用户名: 密码: 验证码:
复杂细长结构动力模型降价及优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代工程计算中常遇到类似火箭、火车车厢、船舶和高层建筑等这类超大型复杂细长结构的动力学性能分析和优化设计。随着CAD和有限元技术的进步使得我们能够很方便的建立模拟这些结构的规模很大、网格很密、详尽地描写了结构细节的有限元模型用于结构静力分析,但是由于大型复杂结构动力学分析的计算工作量非常大,动力优化工作量更大,几乎不可能基于这类有限元模型进行动力分析和优化。因此在对此类大型复杂结构建立非常精细的有限元模型进行分析和设计的同时,用很小的工作量获得一个能够近似预测结构动力性能,满足工程初步设计、优化、模拟等任务的物理降阶计算模型,在很多设计部门仍然非常有价值。本论文的研究正是基于这些需求。在对动力学模型降阶方法综述的基础上,主要包括了以下研究工作:
     1.改进了局部刚体化动力模型降阶方法。在模型降阶位移转换阵中考虑了原结构的转角自由度,提高了复杂空间结构降阶模型的精度,由简到难的两个算例表明了本文改进后方法的有效性。将降阶模型和变量分离方法结合,建立了基于降阶模型的高效动力学优化方法,分别研究了基于给定壳体结构材料用量,以壳体厚度为设计变量,最大化结构基频和前两阶频率差值的优化问题,并与基于原结构的优化及基于响应面方法的优化,结果表明了基于局部刚体化动力降阶模型的优化不仅结果精度高,而且计算效率也高。
     2.基于改进的局部刚体化模型降阶方法建立了空间复杂大型桁架的物理降阶模型,在此基础上设计了对桁架结构振动主动控制的LQG最优控制律。通过一个典型例题的数值仿真与控制理论中经常使用的内平衡降阶方法进行了比较,结果表明:本文提出的物理降阶模型不仅计算效率更高,而且在相同的控制力作用下,基于物理降阶模型具有更高的控制效率
     3.针对纵向尺度显著大于横向的火箭等复杂梁式结构,提出了基于梁平截面假设的模型降阶方法。基于梁理论中的平截面假设,将结构每个截面上的有限元节点通过位移转换矩阵凝聚到该截面的形心,从而快速建立了用于模型降阶的减缩基向量。对于具有大开口的结构,用数值方法得到表示截面翘曲变形的翘曲基向量,弥补了平截面假定的不足。利用这些减缩基向量,可以快速得到自由-自由结构的降阶模型。自由-自由降阶模型可以用于实现多种边界条件下结构的频率分析和考虑频率约束的轻量化设计,具体算例证明了本方法的有效性。
     4.引入有限元方法中梁单元的位移插值函数并建立新的模型降阶转换矩阵,改进了基于平截面假设的动力模型降阶方法。这一改进解决了基于平截面假定的动力模型降阶法要求有限元模型具有规整网格的苛刻条件、对于网格过密的模型所建立的转换矩阵过大这些问题,使该方法适用于任意网格及几何形状较为复杂的模型。利用降阶模型计算得到的模态向量是原结构特征向量的高精度近似,基于瑞利-里茨法进行一次逆迭代即可得到高精度的特征值。通过与Krylov子空间法相比较,进一步说明了本文模型降阶方法的计算量更低。在降阶模型基础上进行复杂结构时程响应计算,结果表明降阶模型不仅计算精度可满足实际工程计算的需要,并且大大的减少了计算量。
     5.研究了将原梁式结构模型划分为不同的梁段,利用基于梁平截面及位移插值函数的动力模型降阶方法把每一梁段降阶为一个梁超单元,并按照一定次序组装成超梁模型。通过引入横向剪切变形修正了梁超单元的刚度阵,给出了快速计算或者优化获得剪切修正系数的过程,具体算例表明了引入剪切修正后的超梁模型具有较高的计算精度和效率。对于蒙皮加筋、蒙皮格栅圆柱壳模型的具体算例,将该方法与等效厚度梁模型、静力等效梁模型和等效刚度梁模型进行了对比,考虑了具有不同长度,结构不均匀的计算模型,频率分析结果表明超梁模型不仅计算精度和效率高,而且模型建立灵活,可以处理不同情况下的结构模型,适用范围广。
     本人在论文工作初期参与动车组铝合金车体结构型材断面优化设计研究,优化结果实现了大型复杂车体结构减重,同时提升了车体整体刚度,降低了关键部位的应力水平,并完成会议论文一篇。这部分研究工作是本人第一次接触到实际大型复杂细长结构,也是本论文选题的应用背景之一。因此将这部分研究工作列入本论文附录中,希望能够反映本人学习相关内容的一个过程。
In modern engineering calculations, we often have to deal with dynamic analysis, or even optimization of dynamic performance for complicated slender structures, such as rockets, railroad cars, ships and high-rise buildings. With the development of CAD technology and finite element preprocessor, FEM model with huge number of degrees of freedom is often easily constructed and used for static analysis of such complicated structures. However, due to time-consuming computations and huge storage requirement of dynamic analysis and optimization, it is almost impossible to optimize structural dynamic performances based on the model which has huge number of degrees of freedom. Therefore, based on the fine FEM model of such complicated structures, constructing an approximate physical model with a small amount of work, which can be used to predict the structural dynamic performance and meet the requirement of design, optimization, simulation and other tasks in the preliminary design stage, is still very valuable in many design departments. To meet the need, the present work starts from the summary of dynamic model reduction methods and completes the following study:
     1. The reduction method based on the assumption of block-wise rigid body motion is further modified and studied. By considering the rotational freedom of the original structure, the displacement transfer matrix is modified and the method is used for model reduction of complex spatial structure, two examples show the effectiveness of the modified method in this paper. By combining the reduced model with the variable decomposition approach, an efficient dynamic optimization method based on reduced model was developed. Then two optimization model are established, in which the constraint to keep the structural mass constant is imposed, the shell thickness is design variables, and the optimization objective is to maximize the fundamental frequency of the original structure and the frequency gap between the first two consecutive vibration frequencies respectively. By comparing with optimization based on response surface model and original model, the results show that the optimization based on the reduced model has high computational accuracy and efficiency.
     2. By using the modified reduction method which is based on the assumption of block-wise rigid body motion, a physical reduced model of a large complex space truss is established. LQG optimal control law is designed to achieve the purpose of a truss structure vibration active control based on the physical reduced model. By comparing with the internal balanced model reduction method, the numerical simulation results show that the physical reduced model not only has higher computational efficiency, but also has higher control efficiency.
     3. A new model reduction method is presented for the structures whose longitudinal dimension is significantly larger than transverse one. Based on the plane section assumption of the beam theory, the displacement of FEM nodes in each cross section is approximated by the motion of centroid of the cross section through the displacement transformation matrix, resulting in the localized base vectors. When the structure has large openings, structures'cross-sectional warping deformation mode is obtained by using numerical methods, which is considered as additional reduced base vectors. Then a free-free reduced model with high accuracy is constructed. Based on the reduced model, optimization model to minimize the structural weight considering frequency constrain in a variety of boundary conditions is studied. Numerical examples demonstrate the effectiveness of the proposed method.
     4. The model reduction method based on plane cross-section assumption is further improved by including displacement interpolation function of beam and constructing a new physical reduced base vectors. This improvement solves the deficiency of the model reduction method based on the plane cross-section assumption, such as restrictions on regular finite element grid and large size of the reduced model, and makes the method applicable for more complicated FEM models of arbitrary meshes and geometry. By using the vibration modal vectors of the reduced model and constructing an initial guess of vibration modes of the original structure, one Rayleigh-Ritz iteration results in the vibration frequency of high accuracy. The method is compared with the Krylov subspace method, the examples show the validity and efficiency of this method. Transient dynamic analysis of a complicated example structure is carried out, the results show that the method meets the accuracy of practical engineering and greatly reduces the computational cost.
     5. Based on the presented model reduction method, slender structure is divided into several beam part and each part is reduced to a super beam element, resulting in a free-free reduced super beam model. The shear deformation is included to modify the super beam for improving computational accuracy. A shear correction factor is quickly calculated or obtained through an optimization process. The numerical examples demonstrate the feasibility and efficiency of the proposed super beam model for fast approximate frequency analysis of complicated slender structures. Examples of specific grid stiffened cylindrical shell model are given to compare the reduced super beam model with the beam model based on equivalent thickness, the static response and equivalent stiffness. Different length, nonuniform structure models are tested. The frequency analysis results show that the reduced super beam not only has high computational accuracy and efficiency, and can handle different situations for a wide range.
     At the early stage of this dissertation, author attended to the optimization study for aluminum alloy structure of CRH train and published one conference paper. For its difference to the main work of this dissertation, it will be presented in the appendix.
引文
[I]http://www.ansys.com.
    [2]http://www.mscsoftware.com.
    [3]Box G E P, Wilson K B. On the Experimental Attainment of Optimum Conditions (with Discussion)[J]. Journal of Royal Statistical Society,1951, B13:1-45.
    [4]HILL W J, Hunter W G. A Review of Response Surface Methodology:A Literature Survey[J]. Technometrics,1966,8(4):571-590.
    [5]Myers R H, Khuri A I, Carter Jr W H. Response surface methodologly:1966-1968[J]. Technometrics,1989,31(2):137-157.
    [6]Khuri A I.Cornell J A. Response Surfaces[M]. New York:Marcel Dekker, INC.,1996.
    [7]隋允康,白海波.基于中心点精确响应面法的板壳结构优化[J].机械设计,2005,22(11):10-12.
    [8]江涛,陈建军,张建国等.基于区间模型的响应面法[J].机械设计与研究,2005,21(6):12-16.
    [9]窦毅芳,刘飞,张为华.响应面建模方法的比较分析[J].工程设计学报,2007,14(5):359-363.
    [10]潘雷,谷良贤,阎代维.改进响应面法(IRSM)及其近似性能研究[J].自然科学进展,2009,19(2):222-226.
    [11]Knill D L, Giunta A A, Baker C A, et al. Multidisciplinary HSCT configuration design using response surface approximations of supersonic euler aerodynamics [J]. AIAA Journal:1998-0905.
    [12]Giunta A A. Aircraft multidisciplinary design optimization using design of experiments theory and response surface modeling methods[D]. Blacksburg: Virginia Polytechnic Institute and State University,1997.
    [13]Roux W J, Stander N, Haftka R T. Response surface approximations for structural optimization[J]. International journal for numerical methods in engineering, 1998,42(3):517-534.
    [14]Kim C, Wang S, Choi K K. Efficient response surface modeling by using moving least-squares method and sensitivity[J]. AIAA Journal,2005,43(11):2404-2411.
    [15]Yang R J, Wang N, Tho C H, et al. Metamodeling Development for Vehicle Frontal Impact Simulation[J]. Journal of Mechanical Design,2005,127(5):1014-1020.
    [16]阳志光,陈敏,隋允康.响应面法在圆柱壳结构优化设计中的应用[J].弹箭与制导学报,2003:128-130.
    [17]王海亮,林忠钦,金先龙.基于响应面模型的薄壁构件耐撞性优化设计[J].应用力学学报,2003,20(3):61-65.
    [18]张勇,李光耀,钟志华.基于移动最小二乘响应面方法的整车轻量化设计优化[J].机械工程学报,2008,44(11):192-196.
    [19]高月华.基于kriging代理模型的优化设计方法及其在注塑成型中的应用[D].大连:大连理工大学,2009.
    [20]Lophaven SN, Nielsen HB, Sondergaard J. DACE-A Mat lab Kriging Toolbox[J]. Informatics and mathematical modelling, Denmark,2002.
    [21]Simpson T W, Mauery T M, Korte J J, et al. Comparison of response surface and kriging models for multidisciplinary design optimization[J]. AIAA Journal, 1998-4755.
    [22]高月华,张崎,王希诚.基于Kriging模型的汽轮机基础动力优化设计[J].计算力学学报,2008,25(5):610-615.
    [23]Joseph V R, Hung Y, Agus S. Blind Kriging:A New Method for Developing Metamodels[J]. Journal of Mechanical Design,2008,130(3):031102.
    [24]Matthew Z. Neural networks in atificial intelligence[M]. New York:Ellis Horwood Limited,1990.
    [25]Varadarajan S, Chen W, Pelka C. Robust concept exploration of propulsion systems with enhanced model approximation capabilities[J]. Engineering Optimization, 2000,32 (3):309-334.
    [26]邓乃扬,田英杰.数据挖掘中的新方法-支持向量机[M].北京:科学出版社,2004.
    [27]Cortex C, Vapnik V. Support-vector networks[J]. Machine Learning,1995, 20(3):273-297.
    [28]刘志强.基于支持向量机的可靠度计算方法研究[D].大连:大理工大学,2008.
    [29]Guyan R J. Reduction of Stiffness and Mass Matrices[J]. AIAA Journal,1965, 3(2):380.
    [30]Irons B. Structural Eigenvalue Problems-Elimination of Unwanted Variables[J]. AIAA Journal,1965,3(5):961-962.
    [31]Lin R M,Lim M K. Structural sensitivity analysis via reduced-order analytical model [J]. Computer Methods in Applied Mechanics and Engineering,1995, 121(1-4):345-359.
    [32]Kuhar E J, Stahle C V. Dynamic Transformation Method for Modal Synthesis [J]. AIAA Journal,1974,12(5):672-678.
    [33]Paz M. Dynamic Condensation[J]. AIAA Journal,1984,22(5):724-727.
    [34]Paz M. Modified dynamic condensation method [J]. Journal of Structural Engineering, 1989,115(1):234-238.
    [35]Rothe K, Voss H. Improving condensation methods for eigenvalue problems via Reyleigh functions[J]. Computer Methods in Applied Mechanics and Engineering, 1994,111 (1-2):169-183.
    [36]Kim K 0. Dynamic Condensation for Structural Redesign[J]. AIAA Journal,1984, 23(11):1830-1832.
    [37]张德文,魏阜旋.模型修正与破损诊断[M].北京:科学出版社,1999.
    [38]瞿祖清,华宏星,傅志方.一种有限元模型坐标动力缩聚技术[J].振动与冲击,1998,17(3):15-18,87.
    [39]瞿祖清.结构动力缩聚技术:理论与应用[D].上海:上海交通大学,1998.
    [40]Kane K, Torby B J. The extended modal reduction method applied to rotor dynamic problems[J]. Journal of Vibration and Acoustics,1991,113(11):79-84.
    [41]Rivera M A, Singh M P, Suarez L E. Dynamic condensation approach for non-classically damped structures[J]. AIAA Journal,1999,37(5):564-571.
    [42]Qu Z Q, Selvam R P. Efficient method for dynamic condensation of nonclassically damped vibration systems[J]. AIAA Journal,2002,40(2):368-375.
    [43]Qu Z Q, Jung Y, Selvam R P. Model Condensation for Non-Classically Damped Systems-Part I:Static Condensation[J]. Mechanical Systems and Signal Processing,2003,17(5):1003-1016.
    [44]Qu Z Q, Selvam R P, Jung Y. Model Condensation for Non-Classically Damped Systems-Part Ii:Iterative Schemes for Dynamic Condensation[J]. Mechanical Systems and Signal Processing,2003,17(5):1017-1032.
    [45]Qu Z Q, Selvam R P. Insight into the dynamic condensation technique of non-classically damped models[J]. Journal of Sound and Vibration,2004, 272(3-5):581-606.
    [46]O' Callahan J C. A procedure for an improved reduced system (IRS) model[C]. Proceedings of the 7th International Model Analysis Conference.1989. Las Vegas.
    [47]Kidder R L. Reduction of structural frequency equations[J]. AIAA Journal,1973, 11(6):892.
    [48]Fri swell M I, Garvey S D, Penny JET. Model reduction using dynamic and Iterated IRS techniques[J]. Journal of Sound and Vibration,1995,186(2):311-323.
    [49]Fri swell M I, Garvey S D, Penny J E T. The convergence of the iterated IRS methods [J]. Journal of Sound and Vibration,1998,211 (1):123-132.
    [50]Kim K O, Choi Y J. Energy method for selection of degrees of freedom in condensation[J]. AIAA Journal,2000,38(7):1253-1259.
    [51]Cho M, K. H. Element-based node selection method for reduction of eigenvalue problems[J]. AIAA Journal,2004,42(8):1677-1684.
    [52]Kim H, Cho M. Two-level scheme for selection of primary degrees of freedom and semi-analytic sensitivity based on the reduced system[J]. Computer Methods in Applied Mechanics and Engineering,2006,195 (33-36):4244-4268.
    [53]Kim H, Cho M. Sub-domain optimization of multi-domain structure constructed by reduced system based on the primary degrees of freedom[J]. Finite Elements in Analysis and Design,2007,43 (11-12):912-930.
    [54]Ong JH. Improved automatic masters for eigenvalue economization[J]. Finite Elements in Analysis and Design,1987,3(2):149-160.
    [55]Bouhaddi N, Fillod R. A method for selecting master DOF in dynamic substructuring using the Guyan Condensation Method[J]. Computers and Structures,1992, 45(5-6):941-946.
    [56]Wilson E L, Yuan M W, Dickens J M. Dynamic analysis by direct superposition of Ritz vectors[J]. Earthquake engineering and structural dynamics,1982, 10(6):813-821.
    [57]王勖成.有限单元法[M].北京:清华大学出版社,2004.
    [58]Nour-Omid B, C. R. W. Dynamic analysis of structures using Lanczos coordinates [J]. Earthquake Engineering and Structural Dynamics,1984,12(4):565-577.
    [59]Gu J M, Ma Z D, Hulbert G M. A new load-dependent Ritz vector method for structural dynamics analysis:quasi-static Ritz vectors [J]. Finite Elements in Analysis and Design,2000,36(3-4):261-278.
    [60]林家浩,曲乃泗,孙焕纯.计算结构动力学[M].北京:高等教育出版社,1990.
    [61]Hurty W C. Dynamic analysis of structural systems using component modes[J]. AIAA Journal,1965,3(4):678-685.
    [62]Craig J R R, Bampton M C C. Coupling of substructures for dynamic analyses[J]. AIAA Journal,1968,6(7):1313-1319.
    [63]Goldman R L. Vibration analysis by dynamic partitioning[J]. AIAA Journal,1969, 7(6):1152-1154.
    [64]Hou S N. Review of modal synthesis techniques and a new approach[J]. Shock and Vibration Bulletin,1969,40(4):25-39.
    [65]MacNeal R H. A hybrid method for component mode synthesis[J]. Computers and Structures,1971,1(4):582-601.
    [66]Leung A Y T. A simple dymamic substructure method[J]. Earthquake engineering and structural dynamics,1988,16(6):827-837.
    [67]Suarez L E, S. M.P. Improved fixed interface method for modal synthesis[J], AIAA Journal,1992,30(12):2952-2958.
    [68]Shyu W H, M. Z. D., Hulbert G M,. A new component mode synthesis method:quasi-static mode compensation[J]. Finite Elements in Analysis and Design,1997, 24(4):271-281.
    [69]Craig J R R. Substructure methods in vibration[J]. Journal of Vibration and Acoustics,1995,117(Special):207-213.
    [70]王永岩.动态子结构方法理论及应用[M].北京:科学出版社,1999.
    [71]许明财.ANSYS模态综合法技术[J].CAD/CAM与制造业信息化2005,2:90-91.
    [72]向树红,邱吉宝,王大钧.模态分析与动态子结构方法新进展[J].力学进展,2004,34(3):289-303.
    [73]邱吉宝,王建民,谭志勇.运载火箭结构动力分析的一些新技术第一部分:模态综合技术[J].导弹与航天运载技术,2001,2:29-34.
    [74]邱吉宝,王建民.运载火箭模态试验仿真技术研究新进展[J].宇航学报,2007,28(3):516-521.
    [75]杜飞平,谭永华,陈建华等.航天器子结构模态综合法研究现状及进展[J].火箭推进,2010,36(3):39-44.
    [76]王建军,李其汉.航空发动机失谐叶盘振动减缩模型与应用[M].北京:国防工业出版社,2009.
    [77]张亚辉,林家浩.结构动力学基础[M].大连:大连理工大学出版社,2007.
    [78]邓佳东,程耿东.基于局部插值的结构动力模型降阶方法[J].力学学报,2012,44(2):111-119.
    [79]郑淑飞,丁桦.基于变形修正的局部刚体化动力模型简化方法[J].力学与实践,2008,30(6):31-34.
    [80]刘斌,丁桦,时忠民.基于柔度修正的局部刚体化结构动力模型简化方法[J].工程力学,2007,24(10):25-31.
    [81]Maxwell J C. On reciprocal figures, frames, and diagrams of force, scientific papers[M]:Cambridge University Press,1890.
    [82]Michell A, Melbourne M. The limits of economy of material in frame-structures [J]. Philosophical Magazine,1904,8(47):589-597.
    [83]Schmit L A. Structural design by systematic synthesis[C]. Proceedings of the second ASCE conference on Electronic computation.1960. New York.
    [84]许素强,夏人伟.结构优化方法研究综述[J].航空学报,1995,16(4):385-396.
    [85]李芳,凌道盛.工程结构优化设计发展综述[J].工程设计学报,2002,9(5):229-235.
    [86]程耿东.工程结构优化设计基础[M].北京:水利电力出版社,1984.
    [87]Bends(?)e M P, Sigmund 0. Topology optimization:Theory methods and applocations[M]. Berlin:Springer-Verlag,2003.
    [88]Cheng G. On non-smoothness in optimal design of solid elastic plates[J]. International Journal of Solids and Structures,1981,17(8):795-810.
    [89]Cheng G, Olhoff N. An investigation concerning optimal design of solid elastic plates[J]. International Journal of Solids and Structures,1981,17(3):305-323.
    [90]Bends(?)e M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988,71(2):197-224.
    [91]http://www.sightna.com.
    [92]http://www.altair.com.
    [93]http://www.quint.co.jp/eng/index.html.
    [94]http://www.fe-design.de/en/home.html.
    [95]杨玉红.基于TiGEMS的卫星总体设计优化技术研究[D].西安:西北工业大学,2007.
    [96]黄海,冉红军,夏人伟.工程结构优化程序系统ESSOS[J].计算力学学报,1995,12(3):323-331.
    [97]钱令希,钟万勰,隋允康等.多单元、多工况、多约束的结构优化设计——DDDU程序系统[J].大连工学院学报,1980,19(4):1-17.
    [98]顾元宪,程耿东.计算机辅助结构优化设计软件MCADS的开发与应用[J].计算结构力学及其应用,1995,12(3):304-307.
    [99]顾元宪,张洪武,关振群等.JIFEX——有限元分析与优化设计软件系统[J].计算机辅助设计与制造,2001,3:73-74.
    [100]www.sipesc.org.
    [101]陈建军,车建文,崔明涛等.结构动力优化设计述评与展望[J].力学进展,2001,31(2):181-192.
    [102]Niordson F 1. The optimum design of a vibrating beams[J]. Quarterly of Applied Mathematies,1965,23(1):47-53.
    [103]Karihaloo B L, Niordson F I. Optimum design of vibratinig cantilevers beam[J]. Journal of optimization Theory and application,1973,11(6):705-712.
    [104]Zarghamee M S. optimum frequeney of struetures[J]. AIAA Journal,1968, 6(6):749-750.
    [105]Sadek E A. Dynamic optimization of framed struetures with variable layout [J]. Numerical Method in Engineering,1986,23(7):1273-1294.
    [106]钱令希.工程结构优化设计[M].北京:水利电力出版社,1983.
    [107]林家浩.有频率禁区的结构优化设计[J].大连工学院学报,1981,20(1):27-36.
    [108]王生洪.具有频率约束的结构最轻重量设[J].固体力学学报,1982,2(9):165-175.
    [109]程耿东,顾元宪.序列二次规划在结构动力优化中的应用[J].振动与冲击,1986,5(1):12-20.
    [110]Cheu T C, Wang B P, Chen T Y. Design optimization of gas turbing blades with geometry and natural frequeneys[J]. Computers and Struetures,1989, 32(1):113-117.
    [111]刘军伟,姜节胜.析架动力学形状优化的统一设计变量方法[J].振动工程学,2000,13(1):84-88.
    [112]罗鹰.大型星载可展开天线的动力优化设计与工程结构的系统优化设计[D].西安:西安电子科技大学,2004.
    [113]王世敬,王春莲,韩清学.导管架平台结构动力优化设计[J].石油矿场机械,2008,37(12):38-41.
    [114]谢素明,张倍,卢碧红.高速动车组转向架部件结构的动力优化[J].大连交通大学学报,2011,32(5):20-23.
    [115]林家浩.结构动力优化设计发展综述[J].力学进展,1983,13(4):423-431.
    [116]王冠军,鹿晓阳,王鹏.结构动力优化设计发展与展望[J].山东大学学报(工学版),2008,38(2):201-204.
    [117]Diaz A R, Kikuchi N. Solutions to shape and topology eigenvalue optimization problems using a homogenization method[J]. International Journal for Numerical Methods in Engineering,1992,35(7):1487-1502.
    [118]Ma Z D, Kikuchi N, Cheng H C. Topological design for vibrating structures[J]. Computer Methods in Applied Mechanics and Engineering,1995,121(1-4):259-280.
    [119]Krog L A, Olhoff N. Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives[J]. Computers and Structures,1999,72(4):535-563.
    [120]Allaire G, Aubry S, Jouve F. Eigenfrequency optimization in optimal design[J]. Computer Methods in Applied Mechanics and Engineering,2001,190(28):3565-3579.
    [121]Jensen J S, Pedersen N L. On maximal eigenfrequency separation in two-material structures:The Id and 2d scalar cases[J]. Journal of Sound and Vibration,2006, 289(4-5):967-986.
    [122]Du J B,Olhoff N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps[J]. Structural and Multidisciplinary Optimization,2007,34(2):91-110.
    [123]Cheng G, Wang B. Constraint continuity analysis approach to structural topology optimization with frequency objective/constraints[C]. Proceeding of 7th World Congress of Structural and Multidisciplinary Optimization.2007. Seoul, Korea.
    [124]Bin Niu, Jun Yan, G. Cheng. Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency [J]. Structural and Multidisciplinary Optimization,2009,29(2):115-132.
    [125]Eschenauer H A, Olhoff N. Topology optimization of continuum structures:A review[J]. Applied Mechanics Reviews,2001,54(4):331-389.
    [126]钱令希,钟万勰,程耿东.工程结构优化的序列二次规划[J].固体力学学报,1983,4(4):469-480.
    [127]Svanberg K. The method of moving asymptotes-a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987,24(2):359-373.
    [128]Svanberg K. A class of globally convergent optimization methods based on conservative convex separable approximations[J]. SIAM Journal on Optimization, 2001,12(2):555-573.
    [129]Queipo N V, Haftka R T, Shyy W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences,2005,41(1):1-28.
    [130]Forrester A I J.Keane A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences,2009,45(1-3):50-79.
    [131]赵瑛飞,隋允康,叶红玲.基于响应面方法的板壳结构频率约束优化[J].北京工业大学学报,2006,32(增刊):19-23.
    [132]李志建.骨架结构频率优化的理论与软件开发[D].北京:北京工业大学,2005.
    [133]周萍,于德介,臧献国等.采用响应面法的汽车转向系统固有频率优化[J].汽车工程,2010,32(10):883-887.
    [134]田程,桂良进,范子杰.采用序列响应面法的大客车结构振动频率优化[J].汽车工程,2010,32(10):833-836.
    [135]孙蓓蓓,许志华,孙庆鸿.工程车辆非线性橡胶悬架动力学建模与优化[J].汽车技术,2006,2:20-24.
    [136]牛飞,徐胜利,王博等.基于超单元的复杂结构拓扑优化设计[C].中国力学学会学术大会.2009.郑州.
    [137]李宁,陈昌亚,王德禹.基于子结构的卫星结构静动态多目标优化[C].结构及多学科优化工程应用与理论研讨会.2009.大连.
    [138]陈登科.基于自由度缩减方法的结构优化[D].大连:大连理工大学,2010.
    [139]郭立群.商用车车架拓扑优化轻量化设计方法研究[D].吉林:吉林大学,2011.
    [140]刘孝保,杜平安.基于子结构方法的PCB板支撑布局优化[J].电子科技大学学报,2011,40(5):796-799.
    [141]王二兵,周鋐,徐刚等.基于车身板件声学贡献分析的声振优化[J].江苏大学学报(自然科学版),2012,33(1):25-29.
    [142]Eriksson P, Friberg 0. Ride comfort optimization of a city bus [J]. Structural and Multidisciplinary Optimization,2000,20(1):67-75.
    [143]Yoon G H. Structural topology optimization for frequency response problem using model reduction schemes[J]. Computer Methods in Applied Mechanics and Engineering, 2010,199 (25-28):1744-1763.
    [144]Zavrel J, Valasek M. System model reduction for MBS optimization[J]. Applied and Computational Mechanics,2007(1):703-710.
    [145]Mundo D, Hadjit R, Donders S, et al. Simplified modelling of joints and beam-like structures for BIW optimization in a concept phase of the vehicle design process[J]. Finite Elements in Analysis and Design,2009,45(6-7):456-462.
    [146]Tamarozzi T, Stigliano G, Gubitosa M, et al. Investigating the use of reduction techniques in concept modeling for vehicle body design optimization[C]. Proceedings of ISMA.2010.
    [147]Moul in B, Karpel M. Static condensation in modal-based structural optimization[J]. Structural and Multidisciplinary Optimization,1998,15(3-4):275-283.
    [148]Masson G, Cogan S, Bouhaddi N, et al. Parameterized reduced models for efficient optimization of structural dynamic behavior[J]. AIAA Journal,2002,1392:1-7.
    [149]Masson G, Ait Brik B, Cogan S, et al. Component mode synthesis (CMS) based on an enriched ritz approach for efficient structural optimization[J]. Journal of Sound and Vibration,2006,296(4-5):845-860.
    [150]Oliveira I B, Patera A T. Reduced-basis techniques for rapid reliable optimization of systems described by affinely parametrized coercive elliptic partial differential equations[J]. Optimization and Engineering,2007, 8(1):43-65.
    [151]Afonso S M B, Lyra P R M, Albuquerque T M M, et al. Structural analysis and optimization in the framework of reduced-basis method[J]. Structural and Multidisciplinary Optimization,2009,40(1-6):177-199.
    [152]钱伟长.变分法及有限元[M].北京:科学出版社,1980.
    [153]陈永林.广义逆矩阵的理论与方法[M].南京:南京师范大学出版社,2005.
    [154]http://baike.baidu.com/view/2381363.htm.
    [155]Cheng G, Liu Y. A new computation scheme for sensitivity analysis[J]. Engineering Optimization,1987,12(3):219-234.
    [156]Haftka R T, Adelman H M. Recent developments in structural sensitivity analysis [J]. Structural and Multidisciplinary Optimization,1989,1(3):137-151.
    [157]Belequndu A D. Direct and Adjoint Methods of Design Sensitivity Analysis[J]. American Society of Mechanical Engineer,1984,8:211-219.
    [158]隋允康,宇慧平.响应面方法的改进及其对工程优化的应用[M].北京:科学出版社,2011.
    [159]李东旭.大型挠性空间桁架结构动力学分析与模糊振动控制[M].北京:科学出版社,2008.
    [160]Nurre G S. Dynamics and control of large space structures [J]. AIAA Journal of Guidance, Control and Dynamics,1984,7(5):514-526.
    [161]章敏,谢永,蔡国平.桁架系统的模型降阶及其主动控制研究[J].应用力学学报,2011,28(4):397-401.
    [162]Moore B C. Principal component analysis in linear systems controllability, observability, and model reduction[J]. IEEE Transactions on Automatic Control, 1981,26(1):17-32.
    [163]Pernebo L, Silverman L M. Model reduction via balanced state space representations[J]. IEEE Transactions on Automatic Control,1982,27 (2):382-387
    [164]Kokotovic P V, O' Malley J R E, Sannuti P. Singular perturbations and order reduction in control theory:An overview[J]. Automatica,1976,12(2):123-132.
    [165]Saksena V R, O' Reilly J, Kokotovic P V. Singular perturbations and time-scale methods in control theory:Survey 1976-1983 [J]. Automatica,1984,20(3):273-293.
    [166]Wilson D A. Model reduction for mult ivariable systems [J]. International Journal of Control,1974,20(1):57-64.
    [167]Skelton R E, Yousuff A. Component cost analysis of large scale systems [J]. International Journal of Control,1983,37(2):285-304.
    [168]Freund R W. Krylov-subspace methods for reduced-order modeling in circuit simulation[J]. Journal of Computational and Applied Mathematics,2000, 123(1-2):395-421.
    [169]Bai, Z. J. Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems[J]. Applied Numerical Mathematics,2002,43(1-2):9-44.
    [170]Freund R W. Model reduction methods based on Krylov subspaces[J]. Acta Numerica, 2003,12:267-319.
    [171]Zipfel P H. Modeling and Simulation of Aerospace Vehicle Dynamics, Second Edition[M]. Virginia,USA:American Institute of Aeronautics and Astronautics, Inc.,2007.
    [172]Leadbetter S A, Raney J P. Model studies of the dynamics of launch vehicles[J]. Journal of spacecraft and rockets,1966,3(6):936-938.
    [173]QJ2619-94.中国航天工业总公司航天工业行业标准.北京:中国航天工业总公司,1994.
    [174]竺润祥,张铎.航天器计算结构力学[M].北京:宇航出版社,1998.
    [175]徐志胜,翟婉明,王开云.基于Timoshenko梁模型的车辆轨道耦合振动分析[J].西南交通大学学报,2003,38(1):22-27.
    [176]苏砺锋,李振环,金文成等.基于三维实体和空间梁模型的桥梁空间结构计算仿真[J].华中科技大学学报(城市科学版),2003,20(3):63-66.
    [177]王麒淋,胡毓仁.采用薄壁梁模型的高速船板条梁弹性碰撞过程分析[J].舰船科学技术,2007,29(3):44-48.
    [178]潘忠文,王旭,邢誉峰.基于梁模型的火箭纵横扭一体化建模技术[J].宇航学报,2010,31(5):1310-1316.
    [179]潘忠文.运载火箭动力学建模及振型斜率预示技术[J].中国科学E辑:技术科学,2009,39(3):469-473.
    [180]林哲,赵德有.大型及超大型油船总体振动分析方法研究[J].大连理工大学学报,1997,37(4):454-458.
    [181]张国庆,巨建民.轨道车辆车体刚度计算方法的研究[J].科技创新与生产力,2010,6:69-70.
    [182]宋子康,蔡文安.材料力学[M].上海:同济大学出版社,1998.
    [183]Timoshenko S P, Gere J M. Mechanics of materials, First Edit ion[M]. New York: Van Nostrand Reinhold Company,1972.
    [184]魏兆正,郭会聪,王守新等.高等材料力学讲义[M].大连:大连理工大学出版社,2008.
    [185]郭在田.薄壁杆件的弯曲与扭转[M].北京:中国建筑工业出版社,1989.
    [186]Allemang RJ, Brown DL. A correlation coefficient for modal vector analysis [C]. Proceeding of the 1st international modal analysis conference (Orlando, FL).1982. Union College, Schenectady, NY.
    [187]邱吉宝,向树红,张正平.计算结构动力学[M].合肥:中国科学技术大学出版社,2009.
    [188]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [189]Cowper G R. The Shear Coefficient in Timoshenko's Beam Theory[J]. Journal of applied mechanics,1966,33 (2):335-340.
    [190]Severn R T. Inclusion of shear deflection in the stiffness matrix for a beam element[J]. The Journal of Strain Analysis for Engineering Design,1970, 5(4):239-241.
    [191]Narayanaswami R, Adelman H M. Inclusion of Transverse Shear Deformation in Finite Element Displacement Formulations[J]. AIAA Journal,1974,12(11):1613-1614.
    [192]王斌.结构多性能优化设计及其在航天结构设计中的应用[D].大连:大连理工大学,2010.
    [193]王龙生,张德文.火箭结构有限元分析的若干问题[J].强度与环境,1988(3):45-53.
    [194]王毅,朱礼文,王明宇等.大型运载火箭动力学关键技术及其进展综述[J].导弹与航天运载技术,2000(1):29-37.
    [195]Morino, Y. Vibration test of 1/5 H-II launch vehicle[J]. AIAA Journal,1987, AIAA-87-D783.
    [196]潘忠文,邢誉峰,杨阳.蒙皮加筋圆柱壳扭转频率的三种计算模型[J].北京航空航天大学学报,2011,37(9):1156-1159.
    [197]邢誉峰,潘忠文,杨阳.蒙皮加筋圆柱壳弯曲频率的三种计算模型[J].北京航空航天大学学报,2012,38(4):1-6.
    [198]栾宇.航天器结构中螺栓法兰连接的动力学建模方法研究[D].大连:大连理工大学,2011.
    [199]Luan Y, Guan Z Q, Cheng G D, et al. A Simplified Nonlinear Dynamic Model for the Analysis of Pipe Structures with Bolted Flange Joints[J]. Journal of Sound and Vibration,2012,331(2):325-344.
    [200]Chen H J, Tsai S W. Analysis and Optimum Design of Composite Grid Structures [J]. Journal of Composite Materials,1996,30(4):503-534.
    [201]吴德财,徐元铭,贺天鹏.新的复合材料格栅加筋板的平铺等效刚度法[J].力学学报,2007,39(4):495-502.
    [202]张明利.ISOGRID加筋圆柱壳的力学性能分析[D].北京:北京工业大学,2009.
    [203]陈文宾,丁叁叁.国产化CRH2型200 km/h动车组铝合金车体及技术创新[J].机车电传动,2008,2:1-4.
    [204]Luo Z, Yang J Z, Chen L P. A new procedure for aerodynamic missile designs using topological optimization approach of continuum structures [J]. Aerospace Science and Technology,2006,10 (5):364-373.
    [205]王健,张鲁邹,程耿东等.应力约束下车架的结构拓扑优化设计[J].汽车工程,1997,19(1):15-19.
    [206]范文杰,范子杰,桂良进等.多工况下客车车架结构多刚度拓扑优化设计研究[J].汽车工程,2008,30(6):531-533.
    [207]刘岩.我国高速铁路客车轻量化车体最优结构研究[J].轻合金加工技术,2000,5:41-43.
    [208]王慧玲.高速铁路客车铝合金车体的研究[D].大连:大连铁道学院,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700