用户名: 密码: 验证码:
Sirt去乙酰化酶在调节血管内皮细胞自噬反应中的角色
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界人口的老龄化,心血管病以其高发病率成为影响人类健康的重要疾病之一。血管内皮细胞的正常功能对维持血管系统稳态、预防血管病变的发生具有重要的意义。内皮细胞功能受血液中层流剪切力(即血液流动对血管壁造成的水平方向切应力)的调节。生理状况下稳定的层流剪切力能够维持血管内皮正常功能和代谢,而非生理性的层流剪切力(过高、过低或震荡型的剪切力)可诱发血管内皮功能障碍,导致多种血管疾病(如动脉粥样硬化等)的发生。
     细胞自噬是细胞在溶酶体系统作用下对己摄取的或原有的细胞组分进行自我消化的过程,是细胞在应激状态下维持细胞内大分子蛋白、细胞器循环和质量的主要方式。自噬对内皮细胞功能具有重要的调节作用:增强细胞对细菌感染的抵抗能力;提高细胞对饥饿、缺氧、高温以及高激素水平的耐受;对抗细胞凋亡等作用。但是,血液层流剪切力对内皮细胞自噬反应的调节尚未见报道。
     自噬反应的激活受多条信号转导通路的调控(如胰岛素受体-雷帕霉素受体通路、脂多糖-AMPK通路、整联蛋白通路和钙离子通路等),研究表明细胞因子、糖基化产物和氧化低密度脂蛋白等多种因子参与内皮细胞自噬反应过程,但具体作用机制尚未阐明。自噬过程包括自噬小体(自噬相关蛋白Atg组成,双层膜为特征)和自噬溶酶体(自噬小体与溶酶体结合)形成。Sirtuin是NAD依赖的去乙酰化酶家族(Sirt1-Sirt7),在维持基因沉默、基因组的稳定、细胞代谢和延长细胞寿命过程中发挥重要作用。进一步研究发现某些SIRT家族成员(如Sirt1)可能参与细胞自噬反应调节,而血液层流剪切力可以影响内皮细胞中SIRT表达和功能。然而,日前Sirt在剪切力诱导的内皮细胞自噬反应中的作用和机制尚不明确。
     本研究目的是明确血管内皮细胞中Sirt去乙酰化酶调节自噬功能的作用和机制,对于探讨血液层流剪切力参与血管疾病发生发展的生物学机制、指导临床靶向治疗具有重要的意义。
     本论文包括了以下三部分研究内容:
     第一部分:血液层流剪切力对内皮细胞自噬反应的影响
     第二部分:Sirtl在介导内皮细胞自噬反应中作用及生物学机制
     第三部分:Sirt2在内皮细胞氧化应激中作用的系统生物学研究
     第一部分:血液层流剪切力对内皮细胞自噬反应的影响
     研究目的
     探讨剪切力是否能够调节内皮细胞的自噬功能;探讨剪切力是否通过改变细胞内氧化还原水平参与内皮细胞自噬功能的维持。
     研究方法:
     1、体外实验:采用M199培养基作为流体,用剪切力(20dyne/cm2)作用原代人脐静脉内皮(HUVECs)和人已细血管内皮细胞8小时后,将细胞分为Shear组(剪切力作用)和Static组(无剪切力作用),培养4小时。体内实验:24周龄的C57BL雄性小鼠给予右侧颈总动脉结扎48小时,左侧颈总动脉作为假手术对照。
     2、免疫荧光检测HUVECs内Actin-beta的排列方向。自噬功能的检测包括下列方法:吖啶橙染色观察细胞内pH值的变化;DCFH-DA直接荧光标记观察细胞内ROS的变化;免疫荧光方法计数LC3的点状聚集,以LC3的点状聚集阳性细胞占总细胞的百分比评价自噬小体的形成;WB检调LC3的蛋白表达;RT-PCR检测自噬相关基因ATG5、Beclin-1(BECN1), MAP LC3的表达。用活性氧清除剂EUK-134预处理后,继续采用上述实验方法观察是否能逆转剪切力对自噬功能的调节。
     3、人毛细血管内皮细胞转染pEGFP-LC3(?)质粒,共聚焦显微镜观察Shear对LC3点状聚集的影响,以LC3的点状聚集阳性细胞占总细胞的百分比表示;用EUK-134预处理后,仍采用上述方法观察是否能逆转剪切力对自噬的调节。
     4、免疫组化观察C57BL小鼠双侧颈总动脉结扎部位至主动脉弓段LC3水平,透射电子显微镜观察双侧动脉内皮细胞内自噬小体的形成。
     研究结果:
     1、免疫荧光检测发现剪切力作用12小时能够使内皮细胞Actin-beta沿流体流动的方向排列,证明在体外成功建立了剪切力刺激细胞的模型。
     2、Shear可以维持内皮细胞自噬反应:与Static组相比,Shear组LC3蛋白表达显著升高,LC3免疫荧光的点状聚集明显增多,细胞溶酶体酸化增强。
     3、Shear对HUVECs自噬反应的调节是氧化-还原依赖的:与Static组相比,Shear组细胞内活性氧产生(DCFH-DA荧光)明显增多;活性氧清除剂EUK-134明显逆转内皮细胞自噬相关基因的高表达。
     4、与Static组相比,Shear组LC3的点状聚集明显减少(EUK-134处理),表明过表达pEGFP-LC3的人毛细血管内皮细胞中剪切力对于的自噬反应的调节也是氧化-还原依赖的。
     5、C57BL小鼠右侧颈总动脉结扎48小时后血管内皮LC3表达减少,血管内皮细胞内自噬小体减少。
     结论:
     1、剪切力能够维持内皮细胞自噬反应。
     2、剪切力对内皮细胞自噬功能的维持是氧化-还原依赖的。
     第二部分:Sirt1在介导内皮细胞自噬反应中的作用及生物学机制
     研究目的
     观察H202是否可以模拟剪切力对内皮细胞自噬功能的调节,明确Sirt1在对内皮细胞自噬功能维持中的作用,探讨Sirt1调节内皮细胞自噬反应的生物学机制。
     研究方法:
     1、SIRT1及细胞内自噬及相关信号蛋白的检测:H202处理HUVECs后,RT-PCR检测S1RT表达,WB检测Sirt、LC3、mTOR、p-mTOR、ULK、p-ULK表达:Sirt1抑制剂Ex-527预处理H202刺激的内皮细胞,RT-PCR检测自噬相关基因(LC3、ATG5、Beclin-1)(?)勺表达。siRNA技术敲除Sirt1后,WB检测LC3表达,siRNA技术敲除人毛细血管内皮细胞Sirt1后,免疫荧光计数LC3的点状聚集,并计算其占总细胞的百分比;剪切力模型中,用Ex-527处理转染pEGFP-LC3质粒的人毛细血管内皮细胞,共聚焦显微镜观察LC3的点状聚集阳性细胞,并计算其占总细胞的百分比。在转染Flag-SIRT1质粒或白藜芦醉作用后的内皮细胞中,WB检测LC3表达。
     2、Sirtl-Foxola信号通路的检测:过表达Foxola的内皮细胞给予H2O2、白藜芦醇刺激后,免疫共沉淀法检测Foxola的乙酰化水、内皮细胞分别转染固有活性的Foxola的质粒和野生型Foxola的质粒后,白藜芦醇继续作用后,RT-PCR法检测自噬相关基因(LC3、ATG5、Belcin-1)表达变化。RT-PCR法检测Foxola siRNA与Flag-SIRT1共转染对自噬相关基因(LC3、ATG5、Belcin-1)表达的影响。
     3、免疫荧光法观察转染Flag-SIRT1质离后,Foxola在HUVECs中的核转位,RT-PCR检测Foxola靶基因和自噬相关基因(LC3、ATG5、Belcin-1)表达变化。研究结果:
     1、RT-PCR检测到内皮细胞S1RT1-7农达。
     2、剪切力增强内皮细胞SIRT1的表达。
     3、H2O2对抑制自噬反应的mTOR通路无显著影响:H2O2处理HUVECs后,mTOR、p-mTOR、ULK、p-ULK表达无显著变化。
     4、H2O2上调内皮细胞SIRT1的表达:H2O2以时间依赖方式促进内皮细胞SIRT1基因和蛋白表达。
     5、Sirtl激活剂白藜醇能够增强内皮细胞自噬反应:白藜芦醇以时间依赖方式促进内皮细胞Sirt1、LC3表达。
     6、百藜芦醇上调过表达Foxo1a的内皮细胞中自噬相关基因的转录表达。
     7、H2O2、白藜芦醇降低了过表达Foxo1a的内皮细胞中Foxo1a的乙酰化表达。
     8、Flag-SIRT1上调了自噬关基因的转录表达。
     9、Sirt1抑制剂能够抑制内皮细胞自噬反应:Sirt1抑制剂Ex-527预处理HUVECs后,H202对HUVECs自噬相关基因在1nRNA水平上的升高作用被抑制。用Ex-527处理转染pEGFP-LC3质粒的人毛细血管内皮细胞,Shear组LC3的点状聚集阳性细胞占总细胞的百分比较Static组升高的作用被抑制。
     10、Sirtl的siRNA能够抑制内皮细胞自噬反应:Sirtl的siRNA转染HUVECs和人毛细血管内皮细胞后,H202继续作用后LC3表达降低,LC3的点状聚集减少。
     11、Sirtl和自噬反应对氧化应激状态下内皮细胞活性的影响:Ex-527、自噬反应抑制剂3-MA预处理降低了内皮细胞的活力及对H202的耐受。
     12、Sirtl对Foxola在细胞内定位的作用:分别转染Flag-SIRT1质粒和应用白藜芦醇后,Foxola在HUVECs中发生核转位;同时,Flag-SIRT1也提高了自噬相关基因的转录水平。
     13、Foxola过表达对内皮细胞自噬反应的影响:内皮细胞转染带活性Foxola的质粒和野生型Foxola的质粒后,自噬相关基因MAP_LC3转录水平明显升高。
     14、Foxola对过表达Flag-SIRT1的内皮细胞自噬反应的影响:共转染Foxola的siRNA与Flag-SIRT1质粒后,HUVECs自噬相关基因表达无显著变化。
     结论:
     Sirt1介导剪切力诱发的自噬反应,Sirtl通过去乙酰化Foxola调节自噬相关基因表达是Sirt1调节内皮细胞自噬反应的机制之一。
     第三部分SIRT2在内皮细胞氧化应激中作用的系统生物学研究
     研究目的:
     探讨内皮细胞Sirt2在氧化应激中的作用。
     研究方法:
     采用基因芯片和RT-PCR实验验证原代人脐静脉内皮细胞Sirt2沉默后,氧化应激作用下基因表达的变化。MTS法检测内皮细胞活性。
     研究结果:
     1、H202诱导内皮细胞的氧化应激反应
     2、氧化应激作用下SIRT2表达升高。
     3、Sirt2沉默对内皮细胞氧化应激状态下基因转录组的影响:Sirt2沉默后有340个基因的表达发生变化,这些基因主要参与肌动蛋白结合和细胞代谢的生理过程。
     4、Sirt2敏感基功能的生物信息学分析:转染Sirt2的siRNA调节的基因参与跨膜受体蛋白丝氨酸/苏氨酸激酶信号、铁离子运输、蛋白质的运输和定位等。这些基因和相关的功能在根大程度上与转染Sirt1的siRNA后的关功能是不重叠的。
     5、氧化应激状态下AGK2(抑制Sirt2)对内皮细胞活性起保护作用。
     结论:
     Sirt2去乙酰化在内皮细胞氧化应激中起到重要作用,与Sirt1作用不同,内皮细胞Sirt2的抑制可能起到对细胞活性和生存的保护作用。
Cardiovascular disorder has become one of the major diseases affecting human health with its high incidence as world's population is aging. The vascular endothelial cell homeostasis is vital to maintain vascular system stability and to prevent vascular disease. Endothelial cell function is regulated by blood flow shear stress (that is the blood flow force of vascular wall caused by the horizontal shear force). Physiological and steady shear force can maintain vascular endothelial normal physiological functions and metabolism. However, non physiological shear force (too high, too low shear stress or shock type) can induce endothelial dysfunction and lead to a variety of vascular disease.
     Cell autophagy is a self digestion process involving degradation of the endogenous cell components in lysosomal system. Autophagy reaction is the main pathway of preventing from stress stimulation and maintaining the quality of macromolecular proteins and organelles in cell cycle under stress in mammalian cells. In endothelial cells, the autophagic response plays an important role in cell function regulation. Autophagy can protect cells against bacteria infection, improve the resistance capacity of endothelial cells in starvation and hypoxia, high temperature and hormone, and protect from cell apoptosis. However, whether blood flow shear stress can regulate autophagy reaction in endothelial cells remains unknown.
     The initial activation of autophagy is triggered by multiple signaling pathways, such as the insulin receptor rapamycin receptor pathway. Adenosine Monophosphate Activated Protein Kinase (AMPK) pathway, the integrin protein and calcium-mediated signaling pathways. Cytokines, glycosylation and oxidized low density lipoprotein are involved in autophagy reaction of endothelial cells. The mechanisms of endothelial autophagy are not totally clear. Autophagy process includs Atg protein conjunction, autophagosome formation characterized by double membrane, cytolysosome and lysosomes form autophagy-lysosome and the degradation of the contents. Sirtuin is a nicotinamide adenine dcnucleotids (NAD) dependent dacetylation enzyme family (Sirtl-Sirt7). Sirt maintains gene silencing, chromosome stability, cell metabolism and cell life. It has been found that some members of the Sirt family, such as Sirtl may participate in regulating cell autophagy reaction. Evidence reveals that shear force can influence S1RT1expression in endothelial cells. However. It is unclear whether SIRT protein participates in cell autophagy regulated by shear stress.
     In contrast to Sirtl, the biological functions of Sirt2in endothelial cells remain unknown. Therefore, we explored the role of Sirt2under oxidative stress by examining global gene expression in this study.
     In this thesis we aimed to clarify the role of Sirt in regulation of autopahgy in endothelial cells and the mechanisms involved in the process.
     The whole thesis includes3parts:
     Part Ⅰ:Effects of shear stress on autophagy in endothelial cells
     Part Ⅱ:The role of Sirtl in regulating autophagy in endothelial cells
     Part Ⅲ:Global gene expression study of Sirt2in endothelial cells under oxidative stress
     Part I:Effects of shear stress on endothelial cell autophagy
     Objective:
     To explore how shear stress regulates autophagy in endothelial cells and whether this effect is redox dependent.
     Methods:
     1. In vitro studies were performed as follows:we maintained full name (HUVECs) under20dyne/cm2flow to mimics physiological blood How status and0dyne/cm2flow as the static status. M199medium was used as a fluid buffer in both statuses. The24-week-old C57BL male mice were used to establish the physiological blood flow shear blood flow and static blood flow model as follows: mice underwent the right common carotid artery distal ligation and left carotid artery sham operation for48hours.
     2. Immune fluorescence was used to determine Actin-beta arrangement direction in HUVECs. Autophagy evaluation included the following parts:firstly, Acridine orange staining to observe intracellular pH level; secondly, direct DCFH-DA fluorescence to examine intracellular full (ROS) change; immune fluorescence to count LC3punctate aggregation (the percentage of positive LC3punctation gathered cells of the total cell); Western blot to detect LC3protein level; PCR to measure autophagy related genes expression including ATG5, Beclin-1and MAP_LC3. Moreover, EUK-134pretreatment was given to evaluate whether the antioxidant compound can reverse shear induced autophagy in endothelial cells.
     3. We counted LC3punctation aggregation percentage by confocal microscope in human capillary endothelial cells with pEGFP-LC3plasmid transfection. EUK-134pretreatment was also given to observe whether it can reverse the regulation of shear on autophagy.
     4. LC3in the carotid artery ligation of C57BL mice was observed by immunohistochemical staining. The formation of autophagosome in the bilateral endothelial cells was counted by transmission electron microscope.
     Results:
     1. Shear stress induced alignment of actin fibers in endothelial cells along the direction of fluid flow compared to static condition, which confirmed that an in vitro shear stress model was successfully established.
     2. Compared to static group, total LC3expression under shear stress was significantly increased as measured by western blotting. LC3punctation significantly increased as measured by immune fluorescence staining. pH value reduced in endothelial cells in shear group compared to static group as shown by acridine orange staining.3. Compared to static flow, DCFH-DA fluorescence increased significantly under shear status. It is confirmed that shear maintained endothelial autophagy related genes at the transcriptional level by PCR, and the effect can be reversed by pretreatment of EUK-134.
     4. In human capillary endothelial cells transfected with pEGFP-LC3plasmid, it was revealed that shear group also maintained LC3punctate aggregation as measured by fluorescence microscope, which can be reversed with EUK-134pretreatment. It was found that4-hr H2O2treatment in HUVECs, increased significantly LC3fluorescence punctation intracellular aggregation.
     5. It was also found that LC3expression reduced48h after carotid artery ligation. The number of autophagosome in endothelial cell cytoplasm reduced after carotid artery ligation.
     Conclusions:
     Shear stress maintains autophagy process in endothelial cells, which is in a cellular redox-dependent manner.
     Part II SIRTl is involved in shear stress-induced autophagy
     Ohjective:
     To investigate if H2O2can mimic shear stress-regulated endothelial cell autophagy; to confirm if SIRT1is involved in shear-autophagy signaling pathway; to study the mechanism of SIRT1regulation of endothelial cell autophagy.
     Methods:
     1. The detection of SIRT1and autophagy related genes and proteins expression. SIRTl, ATG5, Bed in-1, MAP LC3expression was measured by PCR;LC3, mTOR, p-mTOR, ULK, p-ULK expression was measured by western blot in cells with or without SIRT1inhibitor Ex-527prctreatment before H2O2. LC3expression and its punctation aggregation were measured in Sirtl的siRNA transfected HUVECs and human capillary endothelial cells, respectively. LC3punctation was measured directly in pEGFP-LC3ovcrexpressing human microvascular endothelial cell line, which were pretreated with shear stress and/or Ex-527. Total LC3protein or LC3H/LC31was detected by western blot in pc I)NA3Flag-SIRT1transfected or resveratrol-treated cells
     2. Sirtl-Foxola signaling detection:Sirtl and Foxola binding or Foxola aeetylation level were detected in Foxola-transfected HUVECs which were treated with H1O2and resveratrol. The effect of resveratrol treatment after pc DNA3Flag-Foxol a-AAA and wild type Foxo1a transfection on autophagy related gene expression was detected by PCR as well as the effect of co-transfected with the FOXO1A siRNA (Si-FOXO1A) and Flag-SIRT1.
     3. Foxola nuclear location was observed in Flag-SIRT1, resveratrol treated HUVECs by immunofluorescence; Foxo1a target genes, and autophagy related gene expression was detected by PCR.
     Results:
     1. SIRT1-7were expressed in endothelial cells as revealed by gel electrophoresis of PCR products.
     2. Shear stress induced SIRT1expression in endothelial cells.
     3. There were no obvious changes of mTOR, p-mTOR, ULK, p-ULK in H2O2treated HUVECs.
     4. ROS increased SIRT1gene expression. Both SIRT1gene and protein expression was increased in HUVECs after H2O2treatment in a time-dependent manner.
     5. Resveratrol, an agonist of Sirt1, can enhance autophagy.
     6. Resveratrol treatment increased ATG5, Beclin-1, and MAP_LC3mRNA expression in constitutively active Foxo1a transfected cells.
     7. In Flag-FKHR transfected HUVECs, H2O2and resveratrol increased Foxo1a deacetylation level.
     8. Flag-SIRT1overexpression increased the transeriptional level of autophagy related genes.
     9. Sirtl inhibitor Ex-527inhibited autophagy:Increased ATG5, Beclin-1, and MAP_LC3mRNA levels induced by H2O2were reversed with Ex-527pretreatment. LC3punctatation decreased in pEGFP-LC3transfected human capillary vascular endothelial cells which underwent Ex-527pretreatment, in shear flow group.
     10. Sirt1knock down also inhibited autophagy. LC3punctation aggregation was reduced in human capillary endothelial cells by Sirt1knocking down.
     11. Both Ex-527and3-MA pretreatment in HUVECs reduced endothelial cells survival after oxidative stress challenge.
     12. Sirt1effects on Foxola localization in HUVECs. SIRT1overexpression transfection and resveratrol treatment triggered nuclear localization of Foxola. SIRT1overexpression increased autophagy related gene transcription levels.
     13. FOXO1A over expression in endothelial cells affects autophagy:MAP_LC3 significantly increased after overexpression of wild type or constitutively active Foxola.
     14. FOXO1A knock down reversed A TG5. Bed in-1, and MAP LC3mRNA upregulation induced by SIRT1overexpression in HUVECs.
     Conclusion:
     Sirtl mediates shear-induced autophagy in endothelial cells. Sirtl regulates autophagy by Foxola deacetylation in endothelial cells.
     Part Ⅲ Systemic biology study on the role of Sirt2in endothelial cells under oxidative stress
     Objective:
     To investigate the role of endothelial NAD+-dependcnt deacetylase Sirt2in endothelial cells under oxidative stress.
     Methods:
     Global gene expression changes were examined using cDNAmicroarray and PCR after Sirt2knocking down in primary HUVECs under oxidative stress. MTS assay was used to measure endothelial cell activity.
     Results:
     1. H2O2treatment induced oxidative stress response.
     2. SIRT2expression was increased under oxidative stress.
     3. Sirt2knocking down changed expression of340genes, which are mainly involved in cellular processes including actin binding, cellular amino acid metabolic process, transmembranc receptor protein scrine/threoninc kinase signaling, ferrous iron transport, protein transport and localization, cell morphogenesis, and functions associated with endosome membrane and the trans-Golgi network.
     4. These above genes and associated functions were largely non-overlapping with those regulated by Sirtl knocking down.
     5. Pharmacological inhibition of Sirt2attenuated oxidant-induced cell toxicity in endothelial cells.
     Conclusions:Sirt2is functionally important in endothelial cells under oxidative stress, and it may have a primarily distinct role from Sirtl.
引文
[1]Coultas L, Chawengsaksophak K, Rossant J. Kndothelial cells and VEGF in vascular development. Nature.2005.438(7070):937-45.
    [2]Humphrey JD. Mechanisms of arterial remodeling in hypertension:coupled roles of wall shear and intramural stress. Hypertension.2008.52(2):195-200.
    [3]Muller S, Labrador V, Da IN, et al. From hemorheology to vascular mechanobiology:An overview. Clin Hemorheol Microcirc.30(3-4). Netherlands.2004.185-200.
    [4]Barakat A, Lieu D. Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress. Cell Biochem Biophys.2003. 38(3):323-43.
    [5]Niebauer J, Cooke.IP. Cardiovascular effects of exercise:role of endothelial shear stress. J Am Coll Cardiol.1996.28(7):1652-60.
    |6] Ando J. [Shear stress and vascular formation]. Nihon Yakurigaku Zasshi.1996. 107(3):141-52.
    17] Kroll MM, Heliums JD, Mclntirc LV, Schafcr AI, Moake JL. Platelets and shear stress. Blood.1996.88(5):1525-41.
    [8]Kageoka T, Kanekuni Y, Ueta T, et al. (Adherent reaction among activated platelets, polymorphonuclear cells and vascular endothelial cells under thrombin stimulation or shear stress]. Rinsho Byori.1996.44(8):757-63.
    [9]Miyakawa Y, Oda A. [Thrombopoietin primes human platelet aggregation induced by shear stress and by multiple angonists]. Rinsho Ketsueki.1996. 37(9):785-9.
    [10]Nomura S, Komiyama Y. [Shear stress and platelet-derived microparticlcs]. Rinsho Byori.1997.45(10):927-33.
    [11]Resnick N, Yahav H, Shay-Salit A, et al. Fluid shear stress and the vascular endothelium:for better and for worse. Prog Biophys Mol Biol.2003.81(3): 177-99.
    [12]Tzima E. Role of small GTPases in endothelial cytoskeletal dynamics and the shear stress response. Circ Res.2006.98(2):176-85.
    [13]Lin K, Hsu PP. Chen BP, et al. Molecular mechanism of endothelial growth arrest by laminar shear stress. Proc Natl Acad Sci U S A.2000.97(17):9385-9.
    [14]Malek AM, Izumo S. Molecular aspects of signal transduction of shear stress in the endothelial cell. J Hypertens.1994.12(9):989-99.
    [15]Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature.1999.399(6736):601-5.
    [16]Dimmeler S, Hermann C, Galle J, Zeiher AM. Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells. Arterioscler Thromb Vase Biol.1999.19(3): 656-64.
    [17]Shyy JY, Chien S. Role of integrins in endothelial mechanosensing of shear stress. Circ Res.2002.91(9):769-75.
    [18]Hyduk SJ, Cybulsky MI. Role of alpha4betal integrins in chemokine-induced monocyte arrest under conditions of shear stress. Microcirculation.2009.16(1): 17-30.
    [19]Ishida T, Takahashi M, Corson MA, Berk BC. Fluid shear stress-mediated signal transduction:how do endothelial cells transduce mechanical force into biological responses. Ann N Y Acad Sci.1997.811:12-23; discussion 23-4.
    [20]Chen Z, Peng IC, Cui X, Li YS, Chien S, Shyy JY. Shear stress, SIRT1, and vascular homeostasis. Proc Natl Acad Sci U S A.2010.107(22):10268-73.
    [21]Takahashi M, Ishida T, Traub O, Corson MA, Berk BC. Mechanotransduction in endothelial cells:temporal signaling events in response to shear stress. J Vase Res.1997.34(3):212-9.
    [22]Pyke KE, Tschakovsky ME. The relationship between shear stress and flow-mediated dilatation:implications for the assessment of endothelial function. J Physiol.2005.568(Pt 2):357-69.
    [23]Nichols TC, Bellinger DA, Reddick RL, et al. von Willebrand factor does not influence atherogenesis in arteries subjected to altered shear stress. Arterioscler Thromb Vase Biol.1998.18(2):323-30.
    [24]Takahashi S, Papafaklis MI, Sakamoto S, et al. The effect of statins on high-risk atherosclerotic plaque associated with low endothelial shear stress. Curr Opin Lipidol.2011.22(5):358-64.
    [25]Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling:molecular, cellular, and vascular behavior. J Am Coll Cardiol.2007.49(25):2379-93.
    [26]Wentzel JJ, Chatzizisis YS. Gijsen FJ, Giannoglou GD, Feldman CL, Stone PH. Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling:current understanding and remaining questions. Cardiovasc Res.2012.96(2):234-43.
    [27]Traub O. Berk BC. Laminar shear stress:mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vase Bio!.1998. 18(5):677-85.
    [28]Cheng C, de Crom R, van HR, et al. The role of shear stress in atherosclerosis: action through gene expression and inflammation. Cell Biochem Biophys.2004. 41(2):279-94.
    [29]Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest.2005.85(1):9-23.
    [30]Slager CJ, Wentzel JJ, Gijsen FM, et al. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat Clin Pract Cardiovasc Med.2005.2(8): 401-7.
    [31]Slager CJ, Wentzel JJ, Gijsen FJ, et al. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat Clin Pract Cardiovasc Med.2005.2(9):456-64.
    [32]Helderman F, Segers D, de Crom R, et al. Effect of shear stress on vascular inflammation and plaque development. Curr Opin Lipidol.2007.18(5):527-33.
    [33]Koskinas KC, Chatzizisis YS, Antoniadis AP, Giannoglou GD. Role of endothelial shear stress in stent restenosis and thrombosis:pathophysiologic mechanisms and implications for clinical translation. J Am Coll Cardiol.2012. 59(15):1337-49.
    [34]Zaragoza C, Marquez S, Saura M. Endothelial mechanosensors of shear stress as regulators of atherogenesis. Curr Opin Lipidol.2012.23(5):446-52.
    [35]Yoshizumi M, Abe J, Tsuchiya K, Berk BC, Tamaki T. Stress and vascular responses:atheroprotective effect of laminar fluid shear stress in endothelial cells:possible role of mitogen-activated protein kinases. J Pharmacol Sci.2003. 91(3):172-6.
    [36]Tarbell JM. Shear stress and the endothelial transport barrier. Cardiovasc Res. 2010.87(2):320-30.
    [37]Bakker SJ, Gans RO. About the role of shear stress in atherogenesis. Cardiovasc Res.2000.45(2):270-2.
    [38]Resnick N, Yahav H, Schubert S, Wolfovitz E, Shay A. Signalling pathways in vascular endothelium activated by shear stress:relevance to atherosclerosis. Curr Opin Lipidol.2000.11(2):167-77.
    [39]Langille BL. Morphologic responses of endothelium to shear stress: reorganization of the adherens junction. Microcirculation.2001.8(3):195-206.
    [40]Fisher AB, Chien S, Barakat AI, Nerem RM. Endothelial cellular response to altered shear stress. Am J Physiol Lung Cell Mol Physiol.2001.281(3): L529-33.
    [41]Groenendijk BC, Van der Heiden K, Hierck BP, Poelmann RE. The role of shear stress on ET-1, KLF2, and NOS-3 expression in the developing cardiovascular system of chicken embryos in a venous ligation model. Physiology (Bethesda). 2007.22:380-9.
    [42]Humphrey JD. Mechanisms of arterial remodeling in hypertension:coupled roles of wall shear and intramural stress. Hypertension.2008.52(2):195-200.
    [43]Boon RA, Hergenreider E, Dimmeler S. Atheroprotective mechanisms of shear stress-regulated microRNAs. Thromb Haemost.2012.108(4):616-20.
    [44]Nigro P, Abe J, Berk BC. Flow shear stress and atherosclerosis:a matter of site specificity. Antioxid Redox Signal.2011.15(5):1405-14.
    [45]Matlung HL, Bakker EN, VanBavel E. Shear stress, reactive oxygen species, and arterial structure and function. Antioxid Redox Signal.2009.11(7): 1699-709.
    [46]De Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol.1966.28: 435-92.
    [47]Kimmelman AC. The dynamic nature of autophagy in cancer. Genes Dev.2011. 25(19):1999-2010.
    [48]Ohsumi Y. Molecular mechanism of autophagy in yeast, Saccharomyces cerevisiae. Philos Trans R Soc Lond B Biol Sci.1999.354(1389):1577-80; discussion 1580-1.
    [49]Kim J, Klionsky DJ. Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem.2000.69: 303-42.
    [50]Alers S, Loftier AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy:cross talk, shortcuts, and feedbacks. Mol Cell Biol. 2012.32(1):2-11.
    [51]Graziotto JJ, Cao K, Collins FS, Krainc D. Rapamycin activates autophagy in Hutchinson-Gilford progeria syndrome:implications for normal aging and age-dependent neurodegenerative disorders. Autophagy.2012.8(1):147-51.
    152] Ryter SW, Choi AM. Autophagy in the lung. Proc Am Thorac Soc.2010.7(1): 13-21.
    [53]Rothermel BA, Hill JA. Autophagy in load-induced heart disease. Circ Res. 2008.103(12):1363-9.
    [54]Gustafsson AB, Gottlieb RA. Autophagy in ischemic heart disease. Circ Res. 2009.104(2):150-8.
    [55]Martinet W, De Meyer GR. Autophagy in atherosclerosis:a cell survival and death phenomenon with therapeutic potential. Circ Res.2009.104(3):304-17.
    [56]Belanger M, Rodrigues PM, Dunn WA Jr, Progulske-Fox A. Autophagy:a highway for Porphyromonas gingivalis in endothelial cells. Autophagy.2006. 2(3):165-70.
    [57]Derctic V. Links between autophagy, innate immunity, inflammation and Crohn's disease. Dig Dis.2009.27(3):246-51.
    [58]Mortensen M, Ferguson DJ, Edelmann M, et al. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc Natl Acad Sci U S A.2010.107(2):832-7.
    [59]Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS:physiology and pathology. Trends Biochem Sci.2011.36(1):30-8.
    [60]Licberman AP, Puertollano R, Raben N, Slaugenhaupt S, Walkley SU, Ballabio A. Autophagy in lysosomal storage disorders. Autophagy.2012.8(5):719-30.
    [61]Michan S. Sinclair D. Sirtuins in mammals:insights into their biological function. Biochem J.2007.404(1):1-13.
    [62]Saunders LR, Verdin E. Sirtuins:critical regulators at the crossroads between cancer and aging. Oncogcne.2007.26(37):5489-504.
    [63]Brunei A, Sweeney LB, Sturgill JF. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science (80-).2004.303(5666): 2011-5.
    [64]Wang F, Chan CH, Chen K, Guan X, Lin HK, Tong Q. Deacetylation of FOXO3 by SIRT1 or S1RT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene.2012.31(12):1546-57.
    [65]Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol.2012.13(4):225-38.
    [66]Salminen A, Kaarniranta K. Regulation of the aging process by autophagy. Trends Mol Med.2009.15(5):217-24.
    [1]Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling:molecular, cellular, and vascular behavior. J Am Coll Cardiol.2007.49(25):2379-93.
    [2]Zhang W, Chen H. [The study on the shear stress responsive element in endothelial cells]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi.2001.18(3): 461-5.
    [3]Barakat A, Lieu D. Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress. Cell Biochem Biophys.2003. 38(3):323-43.
    [4]Davies PF, Spaan JA, Krams R. Shear stress biology of the endothelium. Ann Biomed Eng.2005.33(12):1714-8.
    [5]Chiu JJ, Usami S, Chien S. Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis. Ann Med.2009.41(1):19-28.
    [6]Resnick N, Yahav H, Schubert S, Wolfovitz E, Shay A. Signalling pathways in vascular endothelium activated by shear stress:relevance to atherosclerosis. Curr Opin Lipidol.2000.11(2):167-77.
    [7]Ogunrinade O, Kameya GT, Truskey GA. Effect of fluid shear stress on the permeability of the arterial endothelium. Ann Biomed Eng.2002.30(4): 430-46.
    [8]Dhawan SS, Avati NRP, Branch JR, et al. Shear stress and plaque development. Expert Rev Cardiovasc Ther.2010.8(4):545-56.
    [9]Tarbell JM. Shear stress and the endothelial transport barrier. Cardiovasc Res. 2010.87(2):320-30.
    [10]Ando J, Yamamoto K. Effects of shear stress and stretch on endothelial function. Antioxid Redox Signal.2011.15(5):1389-403.
    [11]Kim J, Klionsky DJ. Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem.2000.69: 303-42.
    [12]Rothermel BA, Hill JA. Autophagy in load-induced heart disease. Circ Res. 2008.103(12):1363-9.
    [13]Gustafsson AB, Gottlieb RA. Autophagy in ischemic heart disease. Circ Res. 2009.104(2):150-8.
    [14]Martinet W, De Meyer GR. Autophagy in atherosclerosis:a cell survival and death phenomenon with therapeutic potential. Circ Res.2009.104(3):304-17.
    [15]Belanger M, Rodrigues PH, Dunn WA Jr. Progulske-Fox A. Autophagy:a highway for Porphyromonas gingivalis in endothelial cells. Autophagy.2006. 2(3):165-70.
    [16]Mortensen M, Ferguson DJ, Edelmann M, et al. Loss of autophagy in crythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc Natl Acad Sci U S A.2010.107(2):832-7.
    [17]Alers S, Loffler AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulkl/2 in the regulation of autophagy:cross talk, shortcuts, and feedbacks. Mol Cell Biol. 2012.32(1):2-11.
    118] Graziotto JJ, Cao K, Collins FS, Krainc D. Rapamycin activates autophagy in Hutchinson-Gilford progcria syndrome:implications for normal aging and age-dependent neurodegenerative disorders. Autophagy.2012.8(1):147-51.
    [19]Seglen PC), Gordon PB, llolcn I. Non-selective autophagy. Semin Cell Biol. 1990.1(6):441-8.
    [20| Metcalf DJ, Garcia-Arencibia M, Hochfeld WH, Rubinsztein DC. Autophagy and misfolded proteins in neurodegencration. Exp Ncurol.2012.238(1):22-8.
    [21]Wirawan E, Vanden BT, Lippens S, Agostinis P, Vandenabeele P. Autophagy: for better or for worse. Cell Res.2012.22(1):43-61.
    [22]Koskinas KC, Chatzizisis YS, Antoniadis AP, Giannoglou GD. Role of endothelial shear stress in stent restenosis and thrombosis:pathophysiologic mechanisms and implications for clinical translation. J Am Coll Cardiol.2012. 59(15):1337-49.
    [23]Shyy JY. Mechanotransduction in endothelial responses to shear stress:review of work in Dr. Chien's laboratory. Biorheology.2001.38(2-3):109-17.
    [24]Fisher AB, Chien S, Barakat AI, Nerem RM. Endolhelial cellular response to altered shear stress. Am J Physiol Lung Cell Mol Physiol.2001.281(3): L529-33.
    [25]Barbee KA. Role of subcellular shear-stress distributions in endothelial cell mechanotransduction. Ann Biomed Eng.2002.30(4):472-82.
    [26]Lu D, Kassab GS. Role of shear stress and stretch in vascular mechanobiology. J R Soc Interface.2011.8(63):1379-85.
    [27]Egginton S. In vivo shear stress response. Biochem Soc Trans.2011.39(6): 1633-8.
    [28]Vessieres E, Freidja ML, Loufrani L, Fassot C, Henrion D. Flow (shear stress)-mediated remodeling of resistance arteries in diabetes. Vascul Pharmacol.2012.57(5-6):173-8.
    [29]Papafaklis MI, Koskinas KC, Chatzizisis YS, Stone PH, Feldman CL. In-vivo assessment of the natural history of coronary atherosclerosis:vascular remodeling and endothelial shear stress determine the complexity of atherosclerotic disease progression. Curr Opin Cardiol.2010.25(6):627-38.
    [30]Tsai HM. von Willebrand factor, shear stress, and ADAMTS13 in hemostasis and thrombosis. ASAIO J.2012.58(2):163-9.
    [31]Stone PH, Coskun AU, Yeghiazarians Y, et al. Prediction of sites of coronary atherosclerosis progression:In vivo profiling of endothelial shear stress, lumen, and outer vessel wall characteristics to predict vascular behavior. Curr Opin Cardiol.2003.18(6):458-70.
    [32]Kazmierski R. [Biomechanic shear stress in carotid arteries and atherosclerosis development]. Postepy Hig Med Dosw.2003.57(6):713-25.
    [33]Slager CJ, Wentzel JJ, Gijsen FJ, et al. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat Clin Pract Cardiovasc Med.2005.2(8): 401-7.
    [34]Papaioannou TG, Karatzis EN, Vavuranakis M, Lekakis JP, Stefanadis C. Assessment of vascular wall shear stress and implications for atherosclerotic disease. Int J Cardiol.2006.113(1):12-8.
    [35]Tang ZH, Wang NP, Shu C. [Roles of shear stress in atherogenesis]. Sheng Li Ke Xue Jin Zhan.2007.38(1):37-42.
    [36]Chytilova E, Malik J. [Wall shear stress in carotid artery and its role in the development of atherosclerosis]. Vnitr Lek.2007.53(4):377-81.
    [37]Pan S. Molecular mechanisms responsible for the atheroprotective effects of laminar shear stress. Antioxid Redox Signal.2009.11(7):1669-82.
    [38]Davies PF, Civelek M. Endoplasmic reticulum stress, redox, and a proinflammatory environment in athero-susceptible endothelium in vivo at sites of complex hemodynamic shear stress. Antioxid Redox Signal.2011.15(5): 1427-32.
    [39]Shyy JY, Chien S. Role of integrins in endothelial mechanosensing of shear stress. Circ Res.2002.91(9):769-75.
    [40]Wasilewski J, Kiljanski T, Miszalski-Jamka K. [Role of shear stress and endothelial mechanotransduction in atherogenesis]. Kardiol Pol.2011.69(7): 717-20.
    [41]Tousoulis D, Andreou I, Antoniades C, Tentolouris C, Stefanadis C. Role of inflammation and oxidative stress in endothelial progenitor cell function and mobilization:therapeutic implications for cardiovascular diseases. Atherosclerosis.2008.201(2):236-47.
    [42]Adler B, Sinzger C. Endothelial cells in human cytomegalovirus infection:one host cell out of many or a crucial target for virus spread. Thromb Haemost.2009. 102(6):1057-63.
    [43]Young SG, Davies BS, Voss CV, et al. GPIHBPI, an endothelial cell transporter for lipoprotein lipase.J Lipid Res.2011.52(11):1869-84.
    [44]Mestas J, Ley K. Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends Cardiovasc Med.2008.18(6):228-32.
    [45]Bai X, Wang X, Xu Q. Endothelial damage and stem cell repair in atherosclerosis. Vascul Pharmacol.2010.52(5-6):224-9.
    [46]Majkova Z, Toborek M, Hennig B. The role of caveolae in endothelial cell dysfunction with a focus on nutrition and environmental toxicants. J Cell Mol Med.2010.14(10):2359-70.
    [47]Humbert M, Montani D, Perros F. Dorfmuller P, Adnot S, Eddahibi S. Endothelial cell dysfunction and cross talk between endothelium and smooth muscle cells in pulmonary arterial hypertension. Vascul Pharmacol.2008. 49(4-6):113-8.
    [48]Liu ZJ, Velazquez OC. Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxid Redox Signal.2008.10(11):1869-82.
    [49]Kearney MT, Duncan ER, Kahn M, Wheatcroft SB. Insulin resistance and endothelial cell dysfunction:studies in mammalian models. Exp Physiol.2008. 93(1):158-63.
    [50]Dassah M, Deora AB, He K, Hajjar KA. The endothelial cell annexin A2 system and vascular fibrinolysis. Gen Physiol Biophys.2009.28 Spec No Focus: F20-8.
    [51]Vestweber D, Winderlich M, Cagna G, Nottebaum AF. Cell adhesion dynamics at endothelial junctions:VE-cadherin as a major player. Trends Cell Biol.2009. 19(1):8-15.
    [52]Ameshima S. [Pulmonary vascular endothelial cell growth and PPARgamma]. Nihon Rinsho.2008.66(11):2077-82.
    [53]Lu Q, Rounds S. Focal adhesion kinase and endothelial cell apoptosis. Microvasc Res.2012.83(1):56-63.
    [54]De Val S, Black BL. Transcriptional control of endothelial cell development. Dev Cell.2009.16(2):180-95.
    [55]Saitoh T, Akira S. Regulation of innate immune responses by autophagy-related proteins. J Cell Biol.2010.189(6):925-35.
    [56]Nishida K, Yamaguchi O, Otsu K. Crosstalk between autophagy and apoptosis in heart disease. Circ Res.2008.103(4):343-51.
    [57]Massey AC, Zhang C, Cuervo AM. Chaperone-mediated autophagy in aging and disease. CurrTop Dev Biol.2006.73:205-35.
    [58]Gurusamy N, Das DK. Autophagy, redox signaling, and ventricular remodeling. Antioxid Redox Signal.2009.11(8):1975-88.
    [59]Kaushik S, Cuervo AM. Autophagy as a cell-repair mechanism:activation of chaperone-mediated autophagy during oxidative stress. Mol Aspects Med. 2006.27(5-6):444-54.
    [60]Azad MB, Chen Y, Gibson SB. Regulation of autophagy by reactive oxygen species (ROS):implications for cancer progression and treatment. Antioxid Redox Signal.2009.11(4):777-90.
    [61]Dewaele M, Maes H, Agostinis P. ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy.2010.6(7): 838-54.
    [1]Haigis MC, Sinclair DA. Mammalian sirtuins:biological insights and disease relevance. Annu Rev Pathol.2010.5:253-95.
    [2]Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature.2009.460(7255):587-91.
    [3]Michan S, Sinclair D. Sirtuins in mammals:insights into their biological function. Biochem J.2007.404(1):1-13.
    [4]Saunders LR, Verdin E. Sirtuins:critical regulators at the crossroads between cancer and aging. Oncogene.2007.26(37):5489-504.
    [5]Bao J, Sack MN. Protein deacetylation by sirtuins:delineating a post-translational regulatory program responsive to nutrient and redox stressors. Cell Mol Life Sci.2010.67(18):3073-87.
    [6]Webster BR, Lu Z, Sack MN, Scott I. The role of sirtuins in modulating redox stressors. Free Radic Biol Med.2012.52(2):281-90.
    [7]Sanders BD, Jackson B, Marmorstein R. Structural basis for sirtuin function: what we know and what we don't. Biochim Biophys Acta.2010.1804(8): 1604-16.
    [8]Szczepankiewicz BG, Ng PY. Sirtuin modulators:targets for metabolic diseases and beyond. Curr Top Med Chem.2008.8(17):1533-44.
    [9]Silva JP, Wahlestedt C. Role of Sirtuin 1 in metabolic regulation. Drug Discov Today.2010.15(17-18):781-91.
    [10]Hirsch BM, Zheng W. Sirtuin mechanism and inhibition:explored with N(epsilon)-acetyl-lysine analogs. Mol Biosyst.2011.7(1):16-28.
    [11]Kyrylenko S, Baniahmad A. Sirtuin family:a link to metabolic signaling and senescence. Curr Med Chem.2010.17(26):2921-32.
    [12]Verdin E, Hirschey MD, Finley LW, Haigis MC. Sirtuin regulation of mitochondria:energy production, apoptosis. and signaling. Trends Biochem Sci. 2010.35(12):669-75.
    [13]Gillum MP, Erion DM, Shulman GI. Sirtuin-1 regulation of mammalian metabolism. Trends Mol Med.2010.
    [14]Camins A, Sureda FX, Junyent F, et al. Sirtuin activators:designing molecules to extend life span. Biochim Biophys Acta.2010.1799(10-12):740-9.
    [15]Ota H, Eto M, Ogawa S, Iijima K, Akishita M, Ouchi Y. SIRT1/eNOS axis as a potential target against vascular senescence, dysfunction and atherosclerosis. J Atheroscler Thromb.2010.17(5):431-5.
    [16]Potente M, Ghaeni L, Baldessari D, et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev.2007.21(20):2644-58.
    [17]Kelly G. A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol:part 1. Altern Med Rev.2010. 15(3):245-63.
    [18]Borradaile NM, Pickering JG. NAD(+), sirtuins, and cardiovascular disease. Curr Pharm Des.2009.15(1):110-7.
    [19]Chen Z, Peng 1C, Cui X, Li YS, Chien S, Shyy JY. Shear stress, SIRT1, and vascular homeostasis. Proc Natl Acad Sci U S A.2010.107(22):10268-73.
    [20]Birukov KG. Cyclic stretch, reactive oxygen species, and vascular remodeling. Antioxid Redox Signal.2009.11(7):1651-67.
    [21]Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling:roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev. 2011.63(1):218-42.
    [22]Masoro EJ. Role of sirtuin proteins in life extension by caloric restriction. Mech Ageing Dev.2004.125(9):591-4.
    [23]Qiu X, Brown KV, Moran Y, Chen D. Sirtuin regulation in calorie restriction. Biochim Biophys Acta.2010.1804(8):1576-83.
    [24]Taylor DM, Maxwell MM, Luthi-Carter R, Kazantsev AG. Biological and potential therapeutic roles of sirtuin deacctylases. Cell Mol Life Sci.2008. 65(24):4000-18.
    [25]Yamamoto Ⅱ, Schoonjans K, Auwerx J. Sirtuin functions in health and disease. Mol Endocrinol.2007.21(8):1745-55.
    [26]Gan L. Therapeutic potential of sirtuin-activating compounds in Alzheimer's disease. Drug News Perspect.2007.20(4):233-9.
    [27]Milne JC, Denu JM. The Sirtuin family:therapeutic targets to treat diseases ol-aging. CurrOpinChem Biol.2008.12(1):11-7.
    [28]Porcu M, Chiarugi A. The emerging therapeutic potential of sirtuin-interacting drugs:from cell death to lifespan extension. Trends Pharmacol Sci.2005.26(2): 94-103.
    [29]Yang DL, Zhang HG, Xu YL, et al. Resveratrol inhibits right ventricular hypertrophy induced by monocrotaline in rats. Clin Exp Pharmacol Physiol. 2010.37(2):150-5.
    [30]Thandapilly SJ, Wojciechowski P, Behbahani J, et al. Resveratrol prevents the development of pathological cardiac hypertrophy and contractile dysfunction in the SHR without lowering blood pressure. Am J Hypertens.2010.23(2):192-6.
    [31]Sulaiman M, Matta MJ, Sunderesan NR, Gupta MP, Periasamy M, Gupta M. Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol.2010.298(3):H833-43.
    [32]Robich MP, Chu LM, Chaudray M, et al. Anti-angiogenic effect of high-dose resveratrol in a swine model of metabolic syndrome. Surgery.2010.148(2): 453-62.
    [33]Xia N, Daiber A, Habermeier A, et al. Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice. J Pharmacol Exp Ther.2010.335(1):149-54.
    [34]Gurusamy N, Ray D, Lekli I, Das DK. Red wine antioxidant resveratrol-modified cardiac stem cells regenerate infarcted myocardium. J Cell Mol Med.2010.14(9):2235-9.
    [35]Zheng JP, Ju D, Jiang H, Shen J, Yang M, Li L. Resveratrol induces p53 and suppresses myocardin-mediated vascular smooth muscle cell differentiation. Toxicol Lett.2010.199(2):115-22.
    [36]Das M, Das DK. Resveratrol and cardiovascular health. Mol Aspects Med. 2010.31(6):503-12.
    [37]Robich MP, Osipov RM, Nezafat R, et al. Resveratrol improves myocardial perfusion in a swine model of hypercholesterolemia and chronic myocardial ischemia. Circulation.2010.122(11 Suppl):S142-9.
    [38]Zhang C, Feng Y, Qu S, et al. Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53. Cardiovasc Res.2011.90(3):538-45.
    [39]Jian B, Yang S, Chaudry IH, Raju R. Resveratrol improves cardiac contractility following trauma-hemorrhage by modulating Sirtl. Mol Med.2012.18(1): 209-14.
    [40]Xu X, Chen K, Kobayashi S, Timm D, Liang Q. Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy. J Pharmacol Exp Ther.2012.341(1):183-95.
    [41]Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamidc. a putative negative regulator of yeast sir2 and human S1RT1. J Biol Chem.2002.277(47): 45099-107.
    [42]Solomon JM, Pasupuleti R, Xu L, et al. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol Cell Biol.2006.26(1):28-38.
    [43]Pruitt K. Zinn RL, Ohm JE, et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet. 2006.2(3):e40.
    [44]Biacsi R, Kumari D, Usdin K. SIRT1 inhibition alleviates gene silencing in Fragile X mental retardation syndrome. PLoS Genet.2008.4(3):e1000017.
    [45]Li Y. Xu W. McBurney MW, Longo VD. SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERKl/2 signaling and protects neurons. Cell Mctab.2008. 8(1):38-48.
    [46]Gao Z, Ye J. Inhibition of transcriptional activity of c-JUN by SIRT1. Biochem Biophys Res Commun.2008.376(4):793-6.
    [47]Jung-Hynes B, Nihal M. Zhong W. Ahmad N. Role of sirtuin histone deacetylase SIRT1 in prostate cancer. A target for prostate cancer management via its inhibition. J Biol Chem.2009.284(6):3823-32.
    [48]Jung-Hynes B. Ahmad N. Role of p53 in the anti-proliferative effects of Sirtl inhibition in prostate cancer cells. Cell Cycle.2009.8(10):1478-83.
    [49]Yao Y, Li H, Gu Y, Davidson NE, Zhou Q. Inhibition of SIRT1 deacetylase suppresses estrogen receptor signaling. Carcinogenesis.2010.31(3):382-7.
    [50]Laemmle A, Lechleiter A, Roh V, et al. Inhibition of SIRT1 Impairs the Accumulation and Transcriptional Activity of HIF-1 alpha Protein under Hypoxic Conditions. PLOS ONE.2012.7(3):e33433.
    [51]Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling:roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev. 2011.63(1):218-42.
    [52]Cao C, Lu S, Kivlin R, et al. SIRT1 confers protection against UVB- and H2O2-induced cell death via modulation of p53 and JNK in cultured skin keratinocytes. J Cell Mol Med.2009.13(9B):3632-43.
    [53]Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science (80-).2004.303(5666): 2011-5.
    [54]Metoyer CF, Pruitt K. The role of sirtuin proteins in obesity. Pathophysiology. 2008.15(2):103-8.
    [55]Morselli E, Maiuri MC, Markaki M, et al. The life span-prolonging effect of sirtuin-1 is mediated by autophagy. Autophagy.2010.6(1):186-8.
    [56]Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. Deacetylation of FoxO by Sirtl Plays an Essential Role in Mediating Starvation-Induced Autophagy in Cardiac Myocytes. Circ Res.2010.107(12): 1470-82.
    [57]Wang YY, Chen SM, Li H. Hydrogen peroxide stress stimulates phosphorylation of FoxO1 in rat aortic endothelial cells. Acta Pharmacol Sin. 2010.31(2):160-4.
    [58]Mai S, Muster B, Bereiter-Hahn J, Jendrach M. Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy.2012.8(1):47-62.
    [59]Finn PF, Dice JF. Ketone bodies stimulate chaperone-mediated autophagy. J Biol Chem.2005.280(27):25864-70.
    [60]Katayama M, Kawaguchi T, Berger MS, Pieper RO. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ.2007.14(3):548-58.
    [61]Monastyrska I, Klionsky DJ. Autophagy in organelle homeostasis:peroxisome turnover. Mol Aspects Med.2006.27(5-6):483-94.
    [62]Kaushik S, Cuervo AM. Autophagy as a cell-repair mechanism:activation of chaperone-mediated autophagy during oxidative stress. Mol Aspects Med. 2006.27(5-6):444-54.
    [63]Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J.2007.26(7):1749-60.
    [64]Scherz-Shouval R, Shvets E, Elazar Z. Oxidation as a post-translational modification that regulates autophagy. Autophagy.2007.3(4):371-3.
    [65]Hill BG, Habcrzettl P, Ahmed Y, Srivastava S, Bhatnagar A. Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells. Biochem J.2008.410(3):525-34.
    [66]Azad MB, Chen Y, Gibson SB. Regulation of autophagy by reactive oxygen species (ROS):implications for cancer progression and treatment. Antioxid Redox Signal.2009.11(4):777-90.
    [67]Kurz T, Brunk UT. Autophagy of HSP70 and chelation of lysosomal iron in a non-rcdox-active form. Autophagy.2009.5(1):93-5.
    [68]Gurusamy N, Das DK. Autophagy, redox signaling, and ventricular remodeling. Antioxid Redox Signal.2009.11(8):1975-88.
    169] Dewaele M, Maes H, Agostinis P. ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy.2010.6(7): 838-54.
    [70]Filoincni G, Desideri E, Cardaci S, Rotilio G, Ciriolo MR. Under the ROS...thiol network is the principal suspect for autophagy commitment. Autophagy.2010. 6(7):999-1005.
    [71]Rao VA, Klein SR, Bonar SJ, et al. The antioxidant transcription factor Nrf2 negatively regulates autophagy and growth arrest induced by the anticancer redox agent mitoquinone. J Biol Chem.2010.285(45):34447-59.
    [72]Shin DM, Jeon BY, Lee HM, et al. Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog.2010.6(12):el 001230.
    [73]Stepkowski TM, Kruszewski MK. Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis. Free Radic Biol Med.2011.50(9):1186-95.
    [74]Lee.1, Giordano S. Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J.2012.441(2):523-40.
    [75]Kang R, Livesey KM, Zeh HJ. Loze MT, Tang D. HMGB1:a novel Beclin 1-binding protein active in autophagy. Autophagy.2010.6(8):1209-11
    [1]Michan S, Sinclair D. Sirtuins in mammals:insights into their biological function. Biochem J.2007.404(1):1-13.
    [2]Saunders LR, Verdin E. Sirtuins:critical regulators at the crossroads between cancer and aging. Oncogene.2007.26(37):5489-504.
    [3]Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature.2009.460(7255):587-91.
    [4]Haigis MC, Sinclair DA. Mammalian sirtuins:biological insights and disease relevance. Annu Rev Pathol.2010.5:253-95.
    [5]Bao J, Sack MN. Protein deacetylation by sirtuins:delineating a post-translational regulatory program responsive to nutrient and redox stressors. Cell Mol Life Sci.2010.67(18):3073-87.
    [6]Webster BR, Lu Z, Sack MN, Scott I. The role of sirtuins in modulating redox stressors. Free Radic Biol Med.2012.52(2):281-90.
    [7]Ota H, Eto M, Ogawa S, Iijima K, Akishita M, Ouchi Y. SIRT1/eNOS axis as a potential target against vascular senescence, dysfunction and atherosclerosis. J Atheroscler Thromb.2010.17(5):431-5.
    [8]Kelly G. A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol:part 1. Altem Med Rev.2010. 15(3):245-63.
    [9]Le BM, Leslie SJ, Milliken P, Megson IL. Endothelial dysfunction:from molecular mechanisms to measurement, clinical implications, and therapeutic opportunities. Antioxid Redox Signal.2008.10(9):1631-74.
    [10]Mattagajasingh I, Kim CS, Naqvi A, et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci U S A.2007.104(37):14855-60.
    [11]Ota H, Akishita M, Eto M, Iijima K, Kaneki M, Ouchi Y. Sirtl modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiol.2007.43(5):571-9.
    [12]Zu Y, Liu L, Lee MY, et al. SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circ Res.2010.106(8):1384-93.
    [13]Xia L, Ding F, Zhu JH, Fu GS. Resveratrol attenuates apoptosis of pulmonary microvascular endothelial cells induced by high shear stress and proinflammatory factors. Hum Cell.2011.24(3):127-33.
    [14]Csiszar A, Labinskyy N, Podlutsky A, et al. Vasoprotective effects of resveratrol and SIRT1:attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations. Am J Physiol Heart Circ Physiol. 2008.294(6):H2721-35.
    [15]Ota H, Tito M, Kano MR, et al. Cilostazol inhibits oxidative stress-induced premature senescence via upregulation of Sirtl in human endothelial cells. Arterioscler Thromb Vase Bio1.2008.28(9):1634-9.
    [16]Hou J, Wang S, Shang YC,Chong ZZ, Maiese K. Erythropoietin employs cell longevity pathways of SIRT1 to foster endothelial vascular integrity during oxidant stress. Curr Neurovasc Res.2011.8(3):220-35.
    [17]Nie H, Chen H, Han J, et al. Silencing of SIRT2 induces cell death and a decrease in the intracellular ATP level of PC 12 cells, hit.1 Physiol Pathophysiol Pharmacol.2011.3(1):65-70.
    [18]Zhou S, Chen HZ, Wan YZ, et al. Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res.2011.109(6):639-48.
    [19]Wang F, Nguyen M, Qin FX, long Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell.2007.6(4):505-14.
    [20]Lynn EG, McLcod CJ, Gordon JP, Bao J, Sack MN. SIRT2 is a negative regulator of anoxia-reoxygenation tolerance via regulation of 14-3-3 zeta and BAD in II9c2 cells. FEBS Lett.2008.582(19):2857-62.
    [21]Luthi-Carter R, Taylor DM, Pallos J, et al. SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc Natl Acad Sci U S A. 2010.107(17):7927-32.
    [22]Li Y, Matsumori H, Nakayama Y, et al. SIRT2 down-regulation in HeLa can induce p53 accumulation via p38 MAPK activation-dependent p300 decrease, eventually leading to apoptosis. Genes Cells.2011.16(1):34-45.
    [23]He X, Nie H, Hong Y, Sheng C, Xia W, Ying W. SIRT2 activity is required for the survival of C6 glioma cells. Biochem Biophys Res Commun.2012.417(1): 468-72.
    [24]Liu L, Arun A, Ellis L, Peritore C, Donmez G. Sirtuin 2 (SIRT2) enhances 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via deacetylating forkhead box O3a (Foxo3a) and activating Bim protein. J Biol Chem.2012.287(39):32307-11.
    [25]Liu PY, Xu N, Malyukova A, et al. The histone deacetylase SIRT2 stabilizes Myc oncoproteins. Cell Death Differ.2013.20(3):503-14.
    [26]Zhang Y, Au Q, Zhang M, Barber JR, Ng SC, Zhang B. Identification of a small molecule SIRT2 inhibitor with selective tumor cytotoxicity. Biochem Biophys Res Commun.2009.386(4):729-33.
    [27]Bouras T, Fu M, Sauve AA, et al. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem.2005.280(11):10264-76.
    [28]Black JC, Mosley A, Kitada T, Washburn M, Carey M. The SIRT2 deacetylase regulates autoacetylation of p300. Mol Cell.2008.32(3):449-55.
    [29]Das C, Lucia MS, Hansen KC, Tyler JK. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature.2009.459(7243):113-7.
    [30]Rothgiesser KM, Erener S, Waibel S, Luscher B, Hottiger MO. SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310. J Cell Sci.2010.123(Pt 24):4251-8.
    [31]Potente M, Ghaeni L, Baldessari D, et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev.2007.21(20):2644-58.
    [32]Coussens M, Maresh JG, Yanagimachi R, Maeda G, Allsopp R. Sirtl deficiency attenuates spermatogenesis and germ cell function. PLOS ONE.2008.3(2): e1571.
    [33]de Oliveira RM, Sarkander J, Kazantsev AG, Outeiro TF. SIRT2 as a Therapeutic Target for Age-Related Disorders. Front Pharmacol.2012.3:82.
    [34]Gal J, Bang Y, Choi HJ. SIRT2 interferes with autophagy-mediated degradation of protein aggregates in neuronal cells under proteasome inhibition. Neurochem Int.2012.61 (7):992-1000.
    [35]Pfister JA, Ma C, Morrison BE, D'Mello SR. Opposing effects of sirtuins on neuronal survival:SIRT1-mediated neuroprotection is independent of its deacetylase activity. PLOS ONE.2008.3(12):c4090.
    [36]Hashimoto-Komatsu A, Hirase T, Asaka M. Node K. Angiotensin H induces microtubule reorganization mediated by a deacetylase SIRT2 in endothelial cells. Hypertens Res.2011.34(8):949-56.
    [37]Tang J, Hu G, Hanai J, et al. A critical role for calponin 2 in vascular development. J Biol Chem.2006.281(10):6664-72.
    [38]Dennis MD, Baum JI, Kimball SR, Jefferson LS. Mechanisms involved in the coordinate regulation of mTORCl by insulin and amino acids. J Biol Chem. 2011.286(10):8287-96.
    [39]Outeiro TF, Kontopoulos E, Altmann SM, et al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science (80-).2007.317(5837):516-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700