溶液作用于正常细胞8h以造缺血损伤模型。
     3.药物对正常脑微血管内皮细胞的干预作用:通塞脉微丸高剂量组与阴性对照组比较,有显著性差异(P<0.05),表现为抑制细胞活性,中剂量组表现为促进细胞活性(P<0.05),小剂量作用不显著。剂量和细胞活性的总趋势呈钟形,表现为大剂量抑制细胞活性,中剂量范围促进细胞活性。
     通塞脉微丸大鼠灌胃给药后的血清,高剂量组与空白血清对照组相比,表现为促进细胞活性(P<0.01)。通塞脉微丸中有效成分阿魏酸、甘草素在高剂量组与DMSO对照组相比,表现出促进细胞活性的作用(P<0.05)。
     微丸中其它相关成分:丁基苯酞、黄芪甲苷在高、中剂量组与DMSO对照组相比,表现为促进细胞活性(P<0.05)。绿原酸在中剂量组与DMSO对照组相比,表现为促进细胞活性(P<0.05)。高剂量绿原酸表现出抑制细胞活性(P<0.05)。
     4.药物对缺血性损伤脑微血管内皮细胞的干预作用:通塞脉微丸给药浓度1000、500μg·mL~(-1)高剂量组与模型组比较,有极显著性差异(P<0.01),表现为抑制细胞活性。小剂量组与模型组比较,有显著差异(P<0.05),表现为促进细胞活性。
     通塞脉微丸大鼠灌胃给药后的血清,高、中剂量组与空白血清对照组相比,表现为促进细胞活性(P<0.05)。微丸中有效成分:除肉桂酸、甘草素低剂量外,阿魏酸、甘草素、肉桂酸在各剂量组均表现出一定的促进细胞活性的作用,与DMSO对照组相比,有显著性差异(P<0.05)。
     微丸中其它相关成分:丁基苯酞、黄芪甲苷在高、中剂量组与DMSO对照组相比,均表现为促进细胞活性(P<0.05)。绿原酸在中、低剂量组与DMSO对照组相比,表现为促进细胞活性(P<0.05)。中剂量甘草苷、高剂量哈巴俄苷也表现出一定的细胞保护作用(P<0.05)。
     五.通塞脉微丸调控脑微血管内皮细胞的黏附机制
     以双抗夹心法法检测E-选择素和ICAM-1的表达量,结果表明CMEC细胞缺血8h,E-选择素和ICAM-1均表达升高,与正常比较有显著性差异(P<0.01)。通塞脉微丸作用于缺血CMEC后,能够下调E-选择素和ICAM-1,与缺血细胞比较,有显著差异(P<0.05),接近恢复到正常细胞的表达值(P>0.05)。
     结论:
     通过以上实验,综合分析认为:
     1.通塞脉微丸血清药物化学的初步研究结果,其制备的含药血清是微丸在体内真正发挥药效的“制剂”,探明的部分血中的移行成分绿原酸、阿魏酸、甘草素、肉桂酸是可能的部分效应物质基础。
     2.阿魏酸、甘草素、肉桂酸,在脑缺血损伤时可透过血脑屏障较大量进中枢神经系统,作为通塞脉微丸的部分药效学物质基础,达到相应损伤区域,作用于中风病的关键靶点(神经元及神经胶质细胞)上而发挥作用。
     3.通塞脉微丸及其相关成分、微丸含药血清能够促进正常CMEC增殖,提高缺血性损伤CMEC的活性。从药物作用的靶细胞-脑微血管内皮细胞的角度验证了阿魏酸、甘草素、肉桂酸是通塞脉微丸治疗缺血性脑中风的部分药效学物质基础。
     4.CMEC缺血时启动了黏附机制,通塞脉微丸干预缺血CMEC,能够下调因缺血损伤而高表达的E-选择素和ICAM-1,提示通塞脉微丸可通过对E-选择素素和ICAM-1两条通道的影响,抑制了黏附反应的启动从而阻抑CMEC缺血损伤。
     5.以现代细胞培养技术获得的脑微血管内皮细胞,可作为体外研究脑血管疾病的重要工具和载体。
This thesis is composed of two parts, literatures review and experimental research.
     Literatures review contains two pieces, the thinking study and the method for the substancebasis of chinese traditional medicine compounds, and, brain capillary endothelial cells and hypox-ic-ischemic brain damage. Literatures research has offered clew and method for this experimentdesigning.
     Experimental study is according to research methods of serum pharmacochemistry, with aview to the migration compositions in blood after chinese traditional medicine oral administratio--n, according to whether drugs can permeate the blood-brain barrier or have protection on targetcell-CMEC, the two key links as cut-in drop, investigating the substance basis of the effect oftreating ischemic apoplexy and paralysis by Tongsaimai.
     The first part of this thesis analyzes the chemical composition inside and outside body ofTongsaimai. First, adopting technique of HPLC-UV, and carry through quite overall qualitativeand quantitative analysis for the fractions having UV absorption, and build fingerprint of 10 bat--ch samples, and deduce the medicinal materials and compounds which are attributive to all cha-racteristic peaks. With double waves method of HPLC carry through quantitative analysis to the6 upper determination components in Tongsaimai pellets. As this as Chemical basis, further ca--rry on the preliminary study on serum pharmacochemistry of Tongsaimai pellets, as rats for ex--perimental animal, and prepare serum contained bushentiaochong after the rats are dosed by irri-gating stomach, applying the method of HPLC-UV compare the Tongsaimai pellets raw liquor,The serum contained medicine after the rats and blank serum, questing chromatographic peak ofmigration from blood, and according to the relative retention time and online UV spectrogramof each peak, deduce the medicinal materials where the the migration compositions in blood co--me from and the attributive compounds, by contrast to the serum contained medicine of eachsimple preparation.
     The second part, carry on the study on effective component of Tongsaimai pellets enteringthe brain through the blood-brain barrier. First, research the attributive compounds of Tongsaimaipellets permeating the normal blood-brain barrier, adopting in vivo method, choice rats as anim-al pattern, anesthesia the animals after rats dosed by irrigating stomach, extracting cerebrospinal
     fluid in the foramen magnum from the brain of rats, after some special process, analysis in HPLC-UV and HPLC-MS. Experiments do more study on correlation components of Tongsaimaipellets permeating the ischemia damage blood-brain barrier of rats. Rats cerebral MACO modelis replicated with the suture method, shaping ischemia damage which lead to the alter of perm-eability of blood brain barrier, after rats are dosed by irrigating stomach, chafe on from cardiacperfusion to there is no blood in brain tissue, then choose the brain tissue, after some specialprocess, analysis the component which permeating the blood brain barrier by HPLC-UV andHPLC-MS.
     The third part, with the complex prescription of Tongsaimai pellets as research subjects, fro-m integer animal level, rats cerebral MACO model is replicated with the suture method, measu-re brain infarct size with TTC coloration, go along behavioral measurement and envalument forthe cerebral ischemia animal with neural function check method, and investigate the protectionof pharmic with the observation of pathological mechanism and ultramicro organizations.
     The fourth part, we study on Tongsaimai pellets and their effective components' interventio--n effect on cerebral micrangium endothelial cells ischemic damage of rats. First, carry on thestudy on rats' cerebral micrangium endothelial cells primary culture: 5-10 days borned rats suckl-ing mouse are used as experiment animal, acquisition brain tissue in asepsis environment, digest-ion tissues by collagenase isolate microvessels, cribration twice for extracting cerebral micrangiu-m endothelial cells, and subculture. Identify cells by cellular morphology observation, factorⅧimmunohist-ochemical detection under the invertmicroscope. Then build rats in-vitro ischemicdamage modle by the method chemical ischemic, with the alterlation of cellular morphology andthe value of MTT and LDH as the evaluating indicator of cytoactive. Experiments investigatingintervention active of Tongsaimai pellets andtheir effective components on the normal CMECand the protection for the ischemic damage CMEC differently.
     The fifth part, we discuss the adhesion mechanism of Tongsaimaipellets control CMEC. Ad--opting enzyme linked immune sandwich assay technique, we checkout the expression of two ad-hesion Protein selectivity, E-selection and ICAM-1.
     Experimental findings:
     Ⅰ. The analysis result of Tongsaimai pellets' chemical component inside and outside of bod--y
     1. The study on HPLC-UV fingerprint of Tongsaimai pellets demarcates 18 common fingerp-rint peaks with glycyrrhiza uralensis glycoside as compared peak, get the technical parameter ofTongsaimai pellets' HPLC fingerprint, adopting<similarity evaluation of chromatographic finge rprint fortcm (2004A Edition)>, we measured10 batches samples chromatography fingerprint integ-er degree of similarity is above 0.968, and elicit the contrast fingerprint. The analysis of thesource of 18 common fingerprint peaks: one peak come from angelica sinensis materia medicwhich is identified as ferulic acid; five peaks come from flos lonicerae, one of them is identifie-d as chlorogenic acid, the others can be deduced as similar chlorogenic acid components fromthe spectrogram; there peaks come from ningpo figwort, the two of them are identified as cinna-mic acid and ahbar khozaschet glycoside, the other one is unknown; 8 peaks come from glycyr-rhiza uralensis, there of them are identified as glycyrrhiza uralensis glycoside, liquiriti genin, an-d ammonium glycyrrhizinate, the other four have absorbing character of licoflavone mother nucl-eus; and there are a compound we don't know the adscription.
     2. We inject once and checkout the upper 6 components chlorogenic acid, ferulic acid, cinn--amic acid, haba khozaschet glycoside, glycyrrhiza uralensis glycoside, liquiriti genin in Tongsai--mai pellets at one time by the method HPLC double waves method, the chromatographic peakof the 6 components we measured can Separate from the adjacent ones finely, the experimentalresult of methodology is fine. In allusion to butyl phthalide having the function of increasing ofcerebral blood flow to ischemic tissue, shrink cerebral infarct size, and reduction of brain edem,which has intimate correlative with complex prescription curative effect, we build the contentmeasuring method of butyl phthalide especially. The result affords the experimental foundationfor the function of anti ischemia damage with other components in Yongsaimai pellets.
     3.The preliminary findings of medicinal chemistry Tongsaimai pellets: The serum containedmedicine, blank serum, raw liquor of Tongsaimai pellets, and 7 known mixed reference substa-nce, they compare: there are 12 entered blood components, the 6 of them are absorbed intoblood by archetype, we find chlorogenic acid, ferulic acid, liquiriti genin, and cinnamic acid,the four known components are absorbed into blood by archetype, the other two are absorbedinto blood by archetype too, one is a unknown component of flos lonicerae, the other one is aunknown component of glycyrrhiza uralensis, by contrast to the retention time and UV actionspectrum of reference substance. The 3 of them are absorbed into blood by metabolic product,we prove one of them come from metabolic product of angelica sinensis, the other two comefrom metabolic product of glycyrrhiza uralensis, by contrast to the serum contained medicineof simple preparation. And the attribution of the 3 of components in-blood of the serum contai-ned medicine, are unknown, maybe are the metabolic product of drug interaction, and maybe are physiology stress substance brought by rats' body after dosed of Tongsaimai complex presc-ription.
     Ⅱ. The findings of effective component of Tongsaimai pellets permeating the the blood-brai-n barrier of rats
     1.For the normal rats, we compared the cerebrospinal fluid contained medicine to the blankcerebrospinal fluid, we didn't detect the correlation component of Tongsaimai pellets, by themethod of HPLC-UV and HPLC-MS. The peak intensity of four endogenous substance in cerebr-ospinal fluid chromatogram peak stronger obviously at retention time 51.6 min, 56.2 min, 60.1min, 61.9min (we can see they stronger 6.5, 4, 3.3,4.5 times from the specific value peak areadifferently).
     2.We can detect the components of Tongsaimai pellets in groups of normal and sham oper-ation, we prove them as ferulic acid, liquiriti genin, and cinnamic acid by HPLC-UV and HPLC-MS; In conditions of brain ischemia damage brought by the MACO model of replicated by ins-erting nylon thread, the capacity into brain tissue of ferulic acid, liquiriti genin, and cinnamicacid add notability (P<0.05). The finding indicated ferulic acid, liquiriti genin, and cinnamic acid as the substance basis of part pharmacodynamics of Tongsaimai pellets, can permeate the blood-brain barrier when the brain is ischemia damage, can go to corresponding damage area, act on the key sites and bring into play effect.
     Ⅲ.The study on the protection of Yongsaimai pellets for the MACO model of rats
     All experimental animal appear differ degree nerve dysfunction. After 24h, the assign markof behavioristics of each dosage group animals appear downtrend, and lower than the model gro-w up obviously (P<0.05), indicating Tongsaimai pellets can improve the nerve dysfunction ofmodel animals. The brain infarction area and infarct hasty of each dosed groups rats all lowerthan the model group obviously (P<0.05), indicating Tongsaimai pellets can contract the braininfarction area, drop the infarct hasty. The cerebral exponential and moisture content of modelrats are upper than the sham operation group, the large dosage of Yongsaimai pellets can lowthe cerebral exponential and moisture content of model rats (P<0.05), indicating Tongsaimai pel—lets can improve brain edema, the action of larger dosage is more obvious. From histopathology observation, the ischemic apoplexy rat model of replicated by inserting nylon thread, becomeas brain tissue differ degree necrosis, gliocyte and seroma edema. The Tongsaimai pellets havethe action lower the brain tissue damage on different degree on apoplexy model.
     Ⅵ.Tongsaimai pellets and the effective components have intervention action on CMEC
     1. The CMEC of rats primary cultured in this experiment are Long spindle and polygon,Signs were paving stones single convergence ;Ⅷfactor immune cytochemical staining are mascu-line. We proved it to be according to cha-racteristics of CMEC.
     2. We build CMEC ischemia damage models in vitro by the method of chemical lack ano--xic, the model cells have been damage of anoxic, we can see from the morphological the cellswill strut first and the diopter will be bate, and than collapse. The method of MTT determinethe OD value of cells, after we building model 6-12h, the value is at a distinct decline phase(P<0.05), we Ultimately determine to use the sugar Ealer's solution and the concentration of0.85 mg·mL~(-1) solution Na_2S_2O_4 role in normal cell 8h to create the model of ischemic injur--y.
     3. For normal brain microvascular endothelial cells: We compare Tongsaimai pellets highdose group to negative control group, we can see a significant difference (P<0.05), curb cell act-ivity, Performance for cell activity dose group (P<0.05).Low dose group compared with the con-trol group, no significant difference. The general trend of dose and the cell activity is bell-shap-ed, the cells showed inhibition of high-dose, middle dose range Promote for the activity.
     The serum after Tongsaimai pellets were administrated, High dose group compared with theblank group, Performance for cell activity (P<0.01).The effective components in Yongsaimai pe--llets, ferulic acid, liquiriti genin in the high-dose group compared with DMSO control group,shown to promote cell activity (P<0.05).
     The other components in pellets: butylphthalide, astragalus A in the high and middle dosegroup compared with DMSO control group, performance for cell activity (P<0.05). Chlorogenicacid in middle-dose group compared with the DMSO control group, the performance for cell act-ivity (P<0.05). High doses of chlorogenic acid showed inhibition (P<0.05)
     4. For ischemic injury in brain microvascular endothelial cells: The dosage of Tongsaimaipellets at 1000,500μg·mL~(-1) of high-dose group compared with the model group, there was a sig--nificant difference (P<0.01), showed inhibition activity. Low-dose group compared with the mod-el group, we can see a significant difference (P<0.05), promote the performance of the activity.
     The serum after Tongsaimai pellets were administrated, High and middle dose group compa-red with the blank group, performance for cell activity (P<0.05). The active ingredients in Pell--ets: except cinnamic acid and low-dose licorice, ferulic acid, isoliquiritigenin, einnamie acid inall dose groups have shown activity in promoting the activity of cells, compare with the controlgroup DMSO, we can see a significant difference (P<0.05).
     The other components in pellets: butylphthalide, astragalus A in the high dose group comp--ared with the control group DMSO, have shown to promote cell activity (P<0.05). Chlorogenicacid in the low-dose and middle-dose group compared with the control group DMSO, to pro--mote the performance of cells (P<0.05). Glycyrrhiza uralensis glycoside of middle dose, harpag--oside of high dose, all have shown a protective effect (P<0.05).
     ⅤThe adhesion mechanism of Tongsaimai pellets control CMEC
     Adopting enzyme linked immune sandwich assay technique, we checkout the expression oftwo adhesion Protein, E-selection and ICAM-1, we can see the results after CMEC 8h ischemiashowed that expression of both E-selection and ICAM-1 increased, a significant difference com-pared with normal (P<0.01). After Tongsaimai pellets role in ischemia, reduced E-selection andICAM-1, compare with ischemic cells, we can see a significant difference (P<0.05), which clos-e to the normal value of the expression (P>0.05).
     Conclusion:
     By this experiment, a comprehensive analysis:
     1.The preliminary findings of medicinal chemistry Tongsaimai pellets,pellets containing seru--m was prepared by its in vivo efficacy of the play "agents", among some of the blood compo--nents transitional chlorogenic acid, ferulic acid, liquiriti genin, cinnamic acid, it is possible toeffect a material foundation.
     2.Ferulic acid, liquiriti genin, cinnamic acid can be much more into the central nervous sys-tem through the blood-brain barrier when ischemic injury, as part of Pharmacodynamics materia-1 foundation of Tongsaimai pellets, to achieve the corresponding injury area, act on the key tar-get of apoplexy (nerve cell and glial celt ) and bring into play effect.
     3.Tongsaimai pellets and related components, and the serum Containing pellets, can promotenormal CMEC proliferation, enhance the activity of ischemic injury CMEC. We proved ferulicacid, liquiriti genin, cinnamic acid are the Pharmacodynamics material foundation of treatment ofischemic stroke, from the target cells-brain microvascular endothelial cells.
     4.CMEC started the adhesion mechanism when ischemia, Tongsaimai pellets intervention is--chemic CMEC, can reduce the high expression of E-selection and ICAM-1 due to ischemic inj--ury, suggest Tongsaimai pellets can inhibit the adhesion inhibited CMEC ischemic injury, byimpacting E-selection and ICAM-1 in the two channels.
     5.Brain microvascular endothelial cells drived from cell cultured by the modern technology,can be used as an important tool in vitro study of cerebrovascular disease and vector.
引文
[1] 张勇忠,郑晓珂,毕跃峰,等.中药复方药效物质基础研究进展[J].世界科学技术-中药现代化,2001,3(5):37-41.
    [2] 罗国安.中药复方物质基础的现代研究思路[J].现代中国实用医学杂志,2000,13(19):145-146
    [3] 杨奎,郭力.中药复方组合化学研究方法初探[J].中药药理与临床,1998,14(3):23-25.
    [4] 周骏.中药复方-天然组合化学库与多作用机理[J].中国中西医结合杂志,1998(2):31-34.
    [5] 武孔云,梁光义,靳风云,等.中药复方药效物质基础研究的思路及方法[J].世界科学技术-中药现代化,2003,5(6):13-17.
    [6] 刘建勋,任钧国.中药复方作用物质基础研究探讨[J].中药研究与信息,2004,6(12):8-11.
    [7] 宁黎丽,毕开顺,王瑞,等.吴茱萸汤药效物质基础的方法学研究[J].药学学报,2000,35(2):131-134.
    [8] 张小欢,胡建平,李瑛.乌梅丸治疗糖尿病的拆方研究[J].中国实验方剂学杂志,2006,12(9):41-43.
    [9] 卢红梅,粱逸曾,钱频,等.鱼腥草注射液质量控制中的谱效学初步探讨[J].药学学报,2005,40(12):1147-1150.
    [10] 宋宗华,冯东,许俊博,等.苓桂术甘汤配伍机制及药效物质基础研究[J].中成药,2003,25(2):132-137.
    [11]田代真一.“血清药理学”“血.清药化学”[J].现代东洋医学,1992,13(1):113
    [12] 贾丹兵,王立强,范玉玲.越桔口服后血中移行成分的生物活性研究[J].中医药研究,2000,16(2):48-50.
    [13] 卢兖伟,袁久荣,孙兆贵,等,四物汤及各单味药的含药血清对粒系一巨系造血祖细胞集落(CFU-GM)的影响[J].山东中医药大学学报,2000,24(5):385-386.
    [14] 谭睿,陈士林,杨大坚.GC-MS分析益智挥发油透大鼠血脑屏障的成分研究[J].中草药,2004,35(6):624-625.
    [15] 王喜军,张宁,孙晖,等.六味地黄丸的血清药物化学研究[J].中国天然药物,2004,2(4):291-222.
    [16] 宋金春,曾俊芬,胡传芹,等.生化汤的血清药物化学研究[J].中国药学杂志,2005,40(13):977-979.
    [17] 丁岗,崔瑛,盛龙生,等.地黄血清药物化学的初步研究[J].中国天然药物,2003,1(2):85-88.
    [18] 黄从善,陈靖,刘焱文.复方酸枣仁汤有效部位大鼠血清化学成分分析[J].中国医院药学杂志,2006,26(5):522-524.
    [19] 裴利霞.中药药物动力学研究集粹[J].中医药学刊,2005,23(1):121-123.
    [20] 庞志功,汪宝琪,李海峰.紫草素复方的药动学研究[J].西安医科大学学报,2001,22(4):319-321.
    [21] 龙绍疆,骨林波,仇众,等.关木通的表观毒代动力学参数的测定[J].中药药理与临床,2003,19(1):19-21.
    [22] 李锐,周莉玲,魏敏.中医方药血清PK-PD模型的探讨[J].中药药理与临床,1999,15(4):43~44.
    [23] 黄熙,陈可冀.“证治药动学”新假说的理论与思路[J].中医杂志,1997,38(12):745-746
    [24] 任平,黄熙.“脾主药动学”的理论与实践[J].世界华人消化杂志,1999,7(12):1077-1079
    [25] 黄熙.方剂体内血清成分谱与靶成分概念的提出及意义[J].第四军医大学学报,1999,20(4):277-279
    [26] 杨奎,蒲旭峰.论“中药胃肠药动学研究”的意义及对策[J].中国实验方剂学杂志,1998,4(1):36-39.
    [27] 杨秀伟,郝美荣,服部征雄.中药成分代谢分析[M].中国医药科技出版社,2003,9.
    [28] 贺玉琢.葡萄糖甙为天然前体药物-以无菌及感染人肠内菌大鼠模型予以证实[J].国外医学.中医中药分册,1999,21(3):14-18.
    [29] 难波恒雄.肠内细菌对汉药成分的代谢[J].国外医药中医中药分册,1987,9(2):43.
    [30] 王弘,陈济民,张清民.黄芩苷在大鼠胃、离体小肠的吸收动力学研究[J].沈阳药科大学学报,2000,17(1):5-7.
    [31] 宋洪涛,谢彤康,鲁平,等.川芎嗪大鼠在体肠吸收动力学[J].中国医院药学杂志,2005,25(10):905-907.
    [32] 唐灿.中药肠吸收动力学的研究——灯盏花素肠吸收动力学的研究[P].成都中医药大学博士研究生毕业论文,2004.
    [33] 廖正根,平其能,萧伟,等.桂枝茯苓胶囊中有效成分的大鼠在体肠吸收研究[J].中国天然药物,2005,3(5):303-307.
    [34] 国家药典委员会.中华人民共和国药典(2005年版一部).北京:化学工业出版社.2005.1.
    [35] 李芸霞,蒋学华,周静.大鼠在体吸收连翘苷的机理研究[J].华西药学杂志,2005,20(5):387-390.
    [36] 刘昌孝.代谢物组学在中药现代研究中的意义[J].中草药,2004,35(1):601-605.
    [1] 廖维靖,Frank Wiegand,Ulrich Dirnagl.脑缺血损伤的病理生理机制-损伤级联反应[J].国外医学·脑血管疾病分册,1998,6(4):197-202.
    [2] Friden PM, Walus LR, WatsenP, etal.Blood-brain barrier Penetration and in vivo activity of an NGF conjunat[J]. Science, 1993, 259: 373-377.
    [3] Petty MA, Eng HL..Junctional complexes of the blood-brain barrier., permeability changes in neuroinflammation[J]. Prog Neurobiol, 2002, 68 (5): 311-323.
    [4] McAllister MS, Krizanac Bengez L, Macchie F, et al. Mechanisms of glucose transport at the blood-brain barrier: in vitro study[J]. Brain Res, 2001, 904(1): 20-30.
    [5] ChenY, McCarron RM, Azzam N. Endothelia-1 and nitric oxide affect human cerebromi crovascular endothelial responses and signal transduction [J]. ActaNPUrcchir 2000 (76, Suppl): 131-135.
    [6] Oreopoulos GD, Hamilton J, Rizoli SB, et al. In vivo and in vitro modulation of intercellular adhesion molecule (ICAM)—lexpression by hepertonicity[J]. Shock, 2000, 14 (3): 409-414.
    [7] Clark WM, Madden KP, Rothlein R, et al. reduction of central nervous systemischenmic injury by monoclonal antibody to intercellular adhesion molecule[J]. Neurosurg, 1991, 75 (4), 623-627.
    [8] Cancilla PA, Frommes SP, Kahn LE, DeBault LE: Regeneration of cerebral microvessels: A morphologic and histochemical study after local freeze-injury[J]. Lab Invest 1979, 40: 74-82.
    [9] Ruschitzka F T, Noll G, Luscher T F. The endothelium in coronary artery disease[J]. Cardiology, 1997, 88 (suppl) 3: 3-19.
    [10] Chi OZ, Liu X, Weiss HR. Effects ofendothelin-1 on blood-brain barrier permeability during focal cerebral ischemia in rats[J]. Exp Brain Res. 2001, 141(1): 1-5.
    [11] Vogel RA, Corretti M C, Gellman J. Cholesterol, cholesterol lowering, and endothelial function [J]. Progress inCardiovascularDisease, 1998, 41: 117-136.
    [12] 陈文杰主编.血液分子细胞生物学IN].第一版中国医药科技出版社1993.
    [13] Ge H, Wen Y, Yang G, Betz AL. Increased expression of intercellular adhesion molecule-1 in mouse focal cerebral schemia model[J]. Chin Med J, 2000, 113 (1): 75-9.
    [14] 徐皓亮.粘附分子与脑缺血后炎症.生理科学进展[J].2000,31(3):257-260.
    [15] Bevilacqua MP, Stengelin S, Gimbrone MA, et al. endothelial leukocyte adhesion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins[J]. Science, 1989, 243: 1160.
    [16] Suzuk H, Abe K, Tojo S, et al. Post ischemic expression of P-selectin immunoreactivity in rat brain [J]. NeurosciLett, 1997, 228: 151-154.
    [17] Matsuo Y, Onodera H, Shiga Y, et al. Role of cell dshesion molecules in brain injury after transient middle cerebral artery occlusion in the rat [J]. Brain Res, 1994, 656: 344-352.
    [18] Yang GY, Schielke GP, Gong C, et al. Expression of tumor necrosis factor-alpha and intercellular adhesion molecule-1 after focal cerebral ischemia in interleukin-lbeta converting enzyme deficient mice [J]. J Cereb Plood Flow Metab. 1999, 19(10): 1109-17
    [19] Springer T A. Adhesion receptor of the immune system [J]. Nature, 1990, 346: 425-434.
    [20] Lise A. Labiche, Jamen C. Grotta. Clinical Trials For Cytoprotection In Stroke. The American Society for Experimental NeuroTherapeutics, Inc. 2004, (1): 46-70.
    [21] Yu Denni: Cheng, Lama Al-Khoury, Justin A. Zivin. Neuroprotection for Ischemic Stroke: Two Decades of Success and Failure ExperimentalNeuroTherapeutics, Inc. 2004, (1), 36-45.
    [22] 徐琪,郭中钰,康劲松,等.红景天对大鼠脑缺血再灌注时自由基损伤保护作用的实验研究[J].白求恩医科大学学报.1999,25(3):232-234.
    [23] 徐琪,祝世功,周家文,等.红景天保护缺血再灌注损伤鼠脑细胞的作用及机理研究[J].中风与神经疾病杂志,1999,16(3):144-146.
    [24] 陈志武,章家胜,马传庚.金丝桃苷对大鼠脑梗塞的保护作用[J].中国中药杂志,1998,23(10):626-628.
    [25] 雷万龙,刘勇,袁群芳,等.川芎嗪对脑缺血保护作用的实验研究[J].中华神经科杂志,2000,33(4):100-102.
    [26] 岑得意,陈志武,宋必卫,等.川芎嗪对大鼠脑梗塞的保护作用[J].中国药理学通报,1999,15(5):464-466.
    [27] 王洁,张均田.总丹酚酸抗脑缺血与抗血栓的关系[J].中国药理学通报,1999,15(3):237-239.
    [28] 郑关毅,张景寿,陈晓东,等.补阳还五汤治疗脑梗塞的疗效及其机制探讨[J].中西医结合实用临床急救,1997,4(6):256-258.
    [29] 徐丽荣,马世彬,李澎涛,等.清开灵有效组分对MCAO大鼠脑微血管内皮细胞的影响[J].中药材,2004,27(5):348-351.
    [30] 万赛英,黎杏群,智屹惠等.脑溢安对缺氧大鼠脑微血管内皮细胞VEGF基因表达的影响[J].中药新药与临床药理,2004,15(2)77-79.
    [31] 王根发,王文安,周永炜,等.三七皂苷对脑缺血对大鼠再灌注损伤的保护作用[J].中国临床康复,2002,6(9):1268-1269.
    [32] 高永红,袁拯忠,牛福玲,等.脑微血管内皮细胞体外缺血再灌注模型的建立及牛胆酸的保护作用[J].中国中药杂志,2005,30(6):930-932.
    [33] 李维祖,明亮,李卫平.黄芪抗缺血性脑损伤的研究进展[J].中国药房,2004,15(8):503-504.
    [34] 罗玉敏,秦震.黄芪甲苷对大鼠局灶脑缺血血脑屏障破坏的影响[J].中国临床神经科学,2000, 8(4):280-281.
    [35] 王雪松,阮旭中,刘买利,等.银杏叶提取物(GBE)对大鼠局灶性脑缺血后细胞间粘附分子—1及其mRNA表达的影响[J].中国现代应用药学杂志,2003,20(6):441-444.
    [36] 王彦田,王鑫国,张会珍,等.益气活血复方对缺血再灌注损伤性痴呆大鼠脑微血管内皮细胞一氧化氮合酶表达的影响[J].中国中医基础医学杂志,2004,10(8):27-29.
    [37] 徐丽荣,马世彬,李澎涛,等.清开灵有效组分对MCAO大鼠脑微血管内皮细胞的影响[J].中药材,2004,27(5):348-351.
    [38] 徐丽荣,马世彬,李澎涛,等.清开灵有效组份对局灶性脑缺血大鼠脑组织细胞间粘附分子表达的影响[J].中草药,2004,35,(6):666-669.
    [39] Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease[J]. Pharmacol Rev. 2005, 57(2): 173-85.
    [40] McCarty JH. Cell biology of the neurovascular unit:implications for drug delivery across the blood-brain barrier[J]. Assay Drug Dev Technol. 2005, 3 (1): 89-95.
    [41] 朱心红,沈群,高天明.中药成份组合效应假说及实验研究[J],中草药,2004,35(2):122-124
    [1] 任德全.中药指纹图谱质控技术的意义与作用[J].中约材,2001,24(4):235-237
    [2] 国家药品监督管理局.中药注射剂指纹图谱研究的技术要求(暂行)[J].中成药,2000,22(10):671-675
    [3] 柏健,王跃生,张继华,等.板蓝根颗粒的HPLC指纹图谱研究[J].中草药,2006,37(1):72-73
    [4] 苗爱东,梁乾德,马百平,等.四物合剂HPLC指纹图谱研究[J].中南药学,2006,4(2):83-85
    [5] 夏泉,李绍平,黄赵刚,等.三七总皂苷注射液HPLC指纹图谱的分析比较[J].中成药,2004,26(5):345-347
    [6] 吴忠.仲景胃灵片GC指纹图谱研究[J].中药材,2001,24(3):196-198
    [1] 韩景献,韩力.通塞脉片治疗缺血性中风恢复期气虚血瘀证临床疗效观察[J].中西医结合心脑血管病杂志,2005,3(7):591-592
    [2] 李伟东,徐斌,狄留庆,等.RP-HPLC法测定通塞脉片不同拆方浸膏中绿原酸的含量[J].南京中医药大学学报,2003,19(1):32-34
    [3] 张莉,狄留庆,赵晓莉,等.高效液相色谱法测定通塞脉片中黄芪甲苷的含量[J].南京中医药大学学报,2003,19(2):94-95
    [1] 冯亦璞,胡盾,张丽英.丁基苯酞对小鼠全脑缺血的保护作用[J].药学学报,1995,30:741-743
    [2] 徐皓亮,冯亦璞.丁基苯酞对局灶性脑缺血大鼠软脑膜微循环障碍的影响[J].药学学报,1999,34(3):172-175
    [3] 徐皓亮,冯亦璞.丁基苯酞对大鼠血栓形成及血小板功能的影响[J].药学学报,2001,36(5):329-333
    [4] 赵春顺,崔升淼,刘晓红,等.3-正丁基苯酞含量及有关物质测定的方法学研究[J].沈阳药科大学学报,2004,24(1):24-27
    [1] 杨奎,郭力,周明眉,等.中药血清化学与中药血清药理学协同研究方法初探[J].中药药理与临床,1998,14(4):41-44.
    [2] 王喜军.中药及复方的血清药物化学研究[J].世界科学技术-中药现代化,2002,4(2):14-17.
    [3] Wang X J, Sun H, Fan Y L. Analysis and bioacaive evaluation of the cnmpounds absorbed into blood after oral administration of the extracts of Vaociuiam vitis-idea in rat[J]. Bio Pharm Bull, 2005, 28(6): 1106-1108.
    [4] 丁岗,张瑛,盛龙生.地黄血清药物化学的初步研究[J].中国天然药物,2003,1(2):85-87.
    [5] 王喜军,张宁,孙晖.六味地黄丸的血清药物化学研究[J].中国天然药物,2004,2(4):219-221.
    [6] 曹洪欣,王喜军,于友华.中药复方安替威血清药物化学和抗SARS病毒试验研究[J].中国中药杂志,2004,29(3):281-283.
    [7] 王喜军,张宁,曹洪欣.复方安替威胶囊血中移行成分的富集工艺研究[J]冲国中药杂志,2005,30(21):1654-1656.
    [8] 张宁,王喜军.六味地黄丸血中移行成分的含量测定[J].中国新药与临床药理,2004,15(3):174-176
    [1] 孙晶晶,谢林,梁艳,等.LC-MS测定大鼠脑微血管内皮细胞中卡马西平的含量[J].中国药科大学学报,2005,36(3):241-244
    [2] 宋必卫,王文喜,牛泱平.促进药物跨血脑屏障转运载体的研究进展[J].中国药理学通报,2005,21(10):1167-1170
    [3] 郭丙兵,刘新峰.疾病状态下血脑屏障的病理性开放[J].医学研究生学报,2005,18(8):743-745
    [4] 王耀明,莫雪安,童萼塘,等.脑缺血再灌注后大鼠血脑屏障通透性的荧光定量分析[J].中国病理生理杂志,2002,18(8):1020-1022
    [5] 相小强,陶涛,陈庆华.透血脑屏障制剂的研究进展[J].中国新药杂志,2002,11(7):519-523
    [6] 赵志刚,龚凌志.血脑屏障及药物通过血脑屏障方法研究进展[J].中国药学杂志,2000,35(4):227-230
    [7] 黄瑾,胡晋红,朱全刚,等.阿魏酸及其衍生物的药理作用[J].中药材,2001,24(7):522-526
    [8] 张文惠,张林根.苏合香抗血小板聚集活性成分的研究[J].中草药,1985,16(3):16-18
    [1] 顾振,韩群颖,苏殿三,等.大鼠短暂性局灶性脑缺血模型改进的制作方法[J].南京医科人学学报,2001,21:513-514.
    [2] 马常升,马文领,戴维国,等.插线法制备人鼠局灶性脑缺血再灌注模型的研究[J].解剖学杂志,1999,209-211.
    [3] 卢亦成,朱诚.管内尼龙线栓塞大鼠大脑中动脉局灶性脑缺血模型的改进[J].中国微侵袭神经外科杂志,2003,8:557-559.
    [4] 窦万臣,王任直,张波,等.大鼠局灶性脑缺血模型制作方法的改进[J].中国脑血管病杂志,2004,1:81-84.
    [5] 沈洪妹,姜正林,石中援.三种中药合剂抗缺血缺氧性脑损伤作用的研究[J].中成药,2004,26(12):1068-1070.
    [6] 吴晓亚,马水利.丹参预防新生儿缺血缺氧性脑病及早期干预对患儿身心发育的影响[J].现代康复,2000,4(4):526-527.
    [7] 丁永芳,袁冬萍,方泰惠.注则用银杏叶(冻干)对实验性脑缺血的保护作用[J].时珍国医国药,2003,14(4):201-203.
    [8] 闻红斌,章军建.中药对缺氧性脑损伤保护作用及其机制的研究进展[J].现代中西医结合杂志,2003,12(10):1114-1116.
    [1] 陈彬,罗勇.大鼠脑微血管内皮细胞的体外培养[J].卒中与神经疾病,2005,12(2):80-83.
    [2] 薛庆善,肖渝平,林娟,等.体外培养的原理与技术[M].北京:科学出版社,2001,342-356.
    [3] Nagy Z, Vastag M, Skopal J, et al. Human Brain microvessel Endothelial Cell Culture as a Model System to Study Vascular Factors oflschemic Brain[J].Keio J Med, 1996, 45(3): 200-206.
    [4] 蔡文琴,王泊云,主编.实用免疫细胞化学与核酸分子杂交技术[M].成都:四川科学技术出版社,1994,406-512.
    [5] 石向群,杨金升,石莉等.伊文思蓝、ZO-1评估血脑屏障损伤的应用研究[J].西北国防医学杂志,2004,25(5):329-332.
    [1] 董为伟,等.神经保护的基础与临床[M].科学出版社,2002:2-48.
    [2] 高永红,袁拯忠,牛福玲,等.脑微血管内皮细胞体外缺血再灌注模型的建立及牛胆酸的保护作用[J].中国中药杂志,2005,30(6):930-932.
    [3] 陈莉芬,余震,陶陶,等.大脑皮质微血管内皮细胞培养及其缺氧性损害模型[J].西南师范大学学报,2005,30(6):1095-1098.
    [4] 阎彦芳,张壮,孙塑伦,等.三七总皂苷及其主要成分对血管内皮细胞缺氧损伤的保护作用[J].中华实验方剂学杂志,2002,8(1):34-37.
    [5] D'Agnillo F, Wood F, Porras C, et al. Effects of Hypoxia and Glutathione Depletion on Hemoglobin and Myoglobin-Me-diated Oxidative Stress Toward Endothelium[J]. Bichim Biophys Acta, 2000,1495: 150-159.
    [1] 王新高,童萼塘,孙圣刚.补阳还五汤对大鼠脑缺血再灌注损伤后血脑屏障的影响[J].中国动脉硬化杂志,2005,13(5):579-582.
    [2] 王新高,童萼塘,孙圣刚.补阳还五汤对脑缺血再灌注损伤的保护作用[J].浙江中西医结合杂志,2005,15(1):427-428.
    [3] 叶美玲,陈兴夏,欧阳志钢.川芎嗪和剪切率对大鼠悬浮微血管内皮细胞凋亡和功能的影响[J].北京医学生物工程,2004,23(2):135-137.
    [4] 阎彦芳,张壮,孙塑伦,等.三七总皂苷及其主要成分对血管内皮细胞缺氧损伤的保护作用[J].中华实验方剂学杂志,2002,8(1):34-37.
    [5] 张蕊,韩慧蓉,高尔,等.葛根素对脑缺血损伤家兔皮质血管超微结构和血液流变学的影响[J].潍坊医学院学报,2005,27(6):421-423.
    [6] 徐丽荣,马世彬,李澎涛.清开灵有效组分对MCAO大鼠脑微血管内皮细胞的影响[J].中药材,2004,27(5):347-349.
    [1] 徐皓亮.粘附分子与脑缺血后炎症[J].生理科学进展,2000,131(3):257-260.
    [2] 吴其夏.新编病理生理学[M].中国协和医科大学出版社,1999,9第一版
    [3] 汪钟.现代血栓病学[M].北京医科大学、中国协和医科大学联合出版社,1997,3第一版
    [4] Bevilacqua MP, Sten}elin S, Gimbrone MA, et ndothelial leukocyte adhesionses molecule 1: An inducible receptor for neutrophils related to complementregulatory proteins and lectins[J].science, 1989, 243: 1160-1165..
    [5] Hating HP, Berg EL, Tsurushita N, et al.E-selectin appears in nonischemictissue during experimental focal cerebralischemia. Stroke, 1996, 27: 1386-1392.
    [6] 唐可京,李幼姬,谢灿茂.ICAM-1和VCAM-1的结构与表达调控[J].国外医学分子生物学分册,2002,24(3):173-177.
    [7] 青雪梅,李卫红,侯金才,等.通络救脑注射液对脑微血管内皮细胞活性影响的特征[J].现代生物医学进展,2006,6(2):15-18
    [8] 赵仁亮,赵俊武,王春霞.细胞间黏附分子—1在脑缺血中的作用和干预策略[J].国外医学脑血管疾病分册,2005,13(5):352-354

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700