用户名: 密码: 验证码:
中继蜂窝网络中无线资源管理技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中继蜂窝网络作为一种经济、新颖的网络构建方案,通过把“多跳”技术融入现有蜂窝网络(又称为传统蜂窝网络),缩短了通信节点间的通信距离,提高了通信链路的链路质量和信道容量,从而有效地满足下一代移动通信系统对大范围内高数据速率业务的覆盖需求。
     本文主要研究了中继蜂窝网络中基于频率复用的频谱规划问题,中继蜂窝网络中基于链路的自适应无线资源分配问题,以及中继蜂窝网络中公平资源调度等问题。为实现下一代无线移动通信系统在大范围内满足用户对高数据速率的需求做有意义的探索。
     频谱规划是一种经济实用的提高无线网络性能的手段。有效的频谱规划是提高系统容量和覆盖范围的一个重要手段。论文首先在基于一种频率复用的频谱规划方案的基础上进行了较为深入的研究,建立起系统分析的理论模型,对基站和中继节点的上行链路的干扰情况、信干比情况以及用户终端的发射功率进行了分析。在此基础上,提出了一种改进的频率复用方案,并对两种频率复用方案的性能进行了比较。计算机仿真数据表明,改进的方案能够很好的节省用户终端的发射功率,尤其是对于两跳用户终端,同时该改进方案还能够很好的减小同频干扰对系统性能的影响且获得更好的接收信干比。
     中继蜂窝网络作为一种更为复杂的多用户OFDM系统,本文对其自适应无线资源分配算法进行了研究。分析了中继蜂窝网络的系统模型,根据中继节点射频特性确定一个两时传输模式,并将资源分配问题建模为一个最优化模型,以解决在给定系统发射功率的限制条件下,最大化系统容量问题。通过对模型的简化,提出了一种“两步法”迭代资源分配算法,先子载波分配迭代,再进行功率调整从而平衡两跳链路容量,优化系统性能。仿真数据表明,该算法通过简单的迭代运算,在无需很高计算复杂度的情况下,能够获得较高的系统容量。
     另外,本文对中继蜂窝网络中的公平资源调度问题进行有意义的探索。把传统Round Robin算法引申到中继蜂窝网络中来作为一种基本参考算法,同时分别提出了贪婪轮询算法和部分比例公平算法。仿真结果表明,贪婪轮询算法具有较小的延时抖动性,在保证无线资源共享公平性的前提下,能够为用户提供比较稳定的数据传输。而部分比例公平算法具有相对较大的延时抖动性,但其在一定比例公平原则下能够获得更大的系统容量,它更适用于分组非实时业务的数据传输。
As novel and cost-effective network architecture, the relay enhanced cellular network is proposed and can be satisfied with the ubiquitous high data rate requirement of the next generation wireless systems. The relay enhanced cellular networks integrate the“multihop”capability into the conventional cellular systems by employing the relay nodes and dividing the directly connecting link between Base Stations (BSs) and User Terminals (UTs) into several hops. Thus, the communication distance is reduced and the link quality and channel capacity can be improved significantly.
     This dissertation investigates the frequency reuse based frequency planning problem; the link based adaptive resource allocation problem and the fair resource scheduling problem in relay enhanced cellular networks. It is a meaningful research work for achieving the higher data rate and ubiquitous coverage of the future mobile communication systems.
     Frequency planning is an economical and applicable approach to improve the performance of wireless networks. Effective frequency planning is the main method to increase the system capacity and coverage. This dissertation gives a deeper research on one frequency reuse based frequency planning scheme, has set up a theoretical analysis model and done some research on the interference, SIR (signal to interference ratio) of the uplinks and the transmit power of user terminals. Based on the analysis, one modified frequency reuse scheme is proposed for relay enhanced cellular networks. The simulation results show that the modified scheme has better performance.
     This dissertation gives the research on the adaptive resource allocation algorithms of the relay enhanced cellular network, a more complex multiuser OFDM system. By analyzing the system model and the radio frequency characteristic of relay nodes, a two-slots transmit pattern is proposed and one optimization model of the resource allocation problem is set up. By simplifying the model, one‘two step’iterative allocation algorithm is proposed. Simulation results show that the proposed algorithm can achieve high system capacity by low computing complexity.
     Additionally, this dissertation gives a meaningful exploration on fair resource scheduling of relay enhanced cellular networks. By introducing the traditional Round Robin algorithm as a benchmark, the greedy polling and partial proportional fair algorithm is proposed. The numerical results show that greedy polling algorithm has small jitter and can gain steady throughput. The partial proportional fair algorithm can achieve more capacity gain and is very suited for packet based non-real services.
引文
[1] 朱建华, 移动通信技术的发展、回顾和展望, 电信科学, 2000, (1): 21-25.
    [2] 付华秀, 周志坚, 第 4 代移动通信(4G)及其关键技术, 电力系统通信, 2003, (11): 9-11.
    [3] 李昌猷, 移动通信后 3G 或 4G 技术前景探索, 邮电设计技术, 2004, (5): 24-28.
    [4] 俞一帆, 第四代移动通信系统的跨层设计研究, [博士学位论文], 北京: 北京邮电大学, 2006.
    [5] 邬贺铨, 对我国通信高技术研究的世纪开局的评述, 电子学报, 2004, (S1): 1-5.
    [6] 赵新胜, 尤肖虎, 未来移动通信中的无线资源管理, 中兴通讯技术, 2002, 12(6): 7-10.
    [7] Ohmori S., Yamao Y., Nakajima N., The future generations of mobile communications based on broadband access technologies, IEEE Communications Magazine, 2000, 38(12): 134-142.
    [8] Aurelian B., Maxime F., Fredrik G., 4th-generation wireless infrastructures: scenarios and research challenges, IEEE Personal Communications, 2001, 8(6): 25-31.
    [9] 赵新胜, 后 3G 无线接入系统的软硬件平台研究和设计, 电信科学, 2004, (1): 6-11.
    [10] 刘伟, 丁志杰, 4G 移动通信系统的研究进展与关键技术, 中国数据通信, 2004, (2): 8-12.
    [11] Yanikomeroglu H., Cellular Multihop Communications: Infrastructure-Based Relay Network Architecture for 4G Wireless Systems, in: Proc. 22nd Queen's Biennial Symp. Comm. (QBSC), Kingston, Ontario, Canada: 2004, 76-78.
    [12] Walke B. H., Wijaya H., Schultz D. C., Layer-2 Relays in Cellular Mobile Radio Networks, in: Proceedings of IEEE Vehicular Technology Conference: vol. 1, 2006, 81-85.
    [13] Catreux S., Erceg V., Gesbert D., etc., Adaptive modulation and MIMO coding for broadband wireless data networks, Communications Magazine, IEEE, 2002, 40(6): 108-115.
    [14] Khanna R., Saxena R., Adaptive antenna at the cellular mobile handset for reduced deposition of power in human head, in: 2003, 359-368.
    [15] Ping Z., Xiaofeng T., Jianhua Z., etc., A vision from the future: beyond 3G TDD, Communications Magazine, IEEE, 2005, 43(1): 38-44.
    [16] Li H., Lott M., Weckerle M., etc., Multihop communications in future mobile radio networks, in: vol. 1, 2002, 54-58 vol.51.
    [17] Aggelou G. N., Tafazolli R., On the Relaying Capacity of Next Generation GSM Cellular Networks, IEEE Personal Communications, 2001: 40-47.
    [18] Wu H., Qiao C., Tonguz O., Performance analysis of iCAR (integrated cellular and ad-hoc relay system), in: vol. 2, 2001, 450-455 vol.452.
    [19] Manoj B., Kumar K., Christo, etc., On the Use of Multiple Hops in Next Generation Wireless Systems, Wireless Networks, 2006, 12(2): 199-221.
    [20] Esseling N., Walke B. H., Pabst R., Performance of MAC-Frame-Based protocols for mobile broadband systems using Layer 2 Relays, WWRF11 Meeting, 2004, 10-11.
    [21] Jaeweon C., Haas Z. J., Throughput enhancement by multi-hop relaying in cellular radio networkswith non-uniform traffic distribution, in: vol. 5, 2003, 3065-3069 Vol.3065.
    [22] IST-WINNER, https://www.ist-winner.org/.
    [23] WINNER I., Description of identified new relay based radio network deployment concepts and first assessment by comparison against benchmarks of well known deployment concepts using enhanced radio interface technologies, in, Editor^Editors. 2005, ISI WINNER. p.
    [24] http://grouper.ieee.org/groups/802/16/relay/index.html, in, Editor^Editors. p.
    [25] Pabst R., Walke B. H., Schultz D. C., etc., Relay-Based Deployment Concepts for Wireless and Mobile Broadband Cellular Radio, IEEE Communications Magazine, 2004: 80-89.
    [26] Lee W. C. Y., Lee D. J. Y., Microcell prediction in dense urban area, Vehicular Technology, IEEE Transactions on, 1998, 47(1): 246-253.
    [27] Molkdar D., Simulation results of a typical GSM picocellular system, in: vol. 4, 2000, 1590-1596 vol.1594.
    [28] Monks J. P., Ebert J. P., Wolisz A., etc., A study of the energy saving and capacity improvement potential of power control in multi-hop wireless networks, in: 2001, 550-559.
    [29] Wu H., Qiao C., De S., etc., Integrated Cellular and Ad Hoc Relaying Systems: iCAR, IEEE Journal on Selected Areas in Communications, 2001, 19(10): 2105-2115.
    [30] Bangnan X., Hischke S., Walke B., The role of ad hoc networking in future wireless communications, in: vol. 2, 2003, 1353-1358 vol.1352.
    [31] Yanikomeroglu H., Fixed and mobile relaying technologies for cellular networks, in: Second Workshop on Applications and Services in Wireless Networks (ASWN), Paris, France: WWRF, 2002, 75-81.
    [32] Sreng V. M., Yanikomeroglu H., Falconer D. D., Coverage enhancement through two-hop relaying in cellular radio networks, in: Proceedings of IEEE Wireless Communications and Networking Conference, Orlando, USA: IEEE Press, 2002.
    [33] Sreng V., Yanikomeroglu H., Falconer D. D., Relayer selection strategies in cellular networks with peer-to-peer relaying, in: Proceedings of IEEE Vehicular Technology Conference, Orlando, Florida, USA: 2003, 4-9.
    [34] Hu H., Yanikomeroglu H., Falconer D. D., etc., Range Extension without Capacity Penalty in Cellular Networks with Digital Fixed Relays, in: Proceedings of IEEE Global Telecommunications Conference, Dallas, Texas: IEEE Press, 2004, 3053-3057.
    [35] Florea A., On the Efficiency of Using Multiple Hops in Fixed Relay Based Wireless networks, [Master Dissertation], Ottawa: Carleton University, 2004.
    [36] Hu H., Performance Analysis of Cellular Networks with Digital Fixed Relays, [Master Dissertation], Ottawa: Carleton University, 2003.
    [37] Rathinavelu P., Schapeler G., Weber A., UMTS coverage and capacity enhancement using repeaters and remote RF heads, Advanced Information Networking and Applications, 2006: 18-20.
    [38] Adinoyi A. B., Multi-Antenna and Relaying Techniques in Wireless Communication Networks, [PhD Dissertation], Ottawa: Carleton University, 2006.
    [39] Tameh E. K., Nix A., Molina A., The use of intelligently deployed fixed relays to improve the performance of a UTRA-TDD system, in: Proceedings of IEEE Vehicular Technology Conference:vol. 3, 2003, 1890-1894.
    [40] Wijaya H., Wijaya E., Single and Multi-Hop Communication in Heterogeneous Wireless LAN Networks, Proceedings of IEEE Global Telecommunications Conference, 2003: 92-97.
    [41] Walsh D. D., Two-Hop Relaying in CDMA Networks Using the Unlicensed Bands, [Master Dissertation], Ottawa: Carleton University, 2004.
    [42] Fujiwara A., Takeda S., Yoshino H., Area coverage and capacity enhancement by multihop connection of CDMA cellular network, IEEE 2002.
    [43] Schultz D. C., Walke B., Pabst R., Fixed and planned relay based radio network deployment concepts, in: Wireless World Research Forum, New York, USA: 2003, 27-28.
    [44] Pabst R., Esseling N., Walke B., Fixed relays for next generation wireless systems – system concept and performance evaluation, Special issue on towards the next generation mobile communications, 2005, 2(7): 104-114.
    [45] Esseling N., Walke B., Pabst R., Performance evaluation of a fixed relay concept for next generation wireless systems, IEEE PIMRC, 2006.
    [46] Qiao C., Wu H., Tonguz O., Load balancing via relay in next generation wireless systems, in: Proceeding of Mobile and Ad Hoc Networking and Computing Conference: 2000.
    [47] Bisla B., Eline R., Franca-Neto L. M., RF System and Circuit Challenges for WiMAX, Intel Technology Journal, 2004, 8(3): 189-200.
    [48] IST-4-027756 WINNER, Deliverable D6.13.1. WINNER 2 Test scenarios and calibration issue 1, June 2006. https://bscw.eurescom.de/bscw/bscw.cgi/d260664/D6.13.1.doc.
    [49] Florea A., Yanikomeroglu H., On the optimal number of hops in infrastructure-based fixed relay networks, in: Proceedings of IEEE Global Telecommunications Conference: 2005, 3242-3247.
    [50] Yang H., A road to future broadband wireless access: MIMO-OFDM based air interface, IEEE Communications Magazine, 2005, 43: 53-60.
    [51] IEEE, IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems, 2004.
    [52] Sternad M., WINNER MAC Proposal for the FDD and TDD physical layer modes.
    [53] Saied A., Efficient Radio Resource Management for Wireless Multimedia Communications: A Multidimensional QoS-Based Packet Scheduler, IEEE Transactions on Wireless Communications, 2005, 4(6): 2811-2812.
    [54] George D., Panagiotis D., David G., Cognitive Radio, Spectrum and Radio Resource Management, Wireless World Research Forum Working Group 6 White Paper, 2004.
    [55] Mubarek O., Dynamic Frequency Hopping in Cellular Fixed Relay Networks, [Master Dissertation], Ottawa: Carleton University, 2005.
    [56] Viswanathan H., Mukherjee S., Performance of cellular networks with relays and centralized scheduling, IEEE Transactions on Wireless Communications, 2005, 5(4): 2318-2328.
    [57] Esseling N., Vandra H. S., Walke B., A Forwarding Concept for Hiper-LAN/2, in: Proceedings of European Wireless Conference: 2000, 13-18.
    [58] Kudoh E., Adachi F., Distributed dynamic channel assignment for a multi-hop virtual cellular system, Proceedings of IEEE Vehicular Technology Conference, 2004, 4: 2286-2290.
    [59] Hoymann C., Klagges K., Schinnenburg M., Multihop communication in relay enhanced IEEE 802.16 networks, Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2006.
    [60] Rappaport T. S., Wireless Communications Principles and Practice, Upper Saddle River, NJ: Prentice Hall, Inc., 1998.
    [61] Mengesha S., Karl H., Wolisz A., Capacity increase of multi-hop cellular WLANs exploiting data rate adaptation and frequency recycling, Proc. of MedHocNet, 2004.
    [62] Nguyen V. A., Wan P. J., Frieder O., A modified directional frequency reuse plan based on channel alternation and rotation, IEEE MILICOM, 2001, 2: 1439-1444
    [63] Wang L. C., A new cellular architecture based on an interleaved cluster concept, IEEE Transactions on Vehicular Technology, 1999, 6(48): 1809-1818.
    [64] Schultz D. C., Pabst R., Johansson N., Reference Architecture for Relay-Based Mobile Broadband Systems, Technical ISI Mobile Summit: 2006.
    [65] Urhansakul P., Bialkowski M. E., Multipath signal effect on the capacity of MIMO, MIMO-OFDM and spread MIMO-OFDM, in: 15th International Conference on Microwaves, Radar and Wireless Communications: vol. 3, 2004, 989-992.
    [66] Czylwik A., Adaptive OFDM for wideband radio channels, in: Proceedings of IEEE Global Telecommunications Conference, London, UK: 1996, 713-718.
    [67] Wong C. Y., Cheng R. S., Letaief K. B., etc., Multiuser OFDM with adaptive subcarrier, bit and power allocation, IEEE Journal on Selected Areas in Communications, 1999, 17(10): 1747-1758.
    [68] Li J., Kavehmd M., Effects of Time selective multipath fading on OFDM systems for broadband mobile system, IEEE Communications Letters, 1999, 3(12): 332-334.
    [69] Rhee W., Cioffi J. M., Increase in Capacity of Multiuser OFDM System Using Dynamic Subchannel Allocation, in: Proceedings of IEEE Vehicular Technology Conference, Tokyo, Japan: IEEE Press, 2000, 1085-1089.
    [70] Jang J., Lee K. B., Transmit Power Adaptation for Multiuser OFDM Systems, IEEE Journal on Selected Areas in Communications, 2003, 20(2): 171-178.
    [71] Shen Z., Andrews J. G., Evans B. L., Optimal Power Allocation in Multiuser OFDM Systems, in: Proceedings of IEEE Global Telecommunications Conference, San Francisco, USA: IEEE Press, 2003, 337-341.
    [72] Yu G., Zhang Z., Chen Y., etc., Power Allocation for Non-regenerative OFDM Relaying Channels, in: Proceedings of IEEE Wireless Communications and Networking Conference: vol. 1, 2006, 185-188.
    [73] Bae C., Cho D.-H., Adaptive Resource Allocation Based on Channel Information in Multihop OFDM Systems, in: Proceedings of IEEE Vehicular Technology Conference, Montreal, Quebec, Canada: IEEE Press, 2006.
    [74] Sklar B., Rayleigh Fading Channels in Mobile Digital Communication Systems Part I: Characterization, in IEEE Communications Magazine, Editor^Editors. 1997. p. 90-100.
    [75] Webb W. T., Steele R., Variable rate QAM for mobile radio, IEEE Transactions on Communications, 1995, 43(7): 2223-2230.
    [76] Goldsmith A. J., Chua S. G., Adaptive coded modulation for fading channels, in: Proceedings of IEEE Global Telecommunications Conference, Sydney, Australia: 1998, 595-602.
    [77] 彭林, 第三代移动通信系统, 北京: 电子工业出版社, 2003.
    [78] Kang H., Hwang W., Kim K., OFDM Systems wit subchannel power control under the two-way multi-path channel, in: Proceedings of IEEE ICC, Helsinki, Finland: 2001, 1856-1860.
    [79] Oh J., Cioffi J. M., Sub-band rate and power control for wireless OFDM systems, in: Proceedings of IEEE Vehicular Technology Conference, Los Angeles, USA: 2004, 2011-2014.
    [80] Lin I. C., Gitlin R. D., Multi-code CDMA wireless personal communications networks, in: Proceedings of IEEE ICC, London, UK: 1995, 1060-1064.
    [81] Qiu X., Chawla K., On the Performance of Adaptive Modulation in Cellular Systems, IEEE Transactions on Communications, 1999, 47(6): 884-895.
    [82] lbaraki T., Katoh N., Resource allocation problems: algorithmic approaches, Cambridge, MA, USA: MIT Press, 1998.
    [83] Cover T., Thomas J. A., Elements of Information Theory, New York: Wiley, 1991.
    [84] Jun Z. Y., B. L. K., Adaptive resource allocation and scheduling for multiuser packet-based OFDM networks, in: IEEE International Conference on Communications: vol. 5, 2004, 2949-2953.
    [85] Jun Z. Y., B. L. K., Energy-efficient MAC-PHY resource management with guaranteed QoS in wireless OFDM networks, in: IEEE International Conference on Communications: vol. 5, 2005, 3127-3131.
    [86] Wang A., Xiao L., Zhou S., etc., Dynamic resource management in the fourth generation wireless systems, Technical IEEE Press: Beijing, 2003; pp 1095-1098.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700