用户名: 密码: 验证码:
表面担载氧化物薄膜的电子结构及氢分子的碰撞动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在表面上担载薄膜或分子可以形成多种不同结构,并表现出丰富的物理化学性质,在自旋电子学、表面修饰与表面改性等领域具有广泛的应用前景。在本论文中,通过构建模型并采用相应的研究方法,如第一性原理方法、分子动力学方法、反应力场方法,我们研究了表面担载氧化物薄膜的半金属行为,氢分子在过渡金属表面分解的动力学过程,考察了物理性能与结构之间的关联特征,并探讨了其中物理机制,得到了一些有意义的结果。本论文的主要内容如下:
     (1)第一章,介绍了表面担载薄膜与分子的研究现状,对其物理性能和应用前景做了一个简要的描述。
     (2)第二章,简述了密度泛函方法的基本思想以及与本论文的研究工作密切相关的参数的物理意义,介绍了基于密度泛函理论的第一性原理软件---VASP,并给出了采用密度泛函方法计算的MnO2在拉应力下的电子结构转变的示例。我们发现,在一定的拉应力作用下,MnO2将发生绝缘体-半金属转变。其中,铁磁磁序的形成源于Mn原子之间的交换耦合系数的改变,而自旋向上导带的形成过程中,双交换机制发挥了重要作用。
     (3)第三章,研究了TiO2(001)表面担载不同厚度CrO2纳米薄膜的电子结构与磁学性质,明确了基底应力和尺寸效应对CrO2薄膜性质的影响。我们发现外延的CrO2薄膜中存在着丰富的物理现象,如1至3个原子层厚度的薄膜中出现的绝缘相,3层以上薄膜表面产生的反铁磁磁序,4层及其更厚薄膜中半金属性的重建等。借助晶体场理论与海森堡模型,我们给出了这些现象的可能解释。
     (4)第四章,介绍了反应力场的函数形式、参数拟合、数据库构建以及基于反应力场的分子动力学方法。基于反应力场方法,构建了氢气在干净的Pd金属表面的势能面,研究了氢气分子在金属表面的碰撞动力学特征,如分解概率与入射动能之间的非单增关系,分解概率与振动和转动量子数之间的关系,表面温度对于分解概率的影响,并分析了其中的动力学机制。
     (5)第五章,通过分子动力学方法与REBO反应力场,研究了表面缺陷如点缺陷、台阶对于氢气在表面的分解概率的影响。我们发现,两种表面缺陷均能够提升氢分子在表面的分解概率,但其中起作用的物理机制有所不同。在低能入射区域,点缺陷的引入,阻止了氢气分子在表面处的扩散,使其更倾向于在入射位置附近分解。而在表面存在台阶的情况下,键计数机制在分解动力学中占据主导。
     (6)第六章,总结了本文所做的工作,并对论文工作的进一步延续进行了展望。
Films and molecules supported on surface can form various kinds of structures, which draw muchattention for their unique properties and potential applications in the field of spintronics, surfacemodification and surface treatment. In this dissertation, firstly we build our models for the surfacesupporting oxide and hydrogen. And then, we choose appropriate methods, for example, first principlecalculation, molecular dynamics simulations and reactive forcefield to obtain necessary information.Based on the information, we discuss the phenomena found in the surface supported systems, such asthe half-metallic property of the surface supporting oxide, the dissociation process of the molecule atthe surface, and the connection between the physical property and the surface structures. Someinteresting results are obtained. The outline is as follows:
     In chapter1, we review the development for the research about the surface supporting system. Thenwe give an introduction for its physical property and application prospect.
     In chapter2, the basic concepts of the density of functional theory (DFT) and the first principlecalculation program, VASP are introduced, with which we study the electronic structure transitionwhen MnO2is under tensile stress. We find that, under certain strain, MnO2will show half-metallicproperty. The formation of the ferromagnetic phase is caused by the variation of exchange integralbetween the Mn ions during the expansion. And the double exchange machanism leads to theoverlapping of the majority3d bands.
     In chapter3, the electronic structure and magnetic properties of CrO2films supported on TiO2(001)surface are studied via DFT calculation, in order to make clear the role the size effect and the epitaxialstrain play. The film’s thickness changes from one to six atomic slices. Some new phenomena can befound in these films, such as the insulator property in the1-3layer films, the AFM surface in the3-layer and thicker films, and the rebuilding of the half-metallic property in the4-layer and thickerfilms. With the help of crystal field theory and Heisonberg model, the physics behind thesephenomena are revealed.
     In chapter4, the molecular dynamic method,as well as the reactive forcefield used in oursimulation is discussed in detail. The function form, parameters fitting process, and the database usedin the forcefield are shown. Then we investigate the process when H2incident on clean Pd surface.The dynamic mechanism behind the phenomena found in the process, such as the nomonotonousvariation of the sticking coefficient with respect to the energy of the impinging molecule, the variation of the sticking coefficient with respect to the vibration quantum number, rotational quantum number,and surface temperature are revealed.
     Chapter5. Based on the molecular dynamics simulation and the reactive bond order forcefield, thesticking coefficient affected by the vacancy and step at the surface is investigated. We find that, bothof them lead to higher dissociative probability, while the dissociative mechanism in the low-energyregion is different. The vacancy will hinder the diffusion of H2molecules, while the step will trap themoleculars with bond counting mechanism.
     Chapter6is the summary of our dissertation. The latent works, which are worthy of furtherinvestigation are pointed out.
引文
[1] N. Oncel, A. van Houselt, J. Huijben, et al. Quantum Confinement between Self-Organized PtNanowires on Ge(001) Phys. Rev. Lett.2005,95:116801.
    [2] J. T. Wang, C. Chen, E. Wang, et al. Magic Monatomic Linear Chains for Mn NanowireSelf-Assembly on Si(001) Phys. Rev. Lett.2010,105:116102.
    [3] J. L. Li, J. F. Jia, X. J. Liang, et al. Spontaneous Assembly of Perfectly Ordered Identical-SizeNanocluster Arrays Phys. Rev. Lett.2002,88:066101.
    [4] J. H. Byun, J. R. Ahn, W. H. Choi, et al. Photoemission and STM study of an In nanocluster arrayon the Si(111)-7x7surface Phys. Rev. B.2008,78:205314.
    [5] P. W. Sutter, J.-I. Flege, and E. A. Sutter. Epitaxial graphene on ruthenium Nat. Mater.2008,7:406-411.
    [6] A. L. Vazquez de Parga, F. Calleja, B. Borca, et al. Periodically Rippled Graphene: Growth andSpatially Resolved Electronic Structure Phys. Rev. Lett.2008,100:056807.
    [7] C. Cheung, A. Kurtz, H. Park, et al. Diameter-controlled synthesis of carbon nanotubes J. Phys.Chem. B.2002,106:2429-2433.
    [8] S. Han, T. Yu, J. Park, et al. Diameter-controlled synthesis of discrete and uniform-sizedsingle-walled carbon nanotubes using monodisperse iron oxide nanoparticles embedded inzirconia nanoparticle arrays as catalysts J. Phys. Chem. B.2004,108:8091-8095.
    [9] J. Lu, S. S. Yi, T. Kopley, et al. Fabrication of ordered catalytically active nanoparticles derivedfrom block copolymer micelle templates for controllable synthesis of single-walled carbonnanotubes J. Phys. Chem. B.2006,110:6655-6660.
    [10] X. Zhang, J. Zhang, and Z. Liu. Conducting polymer/carbon nanotube composite films made by insitu electropolymerization using an ionic surfactant as the supporting electrolyte Carbon.2005,43:2186-2191.
    [11] G. Binasch, P. Grunberg, F. Saurenbach, et al. Enhanced magnetoresistance in layered magneticstructures with antiferromagnetic interlayer exchange Phys. Rev. B.1989,39:4828-4830.
    [12] M. Baibich, J. Broto, A. Fert, et al. Giant magnetoresistance of (001) Fe/(001) Cr magneticsuperlattices Phys. Rev. Lett.1988,61:2472-2475.
    [13] S. S. P. Parkin, Z. G. Li, and D. J. Smith. Giant magnetoresistance in antiferromagnetic Co/Cumultilayers Appl. Phys. Lett.1991,58:2710-2712.
    [14] M. Yan, W. Lai, G. Luo, et al. Oscillatory interlayer exchange coupling in magnetron sputteredNiFe/Mo multilayers, and comparison with Fe/Mo Journal of Physics: Condensed Matter.1996,8:L711.
    [15] I. K. Schuller, S. Kim, and C. Leighton. Magnetic superlattices and multilayers J. Magn. Magn.Mater.1999,200:571-582.
    [16] M. Hecker, D. Tietjen, D. Elefant, et al. Thermally activated deterioration processes in Co/CuGMR multilayers J. Appl. Phys.2001,89:7113.
    [17] M. Yan, W. Lai, Y. Wang, et al. Giant magnetoresistance in Fe/Mo multilayers formed bymagnetron sputtering J. Appl. Phys.1995,77:1816-1818.
    [18] S. N. F. Mott and H. Jones. The theory of the properties of metals and alloys. London:DoverPubns,1958.
    [19] S. Wolf, D. Awschalom, R. Buhrman, et al. Spintronics: A spin-based electronics vision for thefuture Science.2001,294:1488.
    [20] J. Moodera, L. Kinder, T. Wong, et al. Large magnetoresistance at room temperature inferromagnetic thin film tunnel junctions Phys. Rev. Lett.1995,74:3273-3276.
    [21] I. I. Mazin. How to Define and Calculate the Degree of Spin Polarization in Ferromagnets Phys.Rev. Lett.1999,83:1427-1430.
    [22] R. A. de Groot, F. M. Mueller, P. G. v. Engen, et al. New Class of Materials: Half-MetallicFerromagnets Phys. Rev. Lett.1983,50:2024-2027.
    [23] C. M. Fang, G. A. de Wijs, and R. A. de Groot. Spin-polarization in half-metals (invited) J. Appl.Phys.2002,91:8340-8344.
    [24] J. Dho, D. H. Kim, D. Kwon, et al. Thermal instability of the half-metallic CrO2film epitaxiallygrown on TiO2J. Appl. Phys.2008,104:063528.
    [25] M. Pathak, H. Sato, X. Zhang, et al. Substrate-induced strain and its effect in CrO2thin filmsJournal of Applied Physics.2010,108:053713.
    [26] N. Li, K. L. Yao, Z. Y. Sun, et al. The half-metallic properties and geometrical structures of cubicBaMnO3and BaTiO3/BaMnO3superlattice J. Appl. Phys.2011,109:083715.
    [27] Z. H. Zhu and X. H. Yan. Half-metallic properties of perovskite BaCrO3and BaCr0.5Ti0.5O3superlattice: LSDA+U calculations J. Appl. Phys.2009,106:023713.
    [28] R. Balog, B. Jorgensen, L. Nilsson, et al. Bandgap opening in graphene induced by patternedhydrogen adsorption Nat. Mater.2010,9:315-319.
    [29] S. Fukahori, T. Kitaoka, A. Tomoda, et al. Methanol steam reforming over paper-like compositesof Cu/ZnO catalyst and ceramic fiber Applied Catalysis A: General.2006,300:155-161.
    [30] S. Murcia-Mascaros, R. Navarro, L. Gomez-Sainero, et al. Oxidative methanol reformingreactions on CuZnAl catalysts derived from hydrotalcite-like precursors J. Catal.2001,198:338-347.
    [31] T. Shishido, Y. Yamamoto, H. Morioka, et al. Active Cu/ZnO and Cu/ZnO/Al2O3catalystsprepared by homogeneous precipitation method in steam reforming of methanol Applied CatalysisA: General.2004,263:249-253.
    [32] S. Velu, K. Suzuki, M. Okazaki, et al. Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of hydrogen for fuel cells: catalystcharacterization and performance evaluation J. Catal.2000,194:373-384.
    [33] L. Wang, Y. Liu, M. Chen, et al. Production of hydrogen by steam reforming of methanol overCu/ZnO catalysts prepared via a practical soft reactive grinding route based on dryoxalate-precursor synthesis J. Catal.2007,246:193-204.
    [34] A. D. Johnson, S. P. Daley, A. L. Utz, et al. The Chemistry of Bulk Hydrogen: Reaction ofHydrogen Embedded in Nickel with Adsorbed CH3Science.1992,257:223-225.
    [35] G. J. Kroes. Frontiers in surface scattering simulations Science.2008,321:794-797.
    [36] G. Pajonk, G. Ertl, H. Knozinger, et al. In Handbook of heterogeneous catalysis, vol.3Wiley-VCH,Weinheim.1997,1064.
    [37] G. A. Somorjai and Y. Li. Introduction to surface chemistry and catalysis.John Wiley&Sons Inc,2010.
    [38] O. M. Lovvik and R. A. Olsen. Adsorption energies and ordered structures of hydrogen on Pd(111)from density-functional periodic calculations Phys. Rev. B.1998,58:10890-10898.
    [39] N. Lopez, Z. odziana, F. Illas, et al. When Langmuir Is Too Simple: H2Dissociation on Pd(111)at High Coverage Phys. Rev. Lett.2004,93:146103.
    [40] W. Dong and J. Hafner. H2dissociative adsorption on Pd(111) Phys. Rev. B.1997,56:15396-15403.
    [41] K. E. Becker, M. H. Mignogna, and K. A. Fichthorn. Accelerated Molecular Dynamics ofTemperature-Programed Desorption Phys. Rev. Lett.2009,102:046101.
    [42] A. Tamt gl, M. Kratzer, J. Killman, et al. Adsorption/desorption of H and CO on Zn-modified Pd(111) J. Chem. Phys.2008,129:224706.
    [43] M. Gostein and G. O. Sitz. Rotational state-resolved sticking coefficients for H on Pd (111):Testing dynamical steering in dissociative adsorption J. Chem. Phys.1997,106:7378.
    [44] G. J. Kroes, A. Gross, E. J. Baerends, et al. Quantum theory of dissociative chemisorption onmetal surfaces Accounts. Chem. Res.2002,35:193-200.
    [45] M. Alducin, R. D. Muino, H. Busnengo, et al. Low sticking probability in the nonactivateddissociation of N molecules on W (110) J. Chem. Phys.2006,125:144705.
    [46] L. B. F. Juurlink, P. R. McCabe, R. R. Smith, et al. Eigenstate-Resolved Studies of Gas-SurfaceReactivity: CH4Dissociation on Ni(100) Phys. Rev. Lett.1999,83:868-871.
    [47] A. V. Walker and D. A. King. Dynamics of the Dissociative Adsorption of Methane on Pt{110}Phys. Rev. Lett.1999,82:5156-5159.
    [48] E. R. Batista, P. Ayotte, A. Bilic, et al. What Determines the Sticking Probability of WaterMolecules on Ice? Phys. Rev. Lett.2005,95:223201.
    [49] A. Gross, M. Bockstedte, and M. Scheffler. Ab Initio Molecular Dynamics Study of theDesorption of D2from Si(100) Phys. Rev. Lett.1997,79:701-704.
    [50] P. Nieto, E. Pijper, D. Barredo, et al. Reactive and nonreactive scattering of H2from a metalsurface is electronically adiabatic Science.2006,312:86-89.
    [51] H. F. Busnengo, W. Dong, and A. Salin. Trapping, Molecular Adsorption, and Precursors forNonactivated Chemisorption Phys. Rev. Lett.2004,93:236103.
    [52] H. F. Busnengo, W. Dong, P. Sautet, et al. Surface Temperature Dependence of RotationalExcitation of H2Scattered from Pd(111) Phys. Rev. Lett.2001,87:127601.
    [53] C. Diaz, E. Pijper, R. Olsen, et al. Chemically accurate simulation of a prototypical surfacereaction: H2dissociation on Cu (111) Science.2009,326:832-834.
    [54] A. Gross and A. Dianat. Hydrogen Dissociation Dynamics on Precovered Pd Surfaces: Langmuiris Still Right Phys. Rev. Lett.2007,98:206107.
    [55] H. Busnengo, C. Crespos, W. Dong, et al. Classical dynamics of dissociative adsorption for anonactivated system: The role of zero point energy J. Chem. Phys.2002,116:9005.
    [56] H. Busnengo, A. Salin, and W. Dong. Representation of the6D potential energy surface for adiatomic molecule near a solid surface J. Chem. Phys.2000,112:7641.
    [57] H. F. Busnengo, C. Crespos, W. Dong, et al. Role of orientational forces in nonactivatedmolecular dissociation on a metal surface Phys. Rev. B.2001,63:041402.
    [58] C. Crespos, H. Busnengo, W. Dong, et al. Analysis of H dissociation dynamics on the Pd (111)surface J. Chem. Phys.2001,114:10954.
    [59] M. Di Cesare, H. Busnengo, W. Dong, et al. Role of dynamic trapping in H dissociation andreflection on Pd surfaces J. Chem. Phys.2003,118:11226.
    [60] C. Diaz, H. F. Busnengo, F. Martin, et al. Angular distribution of H2molecules scattered from thePd(111) surface J. Chem. Phys.2003,118:2886-2892.
    [61] C. Diaz, F. Martin, H. F. Busnengo, et al. Theoretical analysis of the relation between H2dissociation and reflection on Pd surfaces J. Chem. Phys.2004,120:321-328.
    [62] C. Diaz, M. F. Somers, G. J. Kroes, et al. Quantum and classical dynamics of H2scattering fromPd(111) at off-normal incidence Phys. Rev. B.2005,72:035401.
    [63] N. Pineau, H. Busnengo, J. Rayez, et al. Relaxation of hot atoms following H dissociation on a Pd(111) surface J. Chem. Phys.2005,122:214705.
    [64] S. Nave and B. Jackson. Methane Dissociation on Ni(111): The Role of Lattice ReconstructionPhys. Rev. Lett.2007,98:173003.
    [65] J. Ludwig, D. G. Vlachos, A. C. T. van Duin, et al. Dynamics of the Dissociation of Hydrogen onStepped Platinum Surfaces Using the ReaxFF Reactive Force Field The Journal of PhysicalChemistry B.2006,110:4274-4282.
    [66] Y. Xiao, W. Dong, and H. F. Busnengo. Reactive force fields for surface chemical reactions: Acase study with hydrogen dissociation on Pd surfaces J. Chem. Phys.2010,132:014704.
    [67] M. Born, K. Huang, and M. Lax. Dynamical theory of crystal lattices Am. J. Phys.1955,23:474.
    [68] D. R. Hartree, in The wave mechanics of an atom with a non-Coulomb central field. Part I. Theoryand methods,1928(Cambridge Univ Press), p.89-110.
    [69] V. Fock. N herungsmethode zur L sung des quantenmechanischen Mehrk rperproblemsZeitschrift für Physik A Hadrons and Nuclei.1930,61:126-148.
    [70] P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas Physical Review.1964,136:B864-B871.
    [71] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation EffectsPhysical Review.1965,140: A1133-A1138.
    [72] D. C. Langreth and J. P. Perdew. Theory of nonuniform electronic systems. I. Analysis of thegradient approximation and a generalization that works Phys. Rev. B.1980,21:5469-5493.
    [73] A. D. Becke. Density-functional exchange-energy approximation with correct asymptoticbehavior Phys. Rev. A.1988,38:3098.
    [74] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made SimplePhys. Rev. Lett.1996,77:3865-3868.
    [75] J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron-gascorrelation energy Phys. Rev. B.1992,45:13244.
    [76] C. Lee, W. Yang, and R. G. Parr. Development of the Colle-Salvetti correlation-energy formulainto a functional of the electron density Phys. Rev. B.1988,37:785-789.
    [77] D. R. Hamann, M. Schlüter, and C. Chiang. Norm-Conserving Pseudopotentials Phys. Rev. Lett.1979,43:1494-1497.
    [78] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism Phys.Rev. B.1990,41:7892-7895.
    [79] P. E. PE Bl chl. Projector augmented-wave method Phys. Rev. B.1994,50:17953-17979.
    [80] A. Rubio, J. L. Corkill, and M. L. Cohen. Theory of graphitic boron nitride nanotubes Phys. Rev.B.1994,49:5081-5084.
    [81] N. G. Chopra, R. J. Luyken, K. Cherrey, et al. Boron Nitride Nanotubes Science.1995,269:966-967.
    [82] M. C té, M. L. Cohen, and D. J. Chadi. Theoretical study of the structural and electronicproperties of GaSe nanotubes Phys. Rev. B.1998,58: R4277-R4280.
    [83] U. K. Gautam, S. R. C. Vivekchand, A. Govindaraj, et al. Generation of Onions and Nanotubes ofGaS and GaSe through Laser and Thermally Induced Exfoliation J. Am. Chem. Soc.2005,127:3658-3659.
    [84] V. I. Anisimov, J. Zaanen, and O. K. Andersen. Band theory and Mott insulators: Hubbard Uinstead of Stoner I Phys. Rev. B.1991,44:943-954.
    [85] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen. Density-functional theory and stronginteractions: Orbital ordering in Mott-Hubbard insulators Phys. Rev. B.1995,52: R5467-R5470.
    [86] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, et al. Electron-energy-loss spectra and the structuralstability of nickel oxide: An LSDA+U study Phys. Rev. B.1998,57:1505-1509.
    [87] G. Kresse and J. Furthmuller. Software VASP, Vienna (1999) Phys. Rev. B.1996,54:169.
    [88] M. Segall, P. J. D. Lindan, M. Probert, et al. First-principles simulation: ideas, illustrations and theCASTEP code Journal of Physics: Condensed Matter.2002,14:2717.
    [89] M. A. Korotin, V. I. Anisimov, D. I. Khomskii, et al. CrO2: A Self-Doped Double ExchangeFerromagnet Phys. Rev. Lett.1998,80:4305.
    [90] H. Sato, T. Enoki, M. Isobe, et al. Transport properties and magnetism of a helicallyHund-coupled conductor: β-MnO2Phys. Rev. B.2000,61:3563.
    [91] A. Yoshimori. A New Type of Antiferromagnetic Structure in the Rutile Type Crystal J. Phys. Soc.Jpn.1959,14:807.
    [92] W. P. Osmond. Superexchange interactions and spin ordering in MnO2PROC.PHYS.SOC.1966,87:335.
    [93] F. Luo, W. Song, and C. H. Yan. Enhanced room temperature magnetoresistance effect in oxygendefective β-MnO2microcrystal Chem. Phys. Lett.2006,431:337.
    [94] N. Ohama and Y. Hamaguchi. Determination of the Exchange Integrals in β-MnO2J. Phys. Soc.Jpn.1971,30:1311.
    [95] M. Regulski, R. Przenios o, I. Sosnowska, et al. Incommensurate magnetic structure of β-MnO2Phys. Rev. B.2003,68:172401.
    [96] S. Chambers. Growth of β-MnO2films on TiO2(110) by oxygen plasma assisted molecular beamepitaxy Surf. Sci.1999,420:123.
    [97] G. Miao, G. Xiao, and A. Gupta. Variations in the magnetic anisotropy properties of epitaxial CrO2films as a function of thickness Phys. Rev. B.2005,71:094418.
    [98] B. Z. Rameev, A. Gupta, G. X. Miao, et al. FMR study of strain-induced magnetic anisotropies inCrO2thin films Phys. Status Solidi A.2004,201:3350.
    [99] L. Spinu, H. Srikanth, A. Gupta, et al. Probing magnetic anisotropy effects in epitaxial CrO2thinfilms Phys. Rev. B.2000,62:8931.
    [100] J. Rondinelli, A. Eidelson, and N. Spaldin. Non-d0Mn-driven ferroelectricity in antiferromagneticBaMnO3Phys. Rev. B.2009,79:205119.
    [101] C. Franchini, R. Podloucky, J. Paier, et al. Ground-state properties of multivalent manganeseoxides: Density functional and hybrid density functional calculations Phys. Rev. B.2007,75:195128.
    [102] S. Satpathy, Z. S. Popovic, and F. R. Vukajlovic. Electronic Structure of the Perovskite Oxides:La1-xCaxMnO3Phys. Rev. Lett.1996,76:960-963.
    [103] V. Anisimov, J. Zaanen, and O. K. Andersen. Band theory and Mott insulators: Hubbard U insteadof Stoner I Phys. Rev.B.1991,44:943.
    [104] H. Sims, S. J. Oset, W. H. Butler, et al. Determining the anisotropic exchange coupling of CrO2via first-principles density functional theory calculations Phys. Rev. B.2010,81:224436.
    [105] A. J. R. da Silva, A. Fazzio, R. R. dos Santos, et al. Disorder and the effective Mn-Mn exchangeinteraction in Ga1-xMnxAs diluted magnetic semiconductors Phys. Rev. B.2005,72:125208.
    [106] X. F. Jiang and G. Y. Guo. Electronic structure and exchange interactions in BaVS3Phys. Rev. B.2004,70:035110.
    [107] S. Lv, H. Li, X. Liu, et al. A New Half-Metallic Ferromagnet La2NiFeO6: Predicted fromFirst-Principles Calculations The Journal of Physical Chemistry C.2010,114:16710-16715.
    [108] T. G. Perring, G. Aeppli, S. M. Hayden, et al. Spin Waves throughout the Brillouin Zone of aDouble-Exchange Ferromagnet Phys. Rev. Lett.1996,77:711-714.
    [109] L. Néel. Propriétés magnétiques des ferrites; ferrimagnétisme et antiferromagnétisme Ann. phys.1948,3:137-198.
    [110] T. Tsuji. The Temperature Dependence of Forced Magnetostriction J. Phys. Soc. Jpn.1958,13:1310-1316.
    [111] E. Brand, D. Kellett, M. D. Enever, et al. Magnetic properties of thin CrO2layers supported onpolycrystalline TiO2J. Mater. Chem.2005,15:1141-1147.
    [112] K. Schwarz. CrO2predicted as a half-metallic ferromagnet Journal of Physics F: Metal Physics.1986,16: L211.
    [113] R. J. Soulen, J. M. Byers, M. S. Osofsky, et al. Measuring the spin polarization of a metal with asuperconducting point contact Science.1998,282:85-88.
    [114] T. Tsujioka, T. Mizokawa, J. Okamoto, et al. Hubbard splitting and electron correlation in theferromagnetic metal CrO2Phys. Rev. B.1997,56: R15509.
    [115] J. Y. Son and J. H. Cho. Characterization of half-metallic CrO2-coated cantilevers Nanotechnology.2007,18:165503.
    [116] H. T. Jeng and G. Y. Guo. First-principles investigations of the orbital magnetic moments in CrO2J. Appl. Phys.2002,92:951-957.
    [117] H. van Leuken and R. A. de Groot. Electronic structure of the chromium dioxide (001) surfacePhys. Rev. B.1995,51:7176.
    [118] C. A. Ventrice, D. R. Borst, H. Geisler, et al. Are the surfaces of CrO2metallic? J. Phys-condens.Mater.2007,19:315207.
    [119] J. Y. Son, S. H. Bang, J. W. Park, et al. Half-metallic CrO2thin films on Pt/TiO2/SiO2/Si substratesby chemical vapor deposition J. Appl. Phys.2004,95:6462-6465.
    [120] F. Hong and J. G. Che. Could the relaxed and the O-deficient CrO2(100) surface retainhalf-metallicity? Appl. Phys. Lett.2006,88:121903-121903.
    [121] M. Julliere. Tunneling between ferromagnetic films Phys. Lett. A.1975,54:225-226.
    [122] P. G. Ivanov and K. M. Bussmann. Temperature stability of the half-metallic CrO2(110) and (001)surfaces in ultrahigh vacuum J. Appl. Phys.2009,105:07B107
    [123] F. Hong and J. G. Che. Low Photoemission Intensity near EFInduced by the Surface RelaxedStructure of CrO2(001) Phys. Rev. Lett.2006,96:167206.
    [124] F. A. Cotton. Chemical applications of group theory.Wiley-Interscience,1990.
    [125] J. M. D. Coey and M. Venkatesan. Half-metallic ferromagnetism: Example of CrO2(invited) J.Appl. Phys.2002,91:8345-8350.
    [126] J. B. Goodenough. Direct Cation--Cation Interactions in Several Oxides Physical Review.1960,117:1442-1451.
    [127] D. W. Brenner, O. A. Shenderova, J. A. Harrison, et al. A second-generation reactive empiricalbond order (REBO) potential energy expression for hydrocarbons Journal of Physics: CondensedMatter.2002,14:783.
    [128] J. Tersoff. New empirical model for the structural properties of silicon Phys. Rev. Lett.1986,56:632-635.
    [129] J. Tersoff. New empirical approach for the structure and energy of covalent systems Phys. Rev. B.1988,37:6991-7000.
    [130] J. Tersoff. Modeling solid-state chemistry: Interatomic potentials for multicomponent systemsPhys. Rev. B.1989,39:5566-5568.
    [131] D. W. Brenner. Empirical potential for hydrocarbons for use in simulating the chemical vapordeposition of diamond films Phys. Rev. B.1990,42:9458-9471.
    [132] D. W. Brenner. Relationship between the embedded-atom method and Tersoff potentials Phys. Rev.Lett.1989,63:1022-1022.
    [133] S. S. M. Wong. Computational methods in physics and engineering.World Scientific Pub Co Inc,1997.
    [134] M. P. Allen and D. J. Tildesley. Computer simulation of liquids.Oxford university press,1989.
    [135] Y. Hiwatari, E. Stoll, and T. Schneider. Molecular Dynamics investigation of solid-Liquidcoexistence J. Chem. Phys.1978,68:3401.
    [136] T. Schneider and E. Stoll. Molecular-dynamics study of a three-dimensional one-componentmodel for distortive phase transitions Phys. Rev. B.1978,17:1302-1322.
    [137] K. D. Rendulic and A. Winkler. Adsorption and desorption dynamics as seen through molecularbeam techniques Surf. Sci.1994,299:261-276.
    [138] C. T. Rettner and D. J. Auerbach. Search for oscillations in the translational energy dependence ofthe dissociation of H2on Pd(100) Chem. Phys. Lett.1996,253:236-240.
    [139] A. Gross, M. Scheffler, M. J. Mehl, et al. Ab Initio Based Tight-Binding Hamiltonian for theDissociation of Molecules at Surfaces Phys. Rev. Lett.1999,82:1209-1212.
    [140] G.-J. Kroes. Six-dimensional quantum dynamics of dissociative chemisorption of H2on metalsurfaces Prog. Surf. Sci.1999,60:1-85.
    [141] D. A. McCormack, R. A. Olsen, and E. J. Baerends. Mechanisms of H dissociative adsorption onthe Pt (211) stepped surface J. Chem. Phys.2005,122:194708.
    [142] R. Olsen, D. McCormack, M. Luppi, et al. Six-dimensional quantum dynamics of H2dissociativeadsorption on the Pt (211) stepped surface J. Chem. Phys.2008,128:194715.
    [143] H. F. Busnengo, E. Pijper, M. F. Somers, et al. Six-dimensionalquantum andclassicaldynamicsstudy of H2(ν=0,J=0) scattering from Pd(111) Chem. Phys. Lett.2002,356:515-522.
    [144] G. Ehrlich and F. Hudda. Atomic View of Surface Self diffusion: Tungsten on Tungsten J. Chem.Phys.1966,44:1039.
    [145] C. Diaz, J. K. Vincent, G. P. Krishnamohan, et al. Multidimensional Effects on Dissociation of N2on Ru(0001) Phys. Rev. Lett.2006,96:096102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700