用户名: 密码: 验证码:
基于经济增长与生态环境保护双赢的减物质化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
减物质化是为解决日益严重的资源短缺、环境污染问题而提出的一种新的可持续发展思路,即在经济增长同时逐步降低资源环境压力。其概念的提出可以追溯到上个世纪80年代,最初减物质化的内涵仅仅局限于物质质量(重量)的降低,特别是对于微观产品层面的关注最为广泛,而对于从宏观层面对物质减量本身所引起的环境压力的关注较少。特别是,随着“生态效率”思想的提出,更多的关注应用技术手段,提高物质生产率,降低物质消耗的强度,实现“跃进增长”,而忽略了物质消耗的能动反应和由此引起的反弹效应,“技术革命”由此演变为“效率陷阱”。此外,对于减物质化过程中的物质消耗的二次投入所引起的环境压力和经济成本等问题的关注也略显薄弱。
     因此,本文从减物质化概念入手,从环境压力角度、功能经济角度和物质流角度,解析减物质化深层次内涵。综合环境经济学和其他学科的研究,从微观-中观-宏观三个层次,揭示减物质化概念的嬗变,并结合环境经济学和生态经济学经典理论,初步构建了减物质化一般研究框架。以宏观层面经济增长与资源环境压力的“脱钩”为表征,对我国过去20年的经济发展与资源环境变量的耦合关系进行测度,并通过与处于不同发展阶段的国家的比较研究,探析我国经济增长与资源环境变量之间的作用机理。针对目前研究中,对减物质化的经济特征关注相对不足的现状,分析主要社会经济因素对减物质化目标实现的驱动效应。针对减物质化研究中偏重于“重量减量”的情况,从物质自身的属性和全生命周期的视角,研究减物质化与环境压力之间的响应关系。此外,以交易成本为切入点,从经济学角度,分析了交易成本因素对物质循环利用的影响。针对强度指标与总量指标矛盾关系背后的经济学内涵,综合应用新古典经济学、能源经济学和环境经济学解析反弹效应的本质,并以我国能源消耗为例进行实证研究。最后,以减物质化理论为指导,运用脱钩指标体系,综合考虑影响我国减物质化实现的因素,构建符合我国国情的适宜的减物质化情景目标。
     相对于现有的研究,本文的创新点主要体现在以下四个方面:
     第一,初步构建了清晰的减物质化理论体系。基于生态经济大系统均衡与功能维持的视角,以经济增长与生态环境保护双赢为主线,并结合生态经济学、环境经济学等经典理论,从多维度解析减物质化内涵;从宏观层面的物质消耗的EKC和长期波动理论研究、中观层面的反弹效应与FACTOR X方面研究、微观层面的物质集聚方面研究,多层次系统地梳理减物质化研究进展,揭示减物质化概念的嬗变,初步构建减物质化研究框架,为循环经济发展,特别是在理论层面的探索,做出了有益的补充。
     第二,从环境压力与社会经济的研究视角,识别与分析减物质化的影响因素。本研究避免了仅从重量减量和技术特征角度进行减物质化分析局限性,从物质自身的属性出发,关注物质环境属性在特定应用领域内的环境压力的比较与测度问题,解析减物质化过程中物质自身属性与环境压力之间的响应关系;从全生命周期的研究视角关注物质的消耗、流动、减量、循环过程中所引起的环境压力的大小,建立以经济链条为载体的物质流动环境影响分析框架;跳出减物质化研究多着眼于技术方面的局限,从物质流与价值流相融合的视角,对减物质化目标的驱动因素进行全面分解与识别,特别是针对社会经济因素的驱动效应进行深入研究,识别和分析物质在经济过程中流动的影响因素及其作用规律。为区域物质代谢最优路径选择和环境政策的制定提供综合性分析框架,有利于促进学科交叉和融合。
     第三,解析强度指标与总量指标的矛盾关系,量化我国物质消耗的反弹效应。依据物质消耗强度的降低并不意味着对资源环境的冲击强度的降低的观点。从新古典经济学、能源经济学及环境经济学角度,对反弹效应内涵进行深层次解析,分析强度指标与总量指标矛盾关系背后的经济学内涵。选取制约我国国民经济发展的重要资源——能源为研究对象,定量分析物质消耗的反弹效应,为预测和分析我国未来经济规模的扩张对生态承载力的影响和演化趋势,提供了翔实的数据支撑。
     第四,立足于现阶段我国基本国情,构建我国减物质化情景目标。紧密结合我国建设小康社会的发展目标,应用OECD和Tapio脱钩指标,以宏观层面经济增长与资源环境的“脱钩”为表征,在分析改革开放后我国经济增长与资源环境耦合状况的演变过程,深入探析其间的动态耦合作用机理的基础上,并结合不同国家的所处的经济发展阶段,选取核心环境因子和物质消耗变量,初步构建我国减物质化适宜情景目标,为我国生态文明发展战略目标的制定和相关决策的制定提供可资借鉴的思路。
Dematerialization is a new concept of sustainable development with the purpose of solving the problems of resource shortage and environmental pollution as well as promoting economic growth. The original meaning of dematerialization in the1980s was the reduction of materials'quality or weight, and the micro-products were widely concerned in contrast to the neglect on the environmental impacts imposed by the macro-dematerialization. Especially by the time when eco-efficiency was proposed, technology had been the main measure to improve the material productivity and reduce the intensity of material consumption, and finally realized a "leap growth". But what had been neglected were the dynamic reaction and the resulted rebound effect, and thus the technological revolution changed to an "efficiency trap". Also, there were little concerns about the environmental impacts and economic costs caused by the second input of materials consumption during the process of dematerialization.
     This paper started from the concept of dematerialization,1) made a detail analysis from three aspects of environmental impact, function economy and material flow; 2) showed a history changes of the concept from three levels of the micro-level, meso-level and the macro-level. And then a research framework was formed basing on the integration of environmental economics and ecological economics.
     The paper continued with the further empirical study on the reaction of economic development and environmental change for twenty years in China, and made some comparisons between China and other countries which are reaching different industrialization process. There were some subsequent researches about the driving effects of social-economic factors on dematerialization, the respond from dematerialization to environmental impacts, the impacts of transaction cost imposed on material recycling use, and the rebound effect of energy consumption of in China.
     The paper finally pointed out the factors that affected the aim of dematerialization in China conducted by the theories and decoupling indicators in the above sections, and established the scenes fitting for China's specific national background.
     In General, the paper achieved four innovations that extended the former related research.
     Firstly, establish a theoretic framework for dematerialization. The paper made a clear concept for dematerialization from multi-dimensions, and the concept was aiming at win-win goal of economic growth and environmental protection and basing on the integrated theories of ecological economics and environmental economics. The research framework for dematerialization was deducted from the review on historical change of dematerialization from macro-material consumption of EKC, the meso-material rebound effects and model of Factorx, and the micro-material collections. The theoretic framework for dematerialization would be a new supplement for the Circular Economy theory.
     Secondly, quantitatively analyze the reaction between economic development and resource environment for twenty years in China. The analysis were measured by the decoupling indicator that proposed by OECD and Tapio P., and with which China was divided to several decoupling at different stages. The comparison of China and other five countries of Japan, USA, Germany, Sweden and India about the economic development, final energy consumption and CO2 discharge and the reaction mechanism among the three, would provide some helpful ideas and data base for the construction of conservation culture in China.
     Thirdly, identify the factors which affected dematerialization from two aspects of society-economy and environmental impacts; quantitatively analyzed the driving effects of social-economic factors on dematerialization using the LMDI model; showed the essence of rebound effects with the integrated theories of new classical economics, energy economics and environmental economics, and thereby showed the economic meaning behind the contradiction between intensity indicator and quantity indicator; studied the respond reactions between dematerialization and environmental impacts from the view of attribute of material and the whole life cycle. All the work above could avoid the shortcomings of dematerialization by technology and weight, which provided a new perspective and a systematic framework.
     Fourthly, establish the scenes of dematerialization fitting for China's specific national background. According to the results of the reaction of economic development and environment, chose the core factors of environmental and material consumption combining the aim of well-off society of China as well, finally established the scenes of dematerialization which provided some helpful ideas for the construction of conservation culture in China.
引文
[1]Peter Bartelmus. The cost of natural capital consumption:Accounting for a sustainable world economy [J]. Ecological Economics,2009,68:1850~1857.
    [2]Ernst U, Weizsacker V. Factor four doubling wealth halving resource use[R]. the new report to the club of Rome.1996.
    [3]Uiterkamp A J M S. Energy consumption:efficiency and conservation [A]. In:Heap B, Kent J, Editors. Towards sustainable consumption:A European Perspective [C]. London: The Royal Society,2000. 111~115.
    [4]Vehmas J, Luukanen J, Kavio-oja J. Technology development versus economic growth: an analysis of sustainable development [R]. In EU-US seminar:New Technolgy Foresight. Forecasting & Assessment Methods,2004.
    [5]Ayres R. U. Industrial metabolism:theory and policy [A]. In:Allenby BR, Richards DJ (eds), The greening of industrial ecosystems[C]. National Academy Press, Washington, D. C. 1994,23-37.
    [6]Bianciardi C. E, Tiezzi E, Ulgiati S. Complete recycling of matter in the frameworks of physics, biology, and ecological economics [J]. Ecol Econ,1993,8:1~5.
    [7]Connelly L, Koshland CP. Two aspects of consumption: using an exergy-based measure of degradation to advance the theory and implementation of industrial ecology [J]. Resour Conserv Recycling,1997,19:199~217.
    [8]Ayres R. U. The second law, the fourth law, recycling and limits to growth [J]. Ecol Econ, 1999,29:473-483.
    [9]O'Connor M. Entropy, liberty and catastrophe:the physics and metaphysics of waste disposal [A]. In:Burley P, Foster J (eds). Economics and thermodynamics:new perspectives on economic analysis [C]. Kluwer, Boston, Mass,1994,119~182.
    [10]M. H. Huesemann. The limits of technological solutions to sustainable development [J]. Clean Techn Environ Policy,2003,5:21~34.
    [11]Colombo, U. The technology revolution and the restructuring of the global economy [A]. J. H. Muroyama and H. G. Stever, eds:Globalization of Technology:International Perspectives [C]. National Academy Press, Washington, D. C.1988,23~31.
    [12]Labys, W. C. and Waddell, L. M. Commodity lifecycles in US materials demand [J]. Resources Policy,1989,15:238-251.
    [13]Herman, R., Arkekani, S. A. and Ausubel, J. H., Dematerialization[J]. In:Ausubel, J. H. and Sladovich, H. E. (Editors), Technology and Environment [C]. National Academy Press, Washington,1989,50~69.
    [14]Bernardini, O. and Galli, R. Dematerialization:long term trends in the intensity of use of materials and energy [J]. Futures,1993,431~448.
    [15]Wernick, I. and J. H. Ausbel. National Material Flows and the Environment [J]. Annual Review Energy Environment,1996,20:463~492.
    [16]陈效逑,赵婷婷,郭玉泉等.中国经济系统的物质投入与输出分析[J].北京大学学报(自然科学版),2003,4:538-547.
    [17]陶在朴.生态包袱与生态足迹—可持续发展的重量及面积观念[M].北京:经济科学出版社,2003,5-6.
    [18]Gross, G. M. and Krueger, A. B. Economic growth and the Environment [J]. Quarterly Journal of Economics,1995,112:353-378.
    [19]World Bank. World Development Report [R]. World Bank, Washington, D. C.1992.
    [20]Panayotou, T. Empirical Test and Policy Analysis of Environment Degradation at Different Stages of Economic Development [R]. Working Paper, Technology and Environment Programme, International Labour Office, Geneva,1993, January.
    [21]International Iron and Steel Institute. Projection 85:World Steel Demand [R].1972.
    [22]Malenbaum, W. World Demand for Raw Materials in 1985 and 2000 [M]. McGraw-Hill, Inc. New York,1978.
    [23]Rogich, D. G. Material Use, Economic Growth, and the Environment [C]. International Recycling Congress and REC'93 Trade Fair, Geneva, Switzerland,1993 b, January:19~ 22.
    [24]De Bruyn, S. M. and Opschoor, J. B. Developments in the throughput-income relationship:theoretical and empirical observations [J]. Ecological Economics,1997,20: 255-268.
    [25]Janicke, M., Binder, M. and Monch, H.'Dirty industries':patterns of changes in industrial countries [J].Environmental and Resource Economics,1997,9:467~491.
    [26]Bernardini, O. and Galli, R. Dematerialization:long term trends in the intensity of use of materials and energy [J]. Futures,1993:431~448.
    [27]Larson, E. D., Ross, M. H. and Williams, R. H. Beyond the era of materials[J]. Scientific American,1986,254:34~41.
    [28]Schumpeter, J. A. Business Cycles:A Theoretical, Historical, and Statistical Analysis of the Capitalist Process [M]. McGraw-Hill, London,1939.
    [29]Kuznets, S., Secular Movements in Production and Prices:Their Nature and Their Bearingupon Cyclical Fluctuations [M]. Houghton Mifflin, Boston,1930.
    [30]Kondratiev, N. D. The long waves in economic life [J]. Review of Economic Statistics, 1935,17:105-115.
    [31]Fisher, J. C. and Pry, R. H. A simple model of technological change [J]. Technological Forecasting and Social Change,1971,3:75~88.
    [32]Rostow, W. W. Kondratieff, Schumpeter, and Kuznets:trend periods revisited [J]. Journal of Economic History,1975,35:719~753.
    [33]Volland, C. S. A comprehensive theory of long wave cycles [J]. Technological Forecasting and Social Change,1987,32:120~145.
    [34]Grubler, A. Industrialization as a historical phenomenon[A]. In:Socolow, R. H. Andrews, C., Berkhout, F. and Thomas, V. (Editor), Industrial Ecology and Global Change [C]. Cambridge University Press, Cambridge,1994,43~68.
    [35]段宁,邓华.上升式多峰理论与循环经济[J].世界有色金属,2004,11:9-13.
    [36]Cochran, C. N. Long-term substitution dynamics of basic materials in manufacture [J]. Materials and Society,1988,12:125-150.
    [37]Rogich, D. G. An Analysis of material Flow Patterns in the United States and Globally Within the Context of Sustainable Development Directorate General for Environmental Protection [M]. The Hague, Netherlands, Case 1996b,32:43.
    [38]Radetzki, M. and Tilton, J. E. Conceptual and Methodological Issues. In:Tilton, J. (Editor), World Metal Demand, Trends and Prospects. Resources for the Future [M]. Washington, D. C.1990,13~34.
    [39]Ayres, R. U., Ayres, L. W. and Martinas, K. Eco-thermodynamics:Exergy and life cycle analysis[R]. INSEAD. Center for the Management of Environmental Resources, Working Paper,1996,04.
    [40]Waggoner, P. E., Ausubel, J. H. and Wernick, I. K. Lightening the tread of population on the land:American examples [J]. Population and Development Review,1996,22:531~ 545.
    [41]Wernick,I. K. and Ausubel, J. H. Industrial Ecology:Some Directions for Research [R]. The Rockefeller University,1997.
    [42]李慧明,王磊.基于循环经济的减物质化多重因素分解研究[J].资源科学,2008,10:1484-1490.
    [43]W. S. Jevons The coal question:can Britain survive?[J]. First published 1865, Republished Macmillan, London,1906.
    [44]Khazzoom, J. D. Economic implications of mandated efficiency standards for household appliances [J]. Energy Journal,1980,11:21~40.
    [45]Brookes, L. Energy efficiency and economic fallacies [J]. Energy Policy,1990,3: 783-785.
    [46]Saunders, H. D. The Khazzoom-Brookes postulate and neoclassical growth[J]. The Energy Journal,1992,13:131~148.
    [47]Salter, W. E. G. Productivity and technical change [M].2nd edtion. Series:University of Cambridge Department of Applied Economics Monographs, vol.6. Cambridge University Press, London. Addendum by W.B. Reddaway,1966.
    [48]Romer, P.M. Increasing returns and long-run growth [J]. Journal of Political Economy, 1986, Vol.94(5):1002~1037.
    [49]Ayres, R. U. Optimal investment policies with exhaustible resources:an information-based model [J]. Journal of Environmental Economics and management,1988,15:439~461.
    [50]Wernick, I. K. Dematerialization and secondary materials recovery:a long-run perspective [J]. Journal of Minerals, Metals, and Materials Society,1994,46:39~42.
    [51]Factor 10 Club. Statement to Government and Business Leaders [R]. Factor 10 Institute, Carnoules,1997.
    [52]Jansen, L. and P. Vergragt. Sustainable development:A challenge to technology. Leidschendam:Ministry for Housing, Physical Planning and Environment [R] 1992.
    [53]诸大建.从生态效率的角度深入认识循环经济[J].中国发展,2005,1:6-11.
    [54]Pearce, D. W. and Turner, R. K. Economics of natural resources and the environment [M]. Baltimore:Johns Hopkins University Press,1990,44~46.
    [55]Janicke, M.,,Monch, H., Ranneberg, T. and Simonis, U. E. Structural change and environmental impact—Empirical evidence on thirty-one countries in east and west [J]. Environmental Monitoring and Assessment,1989,12:99~114.
    [56]Simonis, U. E. Industrial restructuring in industrial countries [A]. In:Ayres, R. U. and Simonis, U. E. (Editor), Industrial Metabolism, Restructuring for Sustainable Development [C]. United Nations University Press, Tokyo,1994,31~54.
    [57]Hinterberger, F. and Seifert, E. Reducing Material Throughput:A Contribution to the Measurement of Dematerialisation and Sustainable Human Development [A]. In:Straaten, J. v. d.. and Tylecote, A. (Editor), Environment [C], Technology and Economic Grow, 1997.
    [58]Lucas Reijnders. The Factor X Debate:Setting Targets for Eco-Efficiency [J]. Journal of lndustriol Ecology,1998, Vol.2(1):13-22.
    [59]European Environment Agency. Europe's environmental [R]. Luxembourg:Office for Official Publications of the European Community,1995.
    [60]Adriaanse, A., S. Bringeru, A. Hammond, Y. Moriguchi, E. Rodenburg, D. Rogich, and H. Schutz. Resourceflows:The material basis of industrial economies [M]. Washington, D. C. World Resources Institute,1997.
    [61]Daly, H. E. Towards a steady-state economy [M]. SanFrancisco:Freeman,1973.
    [62]Simonis, U. E. Preventive environmental policy..Ekistics,1985,313:368~372.
    [63]Williams, R. H., E. D. Larson, and M. H. Ross. Materials, Affluence, and Industrial Energy Use [J]. Annual Review of Energy,1987,12:59~86.
    [64]Ayres, R. U. and A. V. Kneese. Externalities:economics and thermodynamics [A]. In Economy and ecology:Towards sustainable development, edited by E [C]. Archibugi and P. Nijkamp. Dordrecht: Kluwer,1990.
    [65]Freeman, C. The economics of hope:Essays on technical change, economic growth, and the environment [M]. London:Pinter,1992.
    [66]尼古拉斯·乔治斯库-罗根.熵定律和经济问题[A].见:赫尔曼·E.戴利,肯尼思·N.汤森编.珍惜地球——经济学、生态学、伦理学.马杰,钟斌,朱又红译[C].北京:商务印书馆,2001.
    [67]Ayres, R. U. and Martians, K. Waste potential entropy:the ultimateecotoxic? [J]. Econ Appl 1995,48:95~120.
    [68]Herman E. Daly, Joshua Farley.著.徐中民等译.生态经济学——原理与应用[M].河南:黄河水利出版社,2007:19-20.
    [69]赫尔曼·E.戴利.超越增长:可持续发展的经济学[M].诸大建,胡圣译.上海:上海译文出版社,2001.
    [70]Bjrn Stigson. What is Eco-Efficiency? [R]. Sydney:WBCSD,1999.
    [71]OECD. Indicators to measure decoupling of environmental pressure from economic growth [R].2002.
    [72]Tapio P. Towards a theory of decoupling:Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001 [J]. Journal of Transport Policy,2005,12: 137-151.
    [73]Robert Herman, Slamak A. Ardekani, and Jesse H. Ausubel. Dematerialization [J]. Technological Forecasting and Social Chance,1990,38:333~347.
    [74]Howarth, R. B., Schipper, Lee, E. Manufacturing energy use in eight OECD countries [J]. Energy Economics,1991,6:135~142.
    [75]Ang B. W. Decomposition of industrial energy consumption:some methodological and application issues [J]. Energy Economics,1994, Vol.16(2):83~92.
    [76]Chang, T. C. and Lin, S. J. Grey relation analysis of carbon dioxide emissions from industrial production and energy uses in Taiwan [J]. Journal of Environmental Management,, 1999,56:247~257.
    [77]Park, S. Decomposition of industrial energy consumption-an alternative method[J]. Energy Economics,1992, Vol.14(4):265~270.
    [78].Lin, Sue J. and Chang, Tzu C. Decomposition of SO2, NOX, CO2 Emissions from Energy Use of Major Economic Sectors in Taiwan [J]. The Energy Journal,1996, Vol.17(1):1~ 15.
    [79]Shrestha, R. M., Timilsina, G. R. Factors affecting CO2 intensities of power sector in Asia:a divisia decomposition analysis [J]. Energy Economics,1996, Vol.18(4):283~ 293.
    [80]Greening, L. A., Davis, W. B., Schipper, L. and Khrushch,, M. Comparison of six decomposition methods:application to aggregate energy intensity for manufacturing in 10 OECD countries [J]. Energy Economics,1997, Vol.19(3):375~390.
    [81]Ang, B. W., Pandiyan, G. Decomposition of energy induced CO2 emissions in manufacturing [J]. Energy Economics,1997, Vol.19(3):363~374.
    [82]Viguier, L. Emissions of SO2, NOX and CO2 in transition economics:emission inventories and divisia index analysis [J]. The Energy Journal,1999, Vol.20(2):59~87.
    [83]Fernandez, G. P., Perez, S. R. Decomposing the variation of aggregate electricity intensity in Spanish industry [J]..Energy,2003, Vol.28(2):171~184
    [84]Shyamal, P., Bhattacharyya, R. N. CO2 emission from energy use in India:a decomposition analysis [J]. Energy Policy,2004, Vol.32(5):585~593.
    [85]Bhattacharyya, S. C., Ussanarassamee, A. Changes in energy intensities of Thai industry between 1981 and 2000:a decomposition analysis [J]. Energy Policy,2005, Vol.33(8): 1995-1002.
    [86]Steenhof, P. A. Decomposition of electricity demand in China's industrial sector[J]. Energy Economics,2006, Vol.28(3):370~384.
    [87]Lin, S. J., Lu, I. J. and Lewis, C. Identifying key factors and strategies for reducing industrial CO2 emissions from a non-Kyoto protocol member's (Taiwan) perspective [J]. Energy Policy,2006, Vol.34(13):1499~1507.
    [88]Diakoulaki, D., Mandaraka, M. Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector [J]. Energy Economics,2007,1~29.
    [89]Howarth, R. B., Schipper, Lee, E. Manufacturing energy use in eight OECD countries [J]. Energy Economics,1991,6:135~142.
    [90]Chang, T. C. and Lin, S. J. Grey relation analysis of carbon dioxide emissions from industrial production and energy uses in Taiwan [J]. Journal of Environmental Management, 1999,56:247~257.
    [91]Greening, L. A., Davis, W. B., Schipper, L. and Khrushch, M. Comparison of six decomposition methods:application to aggregate energy intensity for manufacturing in 10 OECD countries[J]. Energy Economics,1997, Vol.19(3):375~390.
    [92]Frosch, R. A. Industrial ecology:adapting technology for a sustainable world [J]. Environment,1995,37:16~37.
    [93]Cleveland C. J., Ruth M. Indicator of dematerialization and the materials intensity of use [J].Journal of Industry Ecology,1999, Vol,2(3):15-50.
    [94]Ester van der Voet, Lauran van Oers and Igor Nikolic. Dematerialization:Not Just a Matter of Weight [J]. Journal of Industrial Ecology,2005, Vol.8(4):121~137.
    [95]Ellen Raadschelders, Jean-Paul Hettelingh, Ester van der Voet, Helias A. Udo de Haes. Side effects of categorized environmental measures and their implications for impact analysis [J]. Environmental Science & Policy,2003,6:167~174.
    [96]Brown, K. A., Holland, M. R., Boyd, R. A., Thresh, S., Jones, H., Ogilvie, S. M. Economic Evaluation of PVC Waste Management. A Report Produced for the European Commission Environment Directorate [C]. AEA Technology, Abingdon,2000, United Kingdom. http://europa.eu.int/comm/environment/waste/pvc.pdf.
    [97]Anderson, S. P. and V. A. Ginsburgh Price discrimination via second-hand markets [J]. European Economic Review.1994, Vol.38(1):23~44.
    [98]王国顺,周勇,汤捷.交易、治理与经济效率--O.E.威廉姆森交易成本经济学[M].北京:中国经济出版社,2005.
    [99]张菲菲,李慧明.价格上限、产品同质性与成本竞争——对再生资源产业竞争问题的新解释[J].财经理论与实践,2009,Vol.30(158):71-75.
    [100]Khazzoom, J. D. Energy savings from the adoption of more efficient appliance[J]. Energy Journal,1987, Vol.3(1):117-124.
    [101]Brookes, L. G. Energy eficiency and economic fallacies:A reply [J]. Energy Policy, 1992, Vol. (20):390~392.
    [102]Greening, L. A., Greene, D. L. Energy eficiengy and consumption-the rebound—a survey [J]..Energy Policy,2000,28:389~401.
    [103]Saunders, H. A view from the macro side:rebound, backfire and Khazzoom—Brokes [J]. Energy Policy,2000,,28:439~449.
    [104]Ann Marie Chalkley, Eric Billett, David Harrison. An investigation of the possible extent of the re-spending rebound Effect in the sphere of consumer products [J]. The Journal of sustainable product design,2002,163~169.
    [105]Bezdek, R. and B. Hannon. Energy, manpower, and highway trust fund [J]..Science, 1974, 1Vol.85(4152):669-675.
    [106]Noorman, K. J. and T. S. Uiterkamp. eds. Greenhouseholds? [M]. London: Earthscan,1997.
    [107]NOVEM (Netherlands Agency for Energy and the Environment), The Perspective Project: Towards an energy aware lifestyle [M]. The Netherlands:NOVEM,2000.
    [108]Goedkoop, M. J., C J. G. van Halen, H. R. M. te Riele and P. J. M. Rommens. Product service systems:Ecological and economic basics [M]. Amersfoort. The Netherlands:PR'e Consultants,1999.
    [109]Sun, J. W. Changes in energy consumption and energy intensity:A complete decomposition model [J]. Energy Economics,1998, Vol.20(1):85~100.
    [110]Pearman A D. Scenario construction for transportation planning [J]. Transportation Planning and Technology,1988, (7):73~85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700