用户名: 密码: 验证码:
基于光参量振荡和受激拉曼散射的新型固体激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性光学变频技术是获得新的、满足实际应用需求的激光波长的一种可靠方法,是目前光学领域的重要研究内容。在过去的几十年时间中,研究者们对多种非线性效应进行了深入广泛的研究,例如,二阶非线性过程如倍频、和频、差频、光参量振荡等,以及三阶非线性过程如四波混频、受激拉曼散射、受激布里渊散射等。在这诸多的非线性光学效应中,光参量振荡和受激拉曼散射是两种高效的非线性光学过程,都可以获得高功率激光输出,也是目前非线性光学领域的研究热点。然而有时这众多的非线性效应也不能满足人们的需求,因此研究者们将两种甚至多种非线性效应相结合,灵活多变地产生所需波长,极大地拓宽了现有光谱。例如,将受激拉曼散射技术与倍频技术结合,能够产生黄橙波段的光,将受激拉曼散射与和频技术结合,可以得到黄绿波段的光等等。本论文将目光集中在光参量振荡和受激拉曼散射两种非线性过程以及将这两种技术相结合的新手段上。
     本论文对信号光振荡和闲频光振荡的两种内腔式单谐振KTiOAsO4(KTA)光参量振荡器(Optical Parametric Oscillator,OPO)进行实验研究,并通过速率方程模型的理论模拟和分析,对实验结果进行了合理解释;测试了新型BaTeMo2O9(BTM)拉曼晶体的自发拉曼谱和相对拉曼散射截面,并获得了输出波长分别为1179nm和1531nm的内腔式BTM拉曼激光器的稳定运转;采用拉曼泵浦OPO的方式,将拉曼技术和OPO技术成功结合,得到了一种新型非线性频率变换激光器件;为了提高非线性光学过程的转换效率,以侧面泵浦Nd:YAG激光器为例,研究了热透镜效应对基频光输出特性的影响。本文研究的具体内容为:
     1.实现了信号光(1535nm)振荡的内腔式单谐振KTA光参量振荡器。用激光二极管端面泵浦方式,键合YVO4/Nd:YVO4作为激光晶体,KTA作为非线性晶体,声光调Q方式,在泵浦功率为25.9W的情况下,获得信号光和闲频光(3467nm)的平均输出功率分别为3.77W和1.18W。发现在此信号光谐振的单谐振OPO中,信号光脉冲宽度大于闲频光脉冲宽度。在最大输出功率处两者的脉冲宽度分别为3.8ns和2.9ns。光束质量因子(M2)在两个垂直方向上分别为2.1±0.1和2.0+0.1以及9.5+0.5和8.8+0.5。2.推导并建立了新的速率方程模型,使之能够同时处理内腔式单谐振OPO中信号光和闲频光的输出特性。并将该模型应用到上述信号光振荡的Nd:YVO4/KTA内腔式单谐振光参量振荡器中,同时描述了其信号光及闲频光的输出特性。理论处理结果和实验结果吻合较好,也显示出,信号光谐振的单谐振OPO中信号光脉冲宽度要大于闲频光脉冲宽度。3.为了改善闲频光的光束质量,同时也为了更加深入的研究单谐振OPO中两个参量光的时间特性,设计了一个闲频光振荡的单谐振OPO系统。采用激光二极管端面泵浦方式,声光调Q, Nd:YAG晶体为激光介质,KTA为OPO晶体,通过设计腔镜镀膜,使闲频光发生振荡并输出,信号光不振荡直接输出。在泵浦功率为15.4W的情况下,获得了720mW的信号光和107mW的闲频光。闲频光的光束质量因子为1.1±0.1和1.2±0.1,可见闲频光的光束质量得到了极大改善。该实验也显示出在此闲频光谐振的单谐振OPO中闲频光脉冲宽度要大于信号光脉冲宽度。最大功率处,信号光和闲频光的脉冲宽度分别为3.1ns和7.2ns。结合两个实验,对于单谐振OPO的时间特性,我们可以总结为哪个光发生振荡,哪个光的脉冲宽度就偏大。
     4.测试了新型拉曼晶体BaTeMo2O9(BTM)沿X、Y,、Z三个方向的自发拉曼散射谱。发现当入射光沿BTM的X和Y方向传播时,拉曼峰值在915cm-1处,沿Z方向传播时,拉曼峰值在921cm-1处。以YVO4为参考晶体,测量了Z方向切割的BTM晶体的相对拉曼散射增益截面。
     5.实现了激光二极管端面泵浦的BTM晶体1179nm内腔式拉曼激光器运转。采用Nd:YAG作为激光晶体,声光调Q方式,X方向切割的BTM晶体为拉曼增益介质,在泵浦功率为8.6W,脉冲重复频率为10kHz的情况下,获得了输出功率为625mW的1179nm一阶斯托克斯光输出。脉冲宽度为9.9ns,峰值功率为6.3kW。
     6.基于BTM晶体,实现了人眼安全拉曼激光器运转。采用激光二极管端面泵浦方式,Nd:YVO4作为激光晶体,声光调Q,Z方向切割的BTM晶体为拉曼增益介质,在泵浦功率为10.8W,脉冲重复频率为25kHz的情况下,获得了0.83W的1531nm拉曼激光输出。相应的脉冲宽度为11ns,峰值功率为3.0kW。
     7.提出了利用拉曼激光器作为泵浦源来泵浦光参量振荡器的新构想,并且采用Nd:YAG/BaWO4/KTP的架构,成功实现了拉曼泵浦OPO系统的稳定运转。Nd:YAG产生的1064nm激光通过BaWO4拉曼晶体被频移到1180nm。1180nm斯托克斯光又作为KTP-OPO的泵浦源,通过参量转换,输出波长为1810nm的信号光。最终在泵浦功率为7.2W,重复频率为15kHz的条件下,获得的信号光平均功率为490mW,对应的半导体激光到信号光的转换效率为6.8%。
     8.对上述实验进行了理论模拟和分析。推导并建立了新的速率方程模型,使之能够描述内腔式拉曼泵浦OPO系统的所有参量,包括基频光、拉曼光和信号光的输出特性。实验结果与理论结果吻合较好,同时讨论了激光晶体、拉曼晶体和OPO晶体的热透镜效应。
     9.研究了晶体热效应对基频光运转特性的影响。以侧面泵浦Nd:YAG棒为例,测试了该激光器输出1123nm激光时,径向和切向这两个不同方向的等效热透镜焦距随泵浦功率的变化情况。并且与该激光器输出1064nm激光时的情况作了比较。讨论了具有双焦点特性的等效热透镜对激光输出功率、稳定性及光束质量的影响。
     本论文主要创新点如下:
     1.首次将端面泵浦KTA光参量振荡器的3.5μm中红外闲频光输出功率提升到瓦级。通过选用合适的介质以及合理的腔型设计,在泵浦功率为25.9W,脉冲重复率为50kHz的情况下,获得了平均功率高达1.18W的中红外闲频光。
     2.首次将闲频光的运转特性加入到单谐振OPO的速率方程组中,建立了新的速率方程模型,使之能够同时描述内腔式单谐振OPO的信号光和闲频光的运转特性。
     3.首次实现了3.5μm闲频光振荡的单谐振KTA-OPO,且输出闲频光的光束质量得到极大改善。并采用此实验验证了单谐振OPO中信号光的脉冲宽度与闲频光的脉冲宽度并不相等的结论,而是哪个光发生振荡,哪个光的脉冲宽度就较大。
     4.首次提出了利用拉曼激光器作为泵浦源来泵浦光参量振荡器的新构想,并且采用Nd:YAG/BaWO4/KTP的架构,成功实现了拉曼泵浦OPO系统的稳定运转。Nd:YAG产生的1064nm激光通过BaWO4晶体被频移到1180nm。1180nm一阶斯托克斯光又作为KTP-OPO的泵浦源,通过参量转换,最终得到波长为1810nm的信号光输出。
     5.首次采用BTM晶体实现了人眼安全波段拉曼光的输出。采用激光二极管端面泵浦方式,声光调Q,Nd:YV04作为激光晶体,基于Z方向BTM晶体的921cm-1频移,得到了从1342nm基频光到1531nm一阶斯托克斯光的转换。。
     6.首次测量了侧面泵浦Nd:YAG晶体在1123nm激光处运行时径向和切向两个等效热透镜焦距。
Nonlinear frequency conversion technology has established itself as a reliable and efficient way to obtain diverse and versatile laser sources with novel and valuable wavelengths. It has been one important aspect and one of the focus topics in optics. In the past several decades, all kinds of nonlinear optical effects have been researched deeply and widely. For example, the second order nonlinear optical effects such as second harmonic generation, sum frequency generation, differential frequency generation, and optical parametric oscillation, etc, and the third order nonlinear optical effects such as four wave mixing, stimulated Raman scattering, and stimulated Brillouin scattering, etc. In all kinds of nonlinear optical effects, we focus on optical parametric oscillation and stimulated Raman scattering. Both of them all efficient nonlinear optical processes and from them high output power can be generated. Sometimes, all these nonlinear conversion methods can't satisfy people's need. Hence the researchers combined two or even three of them together.
     In this dissertation, we studied both the signal-resonant and idler resonate intracavity KTiOAsO4(KTA) optical parametric oscillator (OPO), and through theoretical simulations and analyses based on rate-equation model, we made reasonable explanations to the experimental results. Based on novel Raman crystal BaTeMo2O9(BTM), we studied its spontaneous Raman spectra and studied its relative Rman scattering cross section. And we also realize the1179nm and1531nm intracavity Raman laser. We realized a novel frequency conversion system that using Raman laser to pump OPO. In order to improve the conversion efficiencies of the nonlinear optical processes, the properties of the fundamental laser was investigated by taking an side-pumped Nd:YAG laser as an example. The main contents of this dissertation are as follows:
     1. A diode-end pumped actively Q-switched YVO4/Nd:YVO4KTA OPO has been studied experimentally. The signal wave was resonate while the idler wave not. With an incident diode power of25.9W, up to1.18W output of3.47μn idler wave was obtained. The signal power was obtained to be3.77W at1535.0nm simultaneously. We found the signal pulse width was wider than that of the idler. At the highest output power, the result was3.8ns and2.9ns for the signal and idler, respectively. The beam quality factors were2.1±0.1and2.0±0.1for the signal, while9.5±0.5and8.8±0.5for the idler.
     2. Novel theoretical model based on rate equations was set up in order to simultaneously deal with the output characteristics of both the signal and idler waves in intracavity singly resonated OPO. This model has been used to analyze the performance of the above KTA-OPO. The average output power and the pulse width were simulated for both signal and idler waves. The results agreed with the experiment ones. Both the theory and experiment have shown a phenomenon:In a signal-resonate singly resonant OPO, the idler pulse width is shorter than the signal pulse width under a same incident diode power.
     3. We have realized what are to our knowledge the first experimental results of idler-resonant KTA-OPO. With a diode pump power of15.4W, the idler output power was obtained to be105mW at3467nm and the signal output power was obtained to be720mW at1535nm. The conversion efficiency from diode to total OPO output power was5.4%. During the experiment we found the pulse widths of the idler laser were wider than that of the signal laser. Moreover, a significant improvement of the beam quality was observed for the idler wave.
     4. The spontaneous Raman scattering spectra of new crystal BaTeMoaO9(BTM) was given in detail. And the relative Raman scattering cross section for BTM with respect to YVO4was measured.
     5. A diode end-pumped actively Q-switched Nd:YAG/BaTeMo2O9laser at1179nm has been demonstrated with a intracavity configuration for the first time. The maximum output power of625mW was achieved at a repetition rate of10kHz and a pump power of8.6W, corresponding to optical-to-optical conversion efficiency of7.3%. The pulse width was9.9ns and the peak power was6.3kW.
     6. A diode-end-pumped acousto-optically Q-switched NdiYVO4/BTM intracavity Raman laser has been demonstrated. A19mm-long Z-cut BTM crystal successfully shifted the1342-nm fundamental laser to1531-nm first-Stokes laser. With a pump power of10.8W, a first-Stokes power of0.83W was obtained at a pulse repetition rate of25kHz. The pulse width was11ns and the peak power was3.0kW.
     7. We realized an intracavity KTP-OPO pumped by an acousto-optically Q-switched Nd:YAG/BaWO4Raman laser. The device has realized three steps of conversion:from a laser diode wavelength of808nm to the fundamental wavelength of1064nm; next, to the Stokes wavelength of1180nm; and finally to the OPO signal wavelength of1810nm. With a pump power of7.2W and a pulse repetition rate of15kHz, we obtained690mW of1810nm laser. The corresponding optical-to-optical (diode-to-signal laser) conversion efficiency was6.8%.
     8. Theoretical model based on rate equations was set up to analyze the performance of the Raman pumping OPO system. The results agreed with the experiment ones.
     9. Laser properties of diode-side-pumped Nd:YAG laser operating at1123nm were demonstrated. Both radial and tangential thermal focal lengths of this side-pumped Nd:YAG rod are determined under the1123nm and1064nm lasing condition. Laser output performances in terms of stability, output power and beam quality influenced by pump power were also discussed.
     The main innovations of this dissertation are as follows:
     1. For the first time, the output power of the3.5μm laser from diode-end pumped KTA OPO was scaled up to watt level. By selecting the Diffusion bonded crystal as the laser medium and optimizing the cavity design, the output power of idler wave was up to1.18W at the condition of25.9W-pumping power and50kHz-pulse repetition rate.
     2. For the first time, the idler-resonate KTA-OPO was demonstrated. The beam quality of the3.5μm laser was improved. Moreover, this experiment verified that the pulse width of the signal and the idler were not the same. The resonant one had the wider pulse width.
     3. Novel theoretical model based on rate equations was set up for singly resonant OPOs by adding the expression of the idler photon density. Then the rate equation model can simultaneously deal with the output characteristics of both the signal and idler waves in intracavity singly resonated OPO.
     4. For the first time, we proposed and realized a novel nonlinear frequency conversion system that using a Raman laser to pump an OPO. By emplying the NdiYAG/BaWO4/KTP scheme, we realized three steps of conversion:from a laser diode wavelength of808nm to the fundamental wavelength of1064nm; next, to the Stokes wavelength of1180nm; and finally to the OPO signal wavelength of1810nm.
     5. We realized the first BTM Raman laser emitting at the eye-safe wavelength. By employing Nd:YVO4as the laser medium and the using acousto-optically Q switch, the1342nm fundamental laser successfully shifted to1531nm eye-safe laser.
     6. For the first time, we measured both the radial and tangential thermal focal lengths of the diode side-pumped Nd:YAG rod under the1123nm lasing condition.
引文
[1]W.克希耐尔著,孙文,江泽文,程国祥译,"《固体激光工程》第五版,”科学出版社,1995.
    [2]R. Zhou, E. Li, H. Li, P. Wang and J. Q. Yao, "Continuous-wave,15.2 W diode-end-pumped Nd YAG laser operating at 946 nm," Opt. Lett., vol.31, pp.1869-1871,2006.
    [3]F. Tso Yee and R. L. Byer, "Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser," Quantum Electronics, IEEE Journal of, vol.23, pp.605-612,1987.
    [4]W. P. Risk and W. Lenth, "Room-temperature, continuous-wave,946-nm Nd:YAG laser pumped by laser-diode arrays and intracavity frequency doubling to 473 nm," Opt. Lett., vol.12, pp. 993-995,1987.
    [5]V. Pruneri, R. Koch, P. G. Kazansky, W. A. Clarkson, P. S. J. Russell and D. C. Hanna, "49 mW of cw blue light generated by first-order quasi-phasematched frequency doubling of a diode-pumped 946-nm Nd:YAG laser," Opt. Lett., vol.20, pp.2375-2377,1995.
    [6]T. Y. Fan and R. L. Byer, "Continuous-wave operation of a room-temperature, diode-laser-pumped, 946-nm Nd:YAG laser," Opt. Lett., vol.12, pp.809-811,1987.
    [7]R. Zhou, E. Li, H. Li, P. Wang and J. Yao, "Continuous-wave,15.2 W diode-end-pumped Nd:YAG laser operating at 946 nm," Opt. Lett., vol.31, pp.1869-1871,2006.
    [8]M. Tsunekane, N. Taguchi and H. Inaba, "Efficient 946-nm Laser Operation of a Composite Nd:YAG Rod With Undoped Ends," Appl. Opt., vol.37, pp.5713-5719,1998.
    [9]B. Zhou, T. J. Kane, G. J. Dixon and R. L. Byer, "Efficient, frequency-stable laser-diode-pumped Nd:YAG laser," Opt. Lett, vol.10, pp.62-64,1985.
    [10]S. L. Kilmer, M. S. Lee, J. M. Grevelink, T. J. Flotte and R. R. Anderson, "The Q-switched Nd:YAG laser effectively treats tattoos. A controlled, dose-response study," Arch Dermatol, vol. 129, pp.971-978,1993.
    [11]S. L. Kilmer and R. R. Anderson, "Clinical use of the Q-switched ruby and the Q-switched Nd:YAG (1064 nm and 532 nm) lasers for treatment of tattoos," The Journal of dermatologic surgery and oncology, vol.19, pp.330-338,1993.
    [12]S. Konno, T. Kojima, S. Fujikawa and K. Yasui, "High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser," Opt. Lett., vol.25, pp.105-107,2000.
    [13]N. E. Omura, J. S. Dover, K. A. Arndt and A. N. B. Kauvar, "Treatment of reticular leg veins with a 1064 nm long-pulsed Nd: YAG laser," Journal of the American Academy of Dermatology, vol.48, pp.76-81,2003.
    [14]M. Beer, D. Jocham, A. Beer and G. Staehler, "Adjuvant Laser Treatment of Bladder Cancer: 8 Years' Experience with the Nd-YAG Laser 1064 nm," British Journal of Urology, vol.63, pp. 476-478,1989.
    [15]Z. Haiyong, Z. Ge, H. Chenghui, W. Yong, H. Lingxiong, C. Jing, C. Weidong and C. Zhenqiang. "Diode-side-pumped 131 W,1319 nm single-wavelength cw Nd:YAG laser," Appl. Opt., vol.46, pp.384-388,2007.
    [16]G. Zhang. H. Zhu. C. Huang, J. Chen, Y. Wei and L. Huang, "Diode-side-pumped Nd: YAG laser at 1338 nm." Opt. Lett., vol.34, pp.1495-1497,2009.
    [17]J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K.-i. Ueda. H. Yagi, T. Yanagitani and A. A. Kaminskii, "36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser." Opt. Lett., vol.27, pp.1120-1122,2002.
    [18]A. Minassian and M. J. Damzen, "20 W bounce geometry diode-pumped Nd:YVO4 laser system at 1342 nm," Optics Communications, vol.230, pp.191-195,2004.
    [19]A. Sennaroglu, "Efficient continuous-wave operation of a diode-pumped Nd:YVO4 laser at 1342 nm," Optics Communications, vol.164, pp.191-197,1999.
    [20]Y.-F. Chen and S. W. Tsai, "Diode-pumped-switched Nd:YVO4 yellow laser with intracavity sum-frequency mixing," Opt. Lett., vol.27, pp.397-399,2002.
    [21]L. Chen, Z. Wang, H. Liu, S. Zhuang, H. Yu, L. Guo, R. Lan, J. Wang and X. Xu, "Continuous-wave tri-wavelength operation at 1064,1319 and 1338 nm of LD end-pumped Nd:YAG ceramic laser," Opt. Express, vol.18, pp.22167-22173,2010.
    [22]D. Jaque, "Self-frequency-sum mixing in Nd doped nonlinear crystals for laser generation in the three fundamental colours:The NYAB case," Journal of Alloys and Compounds, vol.323-324, pp. 204-209,2001.
    [23]D. Jaque, J. Capmany and a. S. Garc, J., "Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm," Applied Physics Letters, vol.75, pp. 325-327,1999.
    [24]F. Q. Jia, "High power continues wave laser diode array end pumped Nd:YAG/LBO red lasers operated at 669 nm and 659 nm," Laser Physics, vol.20, pp.1559-1563,2010.
    [25]P. Li, Q. P. Wang, X. Y. Zhang, Y. R. Wang and X. H. Chen, "Compact and efficient diode-pumped actively Q-switched 1319 nm Nd:YAG ceramic laser," Laser Physics, vol.20, pp.1603-1607, 2010.
    [26]Y. L. Li, H. L. Jiang, T. Y. Ni, T. Y. Zhang, Z. H. Tao and Y. H. Zeng, "Diode-pumped continuous wave self-sum-frequency mixing yellow Nd:YAB laser at 592 nm," Laser Physics Letters, vol.8, pp.274-276,2011.
    [27]H. Liu, M. Gong, X. Wushouer and S. Gao, "Compact corner-pumped Nd:YAG/YAG composite slab 1319 nm/1338 nm laser," Laser Physics Letters, vol.7, pp.124-129,2010.
    [28]Y. F. Lu, J. Lu, L. J. Xu, G. C. Sun, Z. M. Zhao. X. Gao and J. Q. Lin, "CW light sources at the 589 nm sodium D2 line by sum-frequency mixing of diode pumped neodymium lasers," Laser Physics Letters, vol.7, pp.719-721,2010.
    [29]M. Okida, A. Tonouchi, M. Itoh, T. Yatagai and T. Omatsu, "Thermal-lens measurement in a side-pumped 1.3 μm Nd:YVO4 bounce laser," Optics Communications, vol.277, pp.125-129, 2007.
    [30]J. Sulc, H. Jelinkova, K. Nejezchleb and V. Skoda, "Nd:YAG/V:YAG microchip laser operating at 1338 nm," Laser Physics Letters, vol.2,pp.519-524,2005.
    [31]Z. Sun, R. Li, Y. Bi, X. Yang, Y. Bo, Y. Zhang, G. Wang, W. Zhao, H, Zhang. W. Hou, D. Cui and Z. Xu, "Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO," Optics Communications, vol.241. pp.167-172. 2004.
    [32]Y. Wan, K. Han, Y. Wang and J. He, "High power CW and Q-switched operation of a diode-side-pumped Nd:YAG 1319-nm laser," Chin. Opt. Lett., vol.6, pp.124-126,2008.
    [33]H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li and Z. Q. Chen, "1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser," Applied Physics B, vol.90, pp.451-454,2008.
    [34]P. A. Franken. A. E. Hill, C. W. Peters and G. Weinrich, "Generation of optical harmonics," Phys. Rev. Lett., vol.7, pp.118-119,1961.
    [35]A. J. Lee, H. M. Pask, J. A. Piper, H. J. Zhang and J. Y. Wang, "An intracavity, frequency-doubled BaW04 Raman laser generating multi-watt continuous-wave, yellow emission," Opt. Express, vol. 18, pp.5984-5992,2010.
    [36]Z. Cong, X. Zhang, Q. Wang, Z. Liu, S. Li, X. Chen, X. Zhang, S. Fan, H. Zhang and X. Tao, "Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4 KTP yellow laser," Opt. Lett., vol.34, pp.2610-2612,2009.
    [37]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, X. H. Chen, S. Z. Fan, X. L. Zhang, H. J. Zhang, X. T. Tao and S. T. Li, "Theoretical and experimental study on the NdYAG BaWO4 KTP yellow laser generating 8.3 W output power," Opt. Express, vol.18, pp.2010.
    [38]A. J. Lee, H. M. Pask, D. J. Spence and J. A. Piper, "Efficient 5.3 W cw Is in a self-Raman Nd GdVO4 laser," Opt. Lett., vol.35, pp.682-684,2010.
    [39]Y. T. Chang, H. L. Chang, K. W. Su and Y. F. Chen, "High-efficiency Q-switched dual-wavelength emission at 1176 and 559 nm with intracavity Raman and sum-frequency generation," Opt. Express, vol.17, pp.11892-11897,2009.
    [40]Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun and Z. M. Zhao, "Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping," Laser Physics Letters, vol.7, pp.787-789,2010.
    [41]姚建铨著,”《非线性光学频率变化及激光调谐技术》,”vol.科学出版社,pp.1995.
    [42]L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B, vol.12, pp.2102-2116,1995.
    [43]U. StroBner, J.-P. Meyn, R. Wallenstein, P. Urenski, A. Arie, G. Rosenman, J. Mlynek and S. Schiller, "Single-frequency continuous-wave optical parametric oscillator system with an ultrawide tuning range of 550 to 2830 nm," J. Opt. Soc. Am. B, vol.19, pp.1419-1424,2002.
    [44]K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone, I. Zwieback and W. Ruderman, "ZnGeP2 optical parametric oscillator with 3.8-12.4-μm tunability," Opt. Lett., vol.25, pp.841-843,2000.
    [45]W. Zendzian, J. K. Jabczynsk and J. Kwiatkowski, "Intracavity optical parametric oscillator at 1572-nm wavelength pumped by passively Q-switched diode-pumped Nd:YAG laser," Appl. Phys. B, vol.76, pp.355-358,2003.
    [46]Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, H. Wang, J. Chang, S. Z. Fan, W. J. Sun, G. F. Jin, X. T. Tao, S. J. Zhang and H. J. Zhang, "Efficient acousto-optically Q-switched intracavity Nd:YAG/KTiOAsO4 optical parametric oscillator," Appl. Phys. B, vol.92, pp.37-41,2008.
    [47]L. R. Marshall, A. Kaz and O. Aytur, "Multimode pumping of optical parametric oscillators," IEEE J. Quantum Elect., vol.32, pp.177-182,1996.
    [48]H. Y. Zhu, G. Zhang, H. B. Chen, C. H. Huang, Y. Wei, Y. M. Duan, Y. D. Huang. H. Y. Wang and G. Qiu, "High-efficiency intracavity Nd:YO4KTA optical parametric oscillator with 3.6 W output power at 1.53 μm," Opt. Express, vol.17, pp.20669-20674,2009.
    [49]K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone,1. Zwieback and W. Ruderman, "ZnGeP2 optical parametric oscillator with 3.8—12.4-μm tunability," Opt. Lett., vol.25, pp.841-843,2000.
    [50]J. Zondy, V. Vedenyapin, A. Yelisseyev, S. Lobanov, L. Isaenko and V. Petrov, "LiInSe2 nanosecond optical parametric oscillator," Opt. Lett., vol.30, pp.2460-2462.2005.
    [51]V. Petrov, G. Marchev, P. G. Schunemann. A. Tyazhev, K. T. Zawilski and T. M. Pollak, "Subnanosecond,1 kHz, temperature-tuned, noncritical mid-infrared optical parametric oscillator based on CdSiP2 crystal pumped at 1064 nm," Opt. Lett., vol.35, pp.1230-1232,2010.
    [52]沈元壤著,顾世杰译,”《非线性光学原理(上册)》,”vol.科学出版社,pp.1987.
    [53]M. Ebrahimzadeh, G. A. Turnbull, T. J. Edwards, D. J. M. Stothard. I. D. Lindsay and M. H. Dunn, "Intracavity continuous-wave singly resonant optical parametric oscillators," J. Opt. Soc. Am. B, vol.16, pp.1499-1511,1999.
    [54]S. T. Yang, R. C. Eckardt and R. L. Byer, "Continuous-wave singly resonant optical parametric oscillator pumped by a single-frequency resonantly doubled Nd:YAG laser," Opt. Lett., vol.18, pp. 971-973,1993.
    [55]G. Mak, Q. Fu and H. M. van Driel, "Externally pumped high repetition rate femtosecond infrared optical parametric oscillator," Appl. Phys. Lett., vol.60, pp.542-534,1992.
    [56]Y. F. Peng, X. B. Wei, D. M. Li and W. M. Wang, "High-power mid-infrared tunable optical parametric oscillator based on 3-mm-thick PPMgCLN," Laser Phys., vol.22, pp.87-90,2011.
    [57]Y. F. Peng, W. M. Wang, X. B. Wei and D. M. Li, "High-efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN," Opt. Lett, vol.34, pp.2897-2899,2009.
    [58]B. Wu, J. Kong and Y. H. Shen, "High-efficiency semi-external-cavity-structured periodically poled MgLN-based optical parametric oscillator with output power exceeding 9.2 W at 3.82 μm," Opt. Lett., vol.35, pp.1118-1120,2010.
    [59]R. F. Wu, P. B. Phua, K. S. Lai, Y. L. Lim, E. Lau, A. Chng, C. Bonnin and D. Lupinski, "Compact 21-W 2-μm intracavity optical parametric oscillator," Opt. Lett., vol.25, pp.1460-1462,2000.
    [60]H. Y. Zhu, G. Zhang, H. B. Chen, C. H. Huang, Y. Wei, Y. M. Duan, Y. D. Huang, H. Y. Wang and G. Qiu, "High-efficiency intracavity Nd:YVO4\KTA optical parametric oscillator with 3.6 W output power at 1.53 μm," Opt. Express, vol.17, pp.20669-20674,2009.
    [61]Y. P. Huang, H. L. Chang, Y. J. Huang, Y. T. Chang, K. W. Su, W. C. Yen and Y. F. Chen, "Subnanosecond mJ eye-safe laser with an intracavity optical parametric oscillator in a shared resonator," Opt. Express, vol.17, pp.1551-1556,2009.
    [62]Z. J. Liu, Q. P. Wang, X. Y. Zhang, H. Wang, J. Chang, S. Z. Fan, F. S. Ma and G. F. Jin, "Intracavity optical parametric oscillator pumped by an actively Q-switched Nd:YAG laser," Applied Physics B, vol.90, pp.439-443,2008.
    [63]Y. F. Chen and L. Y. Tsai, "Comparison between shared and coupled resonators for passively Q-switched Nd:GdVO4 intracavity optical parametric oscillators," Appl. Phys. B, vol.82, pp. 403-406,2005.
    [64]Y. F. Chen, K. W. Su, Y. T. Chang and W. C. Yen, "Compact efficient eye-safe intracavity optical parametric oscillator with a shared cavity configuration," Appl. Opt., vol.46, pp.3597-3601, 2007.
    [65]H. T. Huang, J. L. He, H. W. Yang, S. D. Liu, F. Q. Liu, X. Q. Yang, J. L. Xu, J. F. Yang and B. T. Zhang, "An investigation on the improved performance of shared cavity optical parametric oscillators," Opt. Commun., vol.284, pp.616-618,2011.
    [66]Y. F. Chen, S. W. Chen, L. Y. Tsai, Y. C. Chen and C. H. Chien. "Efficient sub-nanosecond intracavity optical parametric oscillator pumped with a passively Q-switched Nd:GdVO4 laser," Appl Phys. B, vol.79, pp.823-825.2004.
    [67]J. A. Armstrong, N. Bloembergen, J. Ducuing and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev., vol.127. pp.1918-1939,1962.
    [68]N. M. Kroll, "Parametric amplification in spatially extended media and amplification to the design of tuneable oscillators at optical frequencies," Phys. Rev., vol.127, pp.1207-1211,1962.
    [69]C. C. Wang and G. W. Racette, "Measurement of parametric gain accompanying optical difference frequency generation," 4ppl. Phys. Lett., vol.6, pp.169-171,1965.
    [70]J. A. Giordmaine and R. C. Miller, "Tunable coherent parametric oscillation in LiNbO3 at optical frequencies," Phys. Rev. Lett., vol.14, pp.973-976,1965.
    [71]R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh and L. G. Van Uitert, "CONTINUOUS OPTICAL PARAMETRIC OSCILLATION IN Ba2NaNb5O15," Applied Physics Letters, vol.12, pp.308-310,1968.
    [72]F. C. Zumsteg, J. D. Bierlein and T. E. Gier, "KxRbl-xTiOPO4:A new nonlinear optical material," Journal of Applied Physics, vol.47, pp.4980-4985,1976.
    [73]J. D. Bierlein and H. Vanherzeele, "Potassium titanyl phosphate:properties and new applications," J. Opt. Soc. Am. B, vol.6, pp.622-633,1989.
    [74]U. Osterberg and W. Margulis, "Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber," Opt. Lett., vol.11, pp.516-518,1986.
    [75]J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, J. Wang, Y. Liu and M. Jiang, "Diode-laser-array end-pumped intracavity frequency-doubled 3.6 W CW Nd:GdVO4/KTP green laser," Optics Communications, vol.173, pp.311-314,2000.
    [76]J. Baumert, x, C, F. M. Schellenberg, W. Lenth, W. P. Risk and G. C. Bjorklund, "Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4," Applied Physics Letters, vol.51, pp.2192-2194,1987.
    [77]Y. F. Lu, X. D. Yin, J. Xia, H. Quan and D. Wang, "Diode-laser-pumped continuous-wave doubly linear resonator sum-frequency mixing orange laser at 600 nm," Laser Physics Letters, vol.7, pp. 21-24,2010.
    [78]L. R. Marshall and A. Kaz, "Eye-safe output from noncritically phase-matched parametric oscillators," J. Opt. Soc. Am. B, vol.10, pp.1730-1736,1993.
    [79]P. B. Phua, K. S. Lai, R. F. Wu and T. C. Chong, "Coupled tandem optical parametric oscillator (OPO):an OPO within an OPO," Opt. Lett., vol.23, pp.1262-1264,1998.
    [80]P. B. Phua, B. S. Tan, R. F. Wu, K. S. Lai, L. Chia and E. Lau, "High-average-power mid-infrared ZnGeP2 optical parametric oscillator with a wavelength-dependent polarization rotator," Opt. Lett., vol.31, pp.489-451,2006.
    [81]J. D. Bierlein, H. Vanherzeele and A. A. Ballman, "Linear and nonlinear optical properties of flux grown KTiOAsO4," Applied Physics Letters, vol.54, pp.783-785,1989.
    [82]M. S. Webb, P. F. Moulton, J. J. Kasinski, R. L. Burnham, G. Loiacono and R. Stolzenberger, "High-average-power KTiOAsO4 optical parametric oscillator," Opt. Lett., vol.23, pp.1161-1163, 1998.
    [83]L. K. Cheng, L. T. Cheng, J. D. Bierlein, F. C. Zumsteg and A. A. Ballman, "Properties of doped and undoped crystals of single domain KTiOAsO4" Applied Physics Letters, vol.62, pp.346-348, 1993.
    [84]G. M. Loiacono, D. N. Loiacono, J. J. Zola, R. A. Stolzenberger, T. McGee and R. G. Norwood, "Optical properties and ionic conductivity of KTiOAsO4 crystals," Appl. Phys. Lett., vol.61, pp. 895-897,1992.
    [85]P. E. Perkins and T. S. Fahlen, "20-W average-power KTP intracavity-doubled Nd:YAG laser," J. Opt. Soc. Am. B, vol.4, pp.1066-1071,1987.
    [86]R. P. Jones, "Parametric oscillation in KTP and KTA at 1064nm," Proc. SPIE, vol.2379, pp. 357-364,1995.
    [87]S. French, A. Miller and M. Ebrahimzadeh, "Picosecond near- to mid-infrared optical parametric oscillator using KTiOAsO4 " Opt. Quantum Electron., vol.29, pp.999-1021,1997.
    [88]B. Ruffing, A. Nebel and R. Wallenstein, "All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator," Appl. Phys. B, vol.67, pp.537-544,1998.
    [89]R. F. Wu, K. S. Lai, H. Wong, W.-J. Xie, Y. Lim and E. Lau, "Multiwatt mid-IR output from a Nd:YALO laser pumped intracavity KTA OPO," Opt. Express, vol.8, pp.694-698,2001.
    [90]J. G. Miao, J. Y. Peng, B. S. Wang and H. M. Tan, "Compact KTA-based intracavity optical parametric oscillator driven by a passively Q-switched Nd:GdVO4 laser," Appl. Opt., vol.47, pp. 4287-4291,2008.
    [91]X. L. Dong, B. T. Zhang, J. L. He, H. T. Huang, K. J. Yang, J. L. Xu, C. H. Zuo, S. Zhao, G. Qiu and Z. K. Liu, "High-power 1.5 and 3.4 μm intracavity KTA OPO driven by a diode-pumped Q-switched Nd:YAG laser," Opt. Commun., vol.282, pp.1668-1670,2009.
    [92]K. Zhong, J. S. Li, H. X. Cui, Y. Y. W. D. G. Xu, R. Zhou, J. L. Wang, P. Wang and J. Q. Yao, "Low Threshold and High Conversion Efficiency Nanosecond Mid-Infrared KTA OPO," Chin. Phys. Lett., vol.26, pp.124213,2009.
    [93]K. Zhong, J. Q. Yao, D. G. Xu, J. L. Wang, J. S. Li and P. Wang, "High-pulse-energy high-efficiency mid-infrared generation based on KTA optical parametric oscillator," Appl. Phys. B, vol.100, pp.749-753,2010.
    [94]J. G. Miao, Y. Z. Pan and G. J. Guo, "Diode-pumped passively Q-Switched intracavity OPO with a folded cavity configuration," Laser Phys., vol.21, pp.1184-1188,2011.
    [95]Q. B. Sun, H. J. Liu, N. Huang, C. Ruan, S. L. Zhu and W. Zhao, "High energy and high efficiency 3.4 um extracavity KTA optical parametric oscillator," Laser Phys. Lett., vol.8, pp.16-20,2011.
    [96]W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, F. Bai, X. B. Wan, G. F. Jin, X. T. Tao and Y. X. Sun, "High efficiency KTiOAsO4 optical parametric oscillator within a diode-side-pumped two-rod Nd:YAG laser," Appl. Phys. B, vol.104, pp.87-91,2011.
    [97]F. Bai, Q. P. Wang, Z. J. Liu, X. Y. Zhang, X. B. Wan, W. X. Lan, G. F. Jin, X. T. Tao and Y. X. Sun, "Theoretical and experimental studies on output characteristics of an intracavity KTA OPO," Opt. Express, vol.20, pp.807-815,2012.
    [98]W. X. Lan, Q. P. Wang, Z. J. Liu, X. Y. Zhang, X. B. Wan, F. Bai, H. B. Shen, G. P. Lv, G. F. Jin and X. T. Tao, "Intracavity KTiOAsO4 optical parametric oscillator pumped by an actively Q-switched Nd:YAG laser," Laser Phys., vol.22, pp.656-660,2012.
    [99]A. Gaydardzhiev, D. Chuchumishev,1. Buchvarov, D. Shumov and S. Samuelson, "High Energy, Sub-nanosecond.0.5-kHz, Mid-IR OPO based on PPSLT Pumped at 1064 nm," CLEO/Europe and EQEC 2011 Conference Digest, vol., pp.2011.
    [100]M. Ebrahimzadeh, P. J. Phillips and S. Das. "Low-threshold mid-infrared optical parametric oscillation in periodically poled LiNbO3 synchronously pumped by a Ti:sapphire laser," Applied Physics B: Lasers and Optics, vol.72, pp.793-801,2001.
    [101]J. Liu, Q. Liu, X. Yan, H. Chen and M. Gong, "High repetition frequency PPMgOLN mid-infrared optical parametric oscillator," Laser Phys. Lett., vol.7, pp.630-633.2010.
    [102]L. Neagu, C. Ungureanu, R. Dabu, A. Stratan, C. Fenic and L. Rusen, "Compact eye-safe laser sources based on OPOs with KTP or PPKTP crystals," Optics & Laser Technology, vol.39, pp. 973-979,2007.
    [103]M. Tiihonen, V. Pasiskevicius and F. Laurell, "Spectral and spatial limiting in an idler-resonant PPKTP optical parametric oscillator," Optics Communications, vol.250, pp.207-211,2005.
    [104]M. Tiihonen. V. Pasiskevicius, A. Fragemann, C. Canalias and F. Laurell, "Ultrabroad gain in an optical parametric generator with periodically poled KTiOPO4," Applied Physics B, vol.85, pp. 73-77,2006.
    [105]T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa and K. Kitamura, "Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3," Opt. Lett., vol.25, pp.651-653,2000.
    [106]S.-Y. Tu, A. H. Kung, Z. D. Gao and S. N. Zhu, "Efficient periodically poled stoichiometric lithium tantalate optical parametric oscillator for the visible to near-infrared region," Opt. Lett., vol.30, pp.2451-2453,2005.
    [107]Y. Nan-Ei, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, J. Sakuma, Y. Otani and A. Shiratori, "Periodically poled near-stoichiometric lithium tantalate for optical parametric oscillation," Applied Physics Letters, vol.84, pp.1662-1664,2004.
    [108]P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto and E. P. Chicklis, "Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators," J. Opt. Soc. Am. B, vol.17, pp.723-728,2000.
    [109]M. Henriksson, M. Tiihonen, V. Pasiskevicius and F. Laurell, "ZnGeP2 parametric oscillator pumped by a linewidth-narrowed parametric 2 urn source," Opt. Lett., vol.31, pp.1878-1880, 2006.
    [110]A. Dergachev, D. Armstrong, A. Smith, T. Drake and M. Dubois, "3.4 um ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-um Ho:YLF MOPA system," Opt. Express, vol.15, pp.14404-14413,2007.
    [111]G. L. Zhu, Y. L. Ju, C. H. Zhang, B. Q. Yao and Y. Z. Wang, "High-power, high-quality ZGP OPO pumped by a Tm,Ho:GdVO4 laser," Laser Phys., vol.20, pp.1341-1343,2010.
    [112]S. X. Xia, C. H. Yang, G. Li, G. L. Zhu, B. Q. Yao and Z. T. Lei, "Growth of high quality non-linear optical crystal zinc germanium phosphide for Mid-infrared optical parametric oscillator," Laser Phys., vol.21, pp.1366-1370,2011.
    [113]K. L. Vodopyanov, J. P. Maffetone, I. Zwieback and W. Ruderman, "AgGaS2 optical parametric oscillator continuously tunable from 3.9 to 11.3 μm," Appl. Phys. Lett., vol.75, pp.1204-1206, 1999.
    [114]G. Marchev, A. Tyazhev, V. Vedenyapin, D. Kolker, A. Yelisseyev, S. Lobanov, L. Isaenko, J. Zondy and V. Petrov, "Nd:YAG pumped nanosecond optical parametric oscillator based on LiInSe2 with tunability extending from 4.7 to 8.7 μm," Opt. Express, vol.17, pp.13441-13446, 2009.
    [115]V. Petrov, P. G. Schunemann, K. T. Zawilski and T. M. Pollak, "Noncritical singly resonant optical parametric oscillator operation near 6.2 μm based on a CdSiP2 crystal pumped at 1064 nm," Opt. Lett, vol.34, pp.2399-2401,2009.
    [116]G.-L. Zhu, Y.-L. Ju, T.-H. Wang and Y.-Z. Wang, "A Mid-IR 14.1 W ZnGeP 2 Optical Parametric Oscillator Pumped by a Tm,Ho:GdV04 Laser," Chinese Physics Letters, vol.26, pp.034208, 2009.
    [117]M. K. Oshman and S. E. Harris, "Theory of Optical Parametric Oscillation Internal to the Laser Cavity," IEEE J. Quantum Elect., vol.4, pp.491-502,1968.
    [118]J. Falk, J. M. Yarborough and E. O. Ammann, "Internal optical parametric oscillation," IEEE J. Quantum Elect., vol. QE-7, pp.359-369,1971.
    [119]G. H. Xiao, M. Bass and M. Acharekar, "Passively Q-switched solid-state lasers with intracavity optical parametric oscillators," IEEE J. Quantum Elect., vol.34, pp.2241-2245,1998.
    [120]T. Debuisschert, J. Raffy, J.-P. Pocholle and M. Papuchon, "lntracavity optical parametric oscillator:study of the dynamics in pulsed regime," J. Opt. Soc. Am. B, vol.13, pp.1569-1587, 1996.
    [121]A. Dubois, S. Victori, T. Lepine, P. Georges and A. Brue, "High-repetition-rate eyesafe intracavity optical parametric oscillator," Appl. Phys. B, vol.67, pp.181-183,1998.
    [122]Y. F. Chen, S. W. Chen, S. W. Tsai and Y. P. Lan, "Output optimization of a high-repetition-rate diode-pumped Q-switched intracavity optical parametric oscillator at 1.57 μm," Appl. Phys. B, vol. 77, pp.505-508,2003.
    [123]A. De Rossi and V. Berger, "Counterpropagating Twin Photons by Parametric Fluorescence," Physical Review Letters, vol.88, pp.043901,2002.
    [124]X. Y. Zhang, S. Z. Zhao, Q. P. Wang, B. Ozygus and H. Weber, "Modeling of diode pumped actively Q-switched lasers," IEEE J. Quantum Elect., vol.35, pp.1912-1918,1999.
    [125]J. J. Degnan, "Theory of the Optimally Coupled Q-Switched Laser," IEEE J. Quantum Elect., vol. 25, pp.214-220,1989.
    [126]Y. F. Chen, Y. P. Lan and S. C. Wang, "Modeling of diode-end-pumped Q-switched solid-state lasers:influence of energy-transfer upconversion," J. Opt. Soc. Am. B, vol.19, pp.1558-1563, 2002.
    [127]E. J. Woodbury and W. K. Ng, "Ruby laser operation in the near IR," Proc. IRE, vol.50, pp.2367, 1962.
    [128]E. O. Ammann and J. Falk, "Stimulated Raman scattering at kHz pulse repetition rates," Applied Physics Letters, vol.27, pp.662-664,1975.
    [129]E. O. Ammann and C. D. Decker, "0.9-W Raman oscillator," Journal of Applied Physics, vol.48, pp.1973-1975,1977.
    [130]E. O. Ammann, "Simultaneous stimulated Raman scattering and optical frequency mixing in lithium iodate," Applied Physics Letters, vol.34, pp.838-840,1979.
    [131]T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko and R. C. Powell, "Comparative Spontaneous Raman Spectroscopy of Crystals for Raman Lasers," Appl. Opt., vol.38, pp.594-598,1999.
    [132]F. L. Galeener, J. C. Mikkelsen, R. H. Geils and W. J. Mosby, "The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5," Appl. Phys. Lett., vol.32, pp.34,1978.
    [133]H. M. Pask, "The design and operation of solid-state Raman lasers," Pro. Quantum Electron., vol. 27, pp.3-56.2003.
    [134]Y. F. Chen, "Efficient 1521-nm Nd:GdVO4 Raman laser," Opt. Lett., vol.29, pp.2632-2634,2004.
    [135]Y. F. Chen, "Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser." Opt. Lett., vol.29, pp.1251-1253,2004.
    [136]A. J. Lee, H. M. Pask, D. J. Spence and J. A. Piper, "Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser," Opt. Lett., vol.35, pp.682-684.2010.
    [137]T. B. Tasoltan, E. D. Maxim, I.1. Lyudmila, V. O. Vyacheslav, M. B. Kosmyna, V. K. Komar, J. Sulc and H. Jelinkova, "Lasing properties of selectively pumped Raman-active Nd 3+ -doped molybdate and tungstate crystals," Quantum Electronics, vol.36, pp.720,2006.
    [138]R. W. Boyd. "Nonlinear Optics, third edition." Academic Press, vol., pp.2008.
    [139]J. T. Murray, R. C. Powell, N. Peyghambarian, D. Smith. W. Austin and R. A. Stolzenberger, "Generation of 1.5-μm radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals," Opt. Lett., vol.20, pp.1017-1019,1995.
    [140]A. S. Eremenko, S. N. Karpukhin and A. I. Stepanov, "Stimulated Raman scattering of the second harmonic of a neodymium laser in nitrate crystals " Sov. J. Quantum Electron, vol.10, pp.113-114, 1980.
    [141]H. M. Pask and J. A. Piper, "Diode-pumped LiIO3 intracavity Raman lasers," IEEE J. Quantum Elect., vol.36, pp.949-955,2000.
    [142]E. O. Ammann, "Simultaneous stimulated Raman scattering and optical frequency mixing in lithium iodate," Appl. Phys. Lett., vol.34, pp.838-840,1979.
    [143]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, H. Z, Cong, G. H. Jia and C. Y. Tu, "Highly efficient diode-pumped actively Q-switched Nd YAG-SrWO4 intracavity Raman laser," Opt. Lett., vol.33, pp.705-707,2008.
    [144]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, X. H. Chen, S. Z. Fan, X. L. Zhang, H. J. Zhang, X. T. Tao and S. T. Li, "Theoretical and experimental study on the NdYAG BaWO4 KTP yellow laser generating 8.3 W output power," Opt. Express, vol.18, pp.12111-12118,2010.
    [145]T. T. Basiev, A. A. Sobol, Y. K. Voronko and P. G. Zverev, "Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers," Opt. Mater., vol.15, pp.205-216,2000.
    [146]H. M. Pask, "Continuous-wave, all-solid-state, intracavity Raman laser," Opt. Lett., vol.30, pp. 2454-2456,2005.
    [147]Z. J. Liu, Q. P. Wang, X. Y. Zhang, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, W. J. Sun, G. F. Jin, X. T. Tao and H. Zhang, "A KTiOAsO4 Raman laser," Appl. Phys. B, vol.94, pp.585-588,2009.
    [148]Y. T. Chang, Y. P. Huang, K. W. Su and Y. F. Chen, "Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission," Opt. Express vol.6, pp.8286-8291,2008.
    [149]Z. Gao, S. Liu, S. Zhang, W. Zhang, J. He and X. Tao, "High efficient external resonator Raman laser based on the monoclinic single crystal BaTeMo2O9," Appl. Phys. Lett., vol.100, pp.261905, 2012.
    [150]Z. L. Gao, X. T. Tao, X. Yin, W. G. Zhang and M. H. Jiang, "Elastic, dielectric, and piezoelectric properties of BaTeMo2O9 single crystal," Appl. Phys. Lett., vol.93, pp.252906,2008.
    [151]Z. L. Gao, W. X. Yin, G. Zhang, S. P. Wang, M. H. Jiang and X. T. Tao, "Electro-optic properties of BaTeMo2O9single crystal," Appl. Phys. Lett., vol.95, pp.151107,2009.
    [152]J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang and X. T. Tao, "Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9:α-BaTeMo2O9," CrystEngComm, vol. 13, pp.6985-6990,2011.
    [153]W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. Z. Zhang, W. T. Yu, X. F. Cheng, X. S. Liu and M. H. Jiang, "Bulk Growth and Characterization of a Novel Nonlinear Optical Crystal BaTeMo2O9," Cryst. Growth Des., vol.8, pp.304-307,2008.
    [154]Y. F. Chen, K. W. Su, H. J. Zhang and M. H. Jiang, "Efficient diode-pumped actively Q-swithced Nd:YAG/BaWO4 intracavity Raman laser," Opt. Lett., vol.30, pp.3335-3337,2005.
    [155]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan and H. J. Zhang, "Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 mn," Laser Physics Letters, vol.6, pp.363,2009.
    [156]X. H. Chen, P. Li, X. Y. Zhang, Q. P. Wang. Z. J. Liu, Z. H. Cong, L. Li and H. J. Zhang, "Eye-safe Raman laser at 1532 nm with BaWO4 crystal under direct 880 nm pumping," Laser Physics, vol.22, pp.60-63,2012.
    [157]A. A. Kaminskii, K.-i. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai and J. Lu, "Tetragonal vanadates YVO4 and GdVO4-new efficient x(3)-materials for Raman lasers," Opt. Commun., vol.194, pp.201-206,2001.
    [158]W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi and Y. Usuki, "Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser," Optics Communications, vol. 194, pp.401-407,2001.
    [159]Y. F. Chen, "High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration," Opt. Lett., vol.29, pp.1915-1917,2004.
    [160]Y. F. Chen, "Compact efficient all-solid-state eye-safe laserwith self-frequency Raman conversion in aNd:YVO4 crystal," Opt. Lett., vol.29, pp.2172-2174,2004.
    [161]Y. F. Chen, "Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser," Applied Physics B, vol.78, pp.685-687,2004.
    [162]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li and Z. H. Cong, "Diode-pumped actively Q-switched c-cut Nd:YVO 4 self-Raman laser," Laser Physics Letters, vol.6, pp.26,2009.
    [163]W. Koechner, Solid-state laser engineering, Springer-Verlag, Berlin,1999.
    [164]L. M. Osterink and J. D. Foster, "Thermal effects and transverse mode control in a Nd:YAG laser," Applied Physics Letters, vol.12, pp.128-131,1968.
    [165]J. D. Foster and L. M. Osterink, "Thermal Effects in a Nd:YAG Laser," Journal of Applied Physics, vol.41, pp.3656-3663,1970.
    [166]W. Koechner, "Thermal Lensing in a Nd:YAG Laser Rod," Appl. Opt., vol.9, pp.2548-2553, 1970.
    [167]Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang and S. C. Wang, "Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers," Selected Topics in Quantum Electronics, IEEE Journal of, vol.3, pp.29-34,1997.
    [168]R. Weber, B. Neuenschwander and H. P. Weber, "Thermal effects in solid-state laser materials," Optical Materials, vol.11, pp.245-254,1999.
    [169]N. Rimington, S. Schieffer, W. Schroeder and B. Brickeen, "Thermal lens shaping in Brewster gain media:A high-power, diode-pumped Nd:GdVO4 laser," Opt. Express, vol.12, pp.1426-1436, 2004.
    [170]Y. Lumer,1. Moshe, Z. Horovitz, S. Jackel, G. Machavariani and A. Meir, "Thermally induced birefringence in nonsymmetrically pumped laser rods and its implications for attainment of good beam quality in high-power, radially polarized lasers," Appl. Opt., vol.47, pp.3886-3891,2008.
    [171]S. R. Mordon, A. H. Cornil, J. M. Brunetaud, B. Gosselin and Y. Moschetto, "Nd-YAG laser thermal effect:Comparative study of coagulation in rat liver in vivo by continuous wave and high power pulsed lasers," Laser MedSci, vol.2, pp.285-294,1987.
    [172]M. S. Roth, E. W. Wyss, H. Glur and H. P. Weber, "Generation of radially polarized beams in a Nd:YAG laser with self-adaptive overcompensation of the thermal lens," Opt. Lett., vol.30, pp. 1665-1667,2005.
    [173]赵存华,樊仲维,王培峰,何铁英,"LD侧面泵浦固体激光棒新的热透镜焦距计算,”光电子·激光,vol.16.pp.3,2005.
    [174]M. E. Innocenzi. H. T. Yura, C. L. Fincher and R. A. Fields. "Thermal modeling of continuous wave end pumped solid state lasers," Applied Physics Letters, vol.56, pp.1831-1833,1990.
    [175]G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel and N. Davidson, "Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes." Appl. Opt., vol.46, pp. 3304-3310.2007.
    [176]Y. Lumer, I. Moshe, A. Meir, Y. Paiken, G. Machavariani and S. Jackel, "Effects of thermally induced aberrations on radially and azimuthally polarized beams," J. Opt. Soc. Am. B, vol.24, pp. 2279-2286,2007.
    [177]I. Moshe and S. Jackel, "Influence of birefringence-induced bifocusing on optical beams," J. Opt. Soc. Am. B, vol.22, pp.1228-1235,2005.
    [178]M. Okada and S. Ieiri, "Influences of self-induced thermal effects on phase matching in nonlinear optical crystals," Quantum Electronics, IEEE Journal of, vol.7, pp.560-563,1971.
    [179]N. P. Barnes and J. A. Williams-Byrd, "Average power effects in parametric oscillators and amplifiers," J. Opt. Soc. Am. B, vol.12, pp.124-131,1995.
    [180]M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren and L. Halonen, "Thermal effects in singly resonant continuous-wave optical parametric oscillators," Applied Physics B, vol.94, pp.411-427, 2009.
    [181]C. L. Marquardt, D. G. Cooper, P. A. Budni, M. G. Knights, K. L. Schepler, R. DeDomenico and G. C. Catella, "Thermal lensing in silver gallium selenide parametric oscillator crystals," Appl. Opt., vol.33, pp.3192-3197,1994.
    [182]A. K. Cousins, "Temperature and thermal stress scaling in finite-length end-pumped laser rods," Quantum Electronics, IEEE Journal of, vol.28, pp.1057-1069,1992.
    [1]J. D. Bierlein, H. Vanherzeele and A. A. Ballman, "Linear and nonlinear optical properties of flux-grown KTiOAsO4," Applied Physics Letters, vol.54, pp.783-785,1989.
    [2]G. M Loiacono, D. N. Loiacono, J. J. Zola, R. A. Stolzenberger, T. McGee and R. G. Norwood, "Optical properties and ionic conductivity of KTiOAsO4 crystals," Appl. Phys. Lett., vol.61, pp. 895-897,1992.
    [3]L. K. Cheng, L. T. Cheng, J. D. Bierlein, F. C. Zumsteg and A. A. Ballman, "Properties of doped and undoped crystals of single domain KTiOAsO4," Applied Physics Letters, vol.62, pp.346-348,1993.
    [4]W. R. Bosenberg, L. K. Cheng and J. D. Bierlein, "Optical parametric frequency conversion properties of KTiOAsO4," Applied Physics Letters, vol.65, pp.2765-2767,1994.
    [5]A. V. Smith, SNLO nonlinear optics code, version 4.0, available from Sandia National Laboratories, vol., pp.
    [6]Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, H. Wang, J. Chang, S. Z. Fan, W. J. Sun, G. F. Jin, X. T. Tao, S. J. Zhang and H. J. Zhang, "Efficient acousto-optically Q-switched intracavity Nd:YAG/KTiOAsO4 optical parametric oscillator," Appl. Phys. B, vol.92, pp.37-41,2008.
    [7]H. Y. Zhu, G. Zhang, H. B. Chen, C. H. Huang, Y. Wei, Y. M. Duan, Y. D. Huang, H. Y. Wang and G. Qiu, "High-efficiency intracavity Nd:YVO4\KTA optical parametric oscillator with 3.6 W output power at 1.53 μm," Opt. Express, vol.17, pp.20669-20674,2009.
    [8]M. S. Webb, P. F. Moulton, J. J. Kasinski, R. L. Burnham, G. Loiacono and R. Stolzenberger, "High-average-power KTiOAsO4 optical parametric oscillator," Opt. Lett., vol.23, pp.1161-1163, 1998.
    [9]L. R. Marshall and A. Kaz, "Eye-safe output from noncritically phase-matched parametric oscillators," J. Opt. Soc. Am. B, vol.10, pp.1730-1736,1993.
    [10]Y. F. Chen, S. W. Chen, L. Y. Tsai, Y. C. Chen and C. H. Chien, "Efficient sub-nanosecond intracavity optical parametric oscillator pumped with a passively Q-switched Nd:GdVO4 laser," Appl. Phys. B, vol.79, pp.823-825,2004.
    [11]Z. J. Liu, Q. P. Wang, X. Y. Zhang, H. Wang, J. Chang, S. Z. Fan, F. S. Ma and G. F. Jin, "Intracavity optical parametric oscillator pumped by an actively Q-switched Nd:YAG laser,' Applied Physics B, vol.90, pp.439-443,2008.
    [12]Y. P. Huang, H. L. Chang, Y. J. Huang, Y. T. Chang, K. W. Su, W. C. Yen and Y. F. Chen, "Subnanosecond mJ eye-safe laser with an intracavity optical parametric oscillator in a shared resonator," Opt. Express, vol.17, pp.1551-1556,2009.
    [13]Y. F. Chen, "Efficient 1521-nm Nd:GdVO4 Raman laser," Opt. Lett., vol.29, pp.2632-2634,2004.
    [14]A. Saliminia, S. L. Chin and R. Vallee, "Ultra-broad and coherent white light generation in silica glass by focused femtosecond pulses at 1.5 μm," Opt. Express, vol.13, pp.5731-5738,2005.
    [15]Y. Ishida and K. Naganuma, "Characteristics of femtosecond pulses near 1.5 um in a self-mode-locked Cr4+:YAG laser," Opt. Lett., vol.19, pp.2003-2005,1994.
    [16]S. French, A. Miller and M. Ebrahimzadeh, "Picosecond near- to mid-infrared optical parametric oscillator using KTiOAsO4" Opt. Quantum Electron., vol.29, pp.999-1021,1997.
    [17]B. Ruffing, A. Nebel and R. Wallenstein, "All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator," Appl. Phys. B, vol.67, pp.537-544,1998.
    [18]R. F. Wu, K. S. Lai, H. Wong, W.-J. Xie, Y. Lim and E. Lau, "Multiwatt mid-IR output from a Nd:YALO laser pumped intracavity KTA OPO," Opt. Express, vol.8, pp.694-698,2001.
    [19]J. G. Miao, J. Y. Peng, B. S. Wang and H. M. Tan, "Compact KTA-based intracavity optical parametric oscillator driven by a passively Q-switched Nd:GdVO4 laser," Appl. Opt., vol.47, pp. 4287-4291,2008.
    [20]X. L. Dong, B. T. Zhang, J. L. He, H. T. Huang, K. J. Yang, J. L. Xu, C. H. Zuo, S. Zhao, G. Qiu and Z. K. Liu, "High-power 1.5 and 3.4 μm intracavity KTA OPO driven by a diode-pumped Q-switched Nd:YAG laser," Opt. Commun., vol.282, pp.1668-1670,2009.
    [21]K. Zhong, J. S. Li, H. X. Cui, Y. Y. W. D. G. Xu, R. Zhou, J. L. Wang, P. Wang and J. Q. Yao, "Low Threshold and High Conversion Efficiency Nanosecond Mid-Infrared KTA OPO," Chin. Phys. Lett., vol.26, pp.124213,2009.
    [22]K. Zhong, J. Q. Yao, D. G. Xu, J. L. Wang, J. S. Li and P. Wang, "High-pulse-energy high-efficiency mid-infrared generation based on KTA optical parametric oscillator," Appl. Phys. B, vol.100, pp.749-753,2010.
    [23]J. G. Miao, Y. Z. Pan and G. J. Guo, "Diode-pumped passively Q-Switched intracavity OPO with a folded cavity configuration," Laser Phys., vol.21, pp.1184-1188,2011.
    [24]Q. B. Sun, H. J. Liu, N. Huang, C. Ruan, S. L. Zhu and W. Zhao, "High energy and high efficiency 3.4 μn extracavity KTA optical parametric oscillator," Laser Phys. Lett., vol.8, pp.16-20,2011.
    [25]W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, F. Bai, X. B. Wan, G. F. Jin, X. T. Tao and Y. X. Sun, "High efficiency KTiOAsO4 optical parametric oscillator within a diode-side-pumped two-rod Nd:YAG laser," Appl. Phys. B, vol.104, pp.87-91,2011.
    [26]F. Bai, Q. P. Wang. Z. J. Liu. X. Y. Zhang, X. B. Wan, W. X. Lan, G. F. Jin, X. T. Tao and Y. X. Sun, "Theoretical and experimental studies on output characteristics of an intracavity KTA OPO," Opt. Express, vol.20, pp.807-815,2012.
    [27]W. X. Lan, Q. P. Wang, Z. J. Liu, X. Y. Zhang, X. B. Wan, F. Bai, H. B. Shen, G. P. Lv, G. F. Jin and X. T. Tao, "Intracavity KTiOAsO4 optical parametric oscillator pumped by an actively Q-switched Nd:YAG laser," Laser Phys., vol.22, pp.656-660,2012.
    [28]X. B. Wan, Q. P. Wang, Z. J. Liu, X. Y. Zhang, F. Bai, W. X. Lan, H. B. Shen, G. F. Jin, S. S. Zhang, Y. X. Sun and X. T. Tao, "Theoretical and experimental studies on passively Q-switched KTiOAsO4 optical parametric oscillator," Laser Physics, vol.22, pp.1054-1059,2012.
    [29]J. Falk, J. M. Yarborough and E. O. Ammann, "Internal optical parametric oscillation," IEEE J. Quantum Elect., vol. QE-7, pp.359-369,1971.
    [30]T. Debuisschert, J. Raffy, J.-P. Pocholle and M. Papuchon, "Intracavity optical parametric oscillator:study of the dynamics in pulsed regime," J. Opt. Soc. Am. B, vol.13, pp.1569-1587, 1996.
    [31]W. B. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi and Y. Usuki, "Diode-pumped, self-stimulating, passively Q-switched Nd3-:PbWO4 Raman laser," Opt. Commun., vol.194, pp. 401-407,2001.
    [32]S. H. Ding. X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang and Z. J. Liu, "Theoretical and Experimental Study on the Self-Raman Laser With Nd:YVO4 Crystal," IEEE J. Quantum Elect., vol.42, pp.927-933,2006.
    [33]M. K. Oshman and S. E. Harris, "Theory of Optical Parametric Oscillation Internal to the Laser Cavity," IEEE J. Quantum Elect., vol.4. pp.491-502,1968.
    [34]S. Brosnan and R. Byer, "Optical parametric oscillator threshold and linewidth studies," IEEE J. Quantum Elect., vol.15, pp.415-431,1979.
    [35]M. J. T. Milton, "General expression for the efficiency of phase-matched and nonphase-matched second-order nonlinear interactions between plane waves," IEEE J. Quantum Elect., vol.28, pp. 739-749,1992.
    [36]A. Dubois, S. Victori, T. Lepine, P. Georges and A. Brue, "High-repetition-rate eyesafe intracavity optical parametric oscillator," Appl. Phys. B, vol.67, pp.181-183,1998.
    [37]G. H. Xiao, M. Bass and M. Acharekar, "Passively Q-switched solid-state lasers with intracavity optical parametric oscillators," IEEE J. Quantum Elect., vol.34, pp.2241-2245,1998.
    [38]Y. F. Chen, S. W. Chen, S. W. Tsai and Y. P. Lan, "Output optimization of a high-repetition-rate diode-pumped Q-switched intracavity optical parametric oscillator at 1.57 μm," Appl. Phys. B, vol. 77, pp.505-508,2003.
    [39]A. D. Izzo, J. T. Walsh, J. E. D. Jansen, M. Bendett, J. Webb, H. Ralph and C. P. Richter, "Optical parameter variability in laser nerve stimulation: a study of pulse duration, repetition rate, and wavelength," IEEE T. Bio-Med. Eng., vol.54, pp.1108-1114,2007.
    [40]Y. T. Chang, Y. P. Huang, K. W. Su and Y. F. Chen, "Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and 4F3/2 →4I13/2 transitions," Opt. Express, vol.16, pp.21155-21160,2008.
    [41]K. S. Lai, R. F. Wu and P. B. Phua, "Multiwatt KTiOPO4 optical parametric oscillators pumped within randomly and linearly polarized Nd:YAG laser cavities," Proc. SPIE vol.3928, pp.43-51, 2000.
    [42]W. Koechner, "Solid-state laser engineering", Springer-Verlag, Berlin,1999.
    [43]J. Q. Yao, "Nonlinear Optics Frequency Conversion and Laser Tunable Technology" Science, Beijin,1995.
    [44]T. Y. Fan and R. L. Byer, "Diode laser-pumped solid-state lasers," IEEE J. Quantum Elect., vol.24, pp.895-912,1988.
    [45]Y. F. Chen, Y. P. Lan and S. C. Wang, "Modeling of diode-end-pumped Q-switched solid-state lasers influence of energy-transfer upconversion," J. Opt. Soc. Am. B, vol.19, pp.1558-1563, 2002.
    [46]X. Y. Zhang, S. Z. Zhao, Q. P. Wang, B. Ozygus and H. Weber, "Modeling of diode pumped actively Q-switched lasers," IEEE J. Quantum Elect., vol.35, pp.1912-1918,1999.
    [47]Y. F. Chen, Y. P. Lan and S. C. Wang, "Modeling of diode-end-pumped Q-switched solid-state lasers:influence of energy-transfer upconversion," J. Opt. Soc. Am. B, vol.19, pp.1558-1563, 2002.
    [1]E. O. Ammann and J. Falk, "Stimulated Raman scattering at kHz pulse repetition rates," Applied Physics Letters, vol.27, pp.662-664,1975.
    [2]J. T. Murray, R. C. Powell, N. Peyghambarian, D. Smith, W. Austin and R. A. Stolzenberger, "Generation of 1.5-μm radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals," Opt. Lett., vol.20. pp.1017-1019,1995.
    [3]Y. F. Chen, K. W. Su, H. J. Zhang and M. H. Jiang, "Efficient diode-pumped actively^-swithced Nd:YAG/BaWO4 intracavity Raman laser," Opt. Lett., vol.30, pp.3335-3337,2005.
    [4]J. A. Piper and H. M. Pask, "Crystalline Raman Lasers," IEEE J. Sel. Top. Quant. Elec, vol.13, pp.692-704,2007.
    [5]Z. Cong, X. Zhang, Q. Wang, Z. Liu, S. Li, X. Chen, X. Zhang, S. Fan, H. Zhang and X. Tao, "Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4 KTP yellow laser," Opt. Lett., vol.34, pp.2610-2612,2009.
    [6]A. J. Lee, H. M. Pask, J. A. Piper, H. J. Zhang and J. Y. Wang, "An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission," Opt. Express, vol. 18, pp.5984-5992,2010.
    [7]X. B. Wan, Q. P. Wang, Z. J. Liu. X. Y. Zhang, Z. H. Cong, S. Z. Fan and G. F. Jin, "Comparison of c-Nd:YVO4/YVO4 raman lasers and c-Nd:YVO4 self-Raman lasers," Laser Physics, vol.22, pp.106-110,2011.
    [8]H. M. Pask, "The design and operation of solid-state Raman lasers," Pro. Quantum Electron., vol. 27, pp.3-56,2003.
    [9]J. T. Murray, W. L. Austin and R. C. Powell, "Intracavity Raman conversion and Raman beam cleanup," Opt. Mater., vol.11, pp.353-371,1999.
    [10]L. S. Meng, P. A. Roos, K. S. Repasky and J. L. Carlsten, "High-conversion-efficiency, diode-pumped continuous-wave Raman laser," Opt. Lett., vol.26, pp.426-428,2001.
    [11]S. Li, X. Zhang, Q. Wang, X. Zhang, Z. Cong, H. Zhang and J. Wang, "Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm," Opt. Lett., vol.32, pp.2951-2953,2007.
    [12]A. J. Lee, H. M. Pask, D. J. Spence and J. A. Piper, "Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser." Opt. Lett., vol.35, pp.682-684,2010.
    [13]A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov and V. Orlovich, "All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,' Laser Physics Letters, vol.7, pp.573,2010.
    [14]A. A. Kaminskii, H. J. Eichler, K.-i. Ueda. N. V. Klassen, B. S. Redkin, L. E. Li, J. Findeisen, D. Jaque. J. Garcia-Sole, J. Fernandez and R. Balda, "Properties of Nd3+-Doped and Undoped Tetragonal PbWO4, NaY(WO4)2, CaWO4, and Undoped Monoclinic ZnWO4 and CdWO4 as Laser-Active and Stimulated Raman Scattering-Active Crystals." Appl. Opt., vol.38, pp. 4533-4547,1999.
    [15]A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, G. I. Ryabtsev and A. A. Demidovich, "All solid-state diode-pumped Raman laser with self-frequency conversion," Applied Physics Letters, vol.75, pp.3742-3744,1999.
    [16]J. Findeisen. H. J. Eichler and P. Peuser, "Self-stimulating, transversally diode pumped Nd3+:KGd(WO4)2 Raman laser," Optics Communications, vol.181, pp.129-133,2000.
    [17]A. A. Demidovich, A. S. Grabtchikov, V. A. Lisinetskii, V. N. Burakevich, V. A. Orlovich and W. Kiefer, "Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser," Opt. Lett., vol.30, pp.1701-1703,2005.
    [18]Y. F. Chen, "Efficient 1521-nm Nd:GdVO4 Raman laser," Opt. Lett., vol.29, pp.2632-2634,2004.
    [19]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, H. Z, Cong, G. H. Jia and C. Y. Tu, "Highly efficient diode-pumped actively Q-switched Nd YAG-SrWO4 intracavity Raman laser," Opt. Lett., vol.33, pp.705-707,2008.
    [20]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li and Z. H. Cong, "Diode-pumped actively Q-switched c-cut Nd:YVO 4 self-Raman laser," Laser Physics Letters, vol.6, pp.26,2009.
    [21]W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi and Y. Usuki, "Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser," Optics Communications, vol. 194, pp.401-407,2001.
    [22]P. Cerny, W. Zendzian, J. Jabczynski, H. Jelmkova, J. Sulc and K. Kopczynski, "Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal," Optics Communications, vol.209, pp.403-409,2002.
    [23]T. T. Basiev, M. E. Doroshenko, S. N. Smetanin, J. M. Jelinek, V. Kubecek, H. Jelinkova, A. N. Shekhovtsov and M. B. Kosmyna, "Multi-wave SRS oscillation in PbMoO4 and PbMoo.5W0.5O4 crystals under 18 picosecond laser pumping " Laser Phys. Lett., vol.9, pp.853,2012.
    [24]J. Simons, H. Pask, P. Dekker and J. Piper, "Small-scale, all-solid-state, frequency-doubled intracavity Raman laser producing 5 mW yellow-orange output at 598 nm," Optics Communications, vol.229, pp.305-310,2004.
    [25]Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun and Z. M. Zhao, "Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping," Laser Physics Letters, vol.7, pp.787-789,2010.
    [26]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, X. H. Chen, S. Z. Fan, X. L. Zhang, H. J. Zhang, X. T. Tao and S. T. Li, "Theoretical and experimental study on the NdYAG BaWO4 KTP yellow laser generating 8.3 W output power," Opt. Express, vol.18, pp.2010.
    [27]Y.-F. Chen and S. W. Tsai, "Diode-pumped-switched Nd:YVO4 yellow laser with intracavity sum-frequency mixing," Opt. Lett., vol.27, pp.397-399,2002.
    [28]A. S. Eremenko, S. N. Karpukhin and A. I. Stepanov, "Stimulated Raman scattering of the second harmonic of a neodymium laser in nitrate crystals " Sov. J. Quantum Electron, vol.10, pp.113-114, 1980.
    [29]H. M. Pask and J. A. Piper, "Diode-pumped LilO3 intracavity Raman lasers," IEEE J. Quantum Elect., vol.36, pp.949-955,2000.
    [30]E. O. Ammann, "Simultaneous stimulated Raman scattering and optical frequency mixing in lithium iodate," Appl. Phys. Lett., vol.34, pp.838-840,1979.
    [31]Y. F. Chen, "Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser," Opt. Lett., vol.29, pp.1251-1253,2004.
    [32]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, X. H. Chen, S. Z. Fan, X. L. Zhang, H. J. Zhang, X. T. Tao and S. T. Li, "Theoretical and experimental study on the NdYAG BaWO4 KTP yellow laser generating 8.3 W output power," Opt. Express, vol.18, pp.12111-12118,2010.
    [33]T. T. Basiev, A. A. Sobol, Y. K. Voronko and P. G. Zverev, "Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers," Opt. Mater, vol.15. pp.205-216,2000.
    [34]H. M. Pask, "Continuous-wave, all-solid-state, intracavity Raman laser," Opt. Lett., vol.30. pp. 2454-2456.2005.
    [35]Z. J. Liu, Q. P. Wang, X. Y. Zhang, J. Chang, H. Wang. S. S. Zhang, S. Z. Fan, W. J. Sun, G. F. Jin, X. T. Tao and H. Zhang, "A KTiOAsO4 Raman laser," Appl. Phys. B, vol.94, pp.585-588,2009.
    [36]Y. T. Chang, Y. P. Huang, K. W. Su and Y. F. Chen, "Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission," Opt. Express vol.6, pp.8286-8291,2008.
    [37]T. B. Tasoltan, E. D. Maxim, I. I. Lyudmila, V. O. Vyacheslav, M. B. Kosmyna, V. K. Komar, J. Sulc and H. Jelinkova, "Lasing properties of selectively pumped Raman-active Nd 3+-doped molybdate and tungstate crystals," Quantum Electronics, vol.36, pp.720,2006.
    [38]Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, H. Wang, S. Z. Fan, W. J. Sun, X. T. Tao, S. J. Zhang and H. J. Zhang, "1120 nm second-Stokes generation in KTiOAsO4," Laser Phys. Lett., vol.6, pp.121-124,2009.
    [39]J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang and X. T. Tao, "Bulk crystal growth and characterization of a new polar polymorph of BaTeMo209:a-BaTeMo2O9," CrystEngComm, vol. 13, pp.6985-6990,2011.
    [40]Q. X. Yu, Z. L. Gao, S. J. Zhang, W. G. Zhang, S. P. Wang and X. T. Tao, "Second order nonlinear properties of monoclinic single crystal BaTeMo2O9," Journal of Applied Physics, vol. 111, pp. 013506,2012.
    [41]Z. L. Gao, X. T. Tao, X. Yin, W. G. Zhang and M H. Jiang, "Elastic, dielectric, and piezoelectric properties of BaTeMo2O9 single crystal," Appl. Phys. Lett., vol.93, pp.252906,2008.
    [42]Z. L. Gao, W. X. Yin, G. Zhang, S. P. Wang, M. H. Jiang and X. T. Tao, "Electro-optic properties of BaTeMo209 single crystal," Appl. Phys. Lett., vol.95, pp.151107,2009.
    [43]W. Zhang. X. Tao, C. Zhang, H. Zhang and M. Jiang, "Structure and Thermal Properties of the Nonlinear Optical Crystal BaTeMo209," Crystal Growth & Design, vol.9, pp.2633-2636,2009.
    [44]J. Zhang, Z. Zhang, W. Zhang, Q. Zheng, Y. Sun, C. Zhang and X. Tao, "Polymorphism of BaTeMo2O9:A New Polar Polymorph and the Phase Transformation," Chemistry of Materials, vol.23, pp.3752-3761,2011.
    [45]H. S. Ra, K. M. Ok and P. S. Halasyamani, "Combining Second-Order Jahn-Teller Distorted Cations to Create Highly Efficient SHG Materials:Synthesis, Characterization, and NLO Properties of BaTeM2O9," J. Am. Chem. Soc, vol.125, pp.7764-7765,2003.
    [46]W. G. Zhang, X. T. Tao, C. Q. Zhang, Z. L. Gao, Y. Z. Zhang, W. T. Yu, X. F. Cheng, X. S. Liu and M. H. Jiang, "Bulk Growth and Characterization of a Novel Nonlinear Optical Crystal BaTeMo2O9," Cryst. Growth Des., vol.8, pp.304-307,2008.
    [47]Z. Gao, S. Liu, S. Zhang, W. Zhang, J. He and X. Tao, "High efficient external resonator Raman laser based on the monoclinic single crystal BaTeMo2O9," Appl. Phys. Lett., vol.100. pp.261905, 2012.
    [48]T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko and R. C. Powell, "Comparative Spontaneous Raman Spectroscopy of Crystals for Raman Lasers." Appl. Opt., vol.38, pp.594-598.1999.
    [49]A. A. Kaminskii, K.-i. Ueda, H. J. Eichler, Y. Kuwano. H. Kouta. S. N. Bagaev. T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai and J. Lu, "Tetragonal vanadates YVO4 and GdVO4-new efficient χ(3)-materials for Raman lasers," Opt. Commun., vol.194, pp.201-206,2001.
    [50]F. L. Galeener. J. C. Mikkelsen. R. H. Geils and W. J. Mosby, "The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5," Appl. Phys. Lett., vol.32. pp.34,1978.
    [1]沈元壤著,顾世杰译,《非线性光学原理(上册)》,科学出版社,1987.
    [2]姚建铨著,《非线性光学频率变化及激光调谐技术》,科学出版社,1995.
    [3]J. Q. Yao, Nonlinear Optics Frequency Conversion and Laser Tunable Technology, Science, Beijin, 1995.
    [4]A. A. Kaminskii, L. Bohaty, P. Becker, H. J. Eichler and H. Rhee, "Manifestations of newx(3)-nonlinear laser interactions in calcite (CaCO3) single crystals under one-micron picosecond pumping:more than two-octave spanned Stokes and anti-Stokes multi-wavelength comb and third harmonic generation via cascaded parametric lasing," Laser Phys. Lett., vol.7, pp. 142-152,2010.
    [5]T. T. Basiev, M. E. Doroshenko, S. N. Smetanin, J. M. Jelinek, V. Kubecek, H. Jelinkova, A. N. Shekhovtsov and M. B. Kosmyna, "Multi-wave SRS oscillation in PbMoO4 and PbMo0.5W0.5O4 crystals under 18 picosecond laser pumping " Laser Phys. Lett., vol.9, pp.853,2012.
    [6]Q. X. Yu, Z. L. Gao, S. J. Zhang, W. G. Zhang, S. P. Wang and X. T. Tao, "Second order nonlinear properties of monoclinic single crystal BaTeMo2O9," Journal of Applied Physics, vol. 111, pp. 013506,2012.
    [7]Y.-F. Chen and S. W. Tsai, "Diode-pumped-switched Nd:YVO4 yellow laser with intracavity sum-frequency mixing," Opt. Lett., vol.27, pp.397-399,2002.
    [8]Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun and Z. M. Zhao, "Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping," Laser Physics Letters, vol.7, pp.787-789,2010.
    [9]A. J. Lee, H. M. Pask, D. J. Spence and J. A. Piper, "Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser," Opt. Lett., vol.35, pp.682-684,2010.
    [10]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, X. H. Chen, S. Z. Fan, X. L. Zhang, H. J. Zhang, X. T. Tao and S. T. Li, "Theoretical and experimental study on the NdYAG BaWO4 KTP yellow laser generating 8.3 W output power," Opt. Express, vol.18, pp.2010.
    [11]A. J. Lee, H. M. Pask, J. A. Piper, H. J. Zhang and J. Y. Wang, "An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission," Opt. Express, vol. 18, pp.5984-5992,2010.
    [12]Y. T. Chang. H. L. Chang, K. W. Su and Y. F. Chen, "High-efficiency Q-switched dual-wavelength emission at 1176 and 559 nm with intracavity Raman and sum-frequency generation," Opt. Express, vol.17, pp.11892-11897,2009.
    [13]A. J. Lee, H. M. Pask, D. J. Spence and J. A. Piper, "Efficient 5.3 W cw Is in a self-Raman Nd GdVO4 laser," Opt. Lett., vol.35, pp.682-684,2010.
    [14]Z. Cong, X. Zhang, Q. Wang, Z. Liu, X. Chen, S. Fan, X. Zhang, H. Zhang, X. Tao and S. Li, "Theoretical and experimental study on the NdYAG BaWO4/KTP yellow laser generating 8.3 W output power," Opt. Express, vol.18, pp.12111-12118,2010.
    [15]M. S. Webb, P. F. Moulton, J. J. Kasinski, R. L. Burnham, G. Loiacono and R. Stolzenberger, "High-average-power KTiOAsO4 optical parametric oscillator," Opt. Lett., vol.23, pp.1161-1163, 1998.
    [16]R. F. Wu, P. B. Phua, K. S. Lai, Y. L. Lim, E. Lau, A. Chng, C. Bonnin and D. Lupinski, "Compact 21-W 2-μm intracavity optical parametric oscillator," Opt. Lett, vol.25, pp.1460-1462,2000.
    [17]Y. F. Chen, S. W. Chen, L. Y. Tsai, Y. C. Chen and C. H. Chien, "Efficient sub-nanosecond intracavity optical parametric oscillator pumped with a passively Q-switched Nd:GdVO4 laser," Appl. Phys. B, vol.79, pp.823-825,2004.
    [18]K. S. Lai, R. F. Wu and P. B. Phua, "Multiwatt KTiOPO4 optical parametric oscillators pumped within randomly and linearly polarized Nd:YAG laser cavities," Proc. SPIE vol.3928, pp.43-51, 2000.
    [19]Y. F. Chen, "Efficient 1521-nm Nd:GdVO4 Raman laser," Opt. Lett, vol.29, pp.2632-2634,2004.
    [20]Z. J. Liu, Q. P. Wang, X. Y. Zhang, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, W. J. Sun, G. F. Jin, X. T. Tao and H. Zhang, "A KTiOAsO4 Raman laser," Appl. Phys. B, vol.94, pp.585-588,2009.
    [21]Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, H. Wang, S. Z. Fan, W. J. Sun, X. T. Tao, S. J. Zhang and H. J. Zhang, "1120 nm second-Stokes generation in KTiOAsO4," Laser Phys. Lett., vol.6, pp.121-124,2009.
    [22]Y. F. Chen, K. W. Su, H. J. Zhang and M. H. Jiang, "Efficient diode-pumped actively Q-swithced Nd:YAG/BaWO4 intracavity Raman laser," Opt. Lett., vol.30, pp.3335-3337,2005.
    [23]E. J. Woodbury and W. K. Ng, "Ruby laser operation in the near IR," Proc. IRE, vol.50, pp.2367, 1962.
    [24]J. A. Piper and H. M. Pask, "Crystalline Raman Lasers," IEEE J. Sel. Top. Quant. Elec, vol.13, pp.692-704,2007.
    [25]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, H. Z, Cong, G. H. Jia and C. Y. Tu, "Highly efficient diode-pumped actively Q-switched Nd YAG-SrWO4 intracavity Raman laser," Opt. Lett., vol.33, pp.705-707,2008.
    [26]J. T. Murray, W. L. Austin and R. C. Powell, "Intracavity Raman conversion and Raman beam cleanup," Opt. Mater, vol.11, pp.353-371,1999.
    [27]S. Brosnan and R. Byer, "Optical parametric oscillator threshold and linewidth studies," IEEE J. Quantum Elect., vol.15, pp.415-431,1979.
    [28]Y. F. Chen, S. W. Chen, S. W. Tsai and Y. P. Lan, "Output optimization of a high-repetition-rate diode-pumped Q-switched intracavity optical parametric oscillator at 1.57μm," Appl. Phys. B, vol. 77, pp.505-508,2003.
    [29]A. Dubois, S. Victori, T. Lepine, P. Georges and A. Brue, "High-repetition-rate eyesafe intracavity optical parametric oscillator," Appl. Phys. B, vol.67, pp.181-183,1998.
    [30]J. Falk, J. M. Yarborough and E. O. Ammann, "Internal optical parametric oscillation," IEEE J. Quantum Elect., vol. QE-7, pp.359-369,1971.
    [31]A. D. Izzo, J. T. Walsh, J. E. D. Jansen, M. Bendett, J. Webb, H. Ralph and C. P. Richter, "Optical parameter variability in laser nerve stimulation:a study of pulse duration, repetition rate, and wavelength," IEEE T. Bio-Med. Eng., vol.54, pp.1108-1114,2007.
    [32]Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, H. Wang, J. Chang, S. Z. Fan, W. J. Sun, G. F. Jin, X. T. Tao, S. J. Zhang and H. J. Zhang, "Efficient acousto-optically Q-switched intracavity Nd:YAG/KTiOAsO4 optical parametric oscillator," Appl. Phys. B, vol.92, pp.37-41,2008.
    [33]M. J. T. Milton, "General expression for the efficiency of phase-matched and nonphase-matched second-order nonlinear interactions between plane waves," IEEE J. Quantum Elect., vol.28, pp. 739-749,1992.
    [34]M. K. Oshman and S. E. Harris. "Theory of Optical Parametric Oscillation Internal to the Laser Cavity," IEEE J. Quantum Elect., vol.4, pp.491-502,1968.
    [35]G. H. Xiao, M. Bass and M. Acharekar, "Passively Q-switched solid-state lasers with intracavity optical parametric oscillators," IEEE J. Quantum Elect., vol.34, pp.2241-2245,1998.
    [36]W. B. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi and Y. Usuki, "Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser," Opt. Commun., vol.194, pp. 401-407,2001.
    [37]A. A. Demidovich. P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer and M. B. Danailov, "Sub-nanosecond microchip laser with intracavity Raman conversion," Appl. Phys. B, vol.76, pp. 509-514,2003.
    [38]S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang and Z. J. Liu, "Theoretical and Experimental Study on the Self-Raman Laser With Nd:YVO4 Crystal," IEEE J. Quantum Elect., vol.42, pp.927-933,2006.
    [39]F. L. Galeener, J. C. Mikkelsen, R. H. Geils and W. J. Mosby, "The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5," Appl. Phys. Lett., vol.32, pp.34,1978.
    [40]X. Y. Zhang, S. Z. Zhao, Q. P. Wang, B. Ozygus and H. Weber, "Modeling of diode pumped actively Q-switched lasers," IEEEJ. Quantum Elect., vol.35, pp.1912-1918,1999.
    [41]J. J. Degnan, "Theory of the Optimally Coupled O-Switched Laser," IEEE J. Quantum Elect., vol. 25, pp.214-220,1989.
    [42]W. Koechner, vol., pp. Solid-state laser engineering, Springer-Verlag, Berlin,1999.
    [43]H. M. Pask, "The design and operation of solid-state Raman lasers," Pro. Quantum Electron., vol. 27. pp.3-56,2003.
    [44]A. E. Siegman, "New developments in laser resonators," vol.1224, pp.2-14,1990.
    [45]W.克希耐尔著,孙文,江泽文,程国祥译,《固体激光工程》 第五版,科学出版社,1995.
    [46]W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird and S. E. Stokowski, "Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet," J.Opt. Soc. Am. B, vol.3, pp.102-114,1986.
    [47]P. Cerny, P. G. Zverev, H. Jelinkova and T. T. Basiev, "Efficient Raman shifting of picosecond pulses using BaWO4 crystal," Opt. Commun., vol.177, pp.397-404,2000.
    [48]A. V. Smith, SNLO nonlinear optics code, version 4.0, available from Sandia National Laboratories, vol., pp.
    [49]R. P. Jones, "Parametric oscillation in KTP and KTA at 1064nm," Proc. SPIE, vol.2379, pp. 357-364,1995.
    [1]W.克希耐尔著,孙文,江泽文,程国祥译,”《固体激光工程》第五版,"科学出版社,1995.
    [2]V. Pruneri, R. Koch, P. G. Kazansky, W. A. Clarkson, P. S. J. Russell and D. C. Hanna, "49 mW of cw blue light generated by first-order quasi-phasematched frequency doubling of a diode-pumped 946-nm Nd:YAG laser," Opt. Lett., vol.20, pp.2375-2377,1995.
    [3]F. Tso Yee and R. L. Byer, "Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser," Quantum Electronics, IEEE Journal of, vol.23, pp.605-612,1987.
    [4]G. Zhang, H. Zhu, C. Huang, J. Chen, Y. Wei and L. Huang, "Diode-side-pumped Nd:YAG laser at 1338 nm," Opt. Lett., vol.34, pp.1495-1497,2009.
    [5]H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li and Z. Q. Chen, "1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser," Applied Physics B, vol.90, pp.451-454,2008.
    [6]B. Zhou, T. J. Kane, G. J. Dixon and R. L. Byer, "Efficient, frequency-stable laser-diode-pumped Nd:YAG laser," Opt. Lett., vol.10, pp.62-64,1985.
    [7]S. L. Kilmer, M. S. Lee, J. M. Grevelink, T. J. Flotte and R. R. Anderson, "The Q-switched Nd:YAG laser effectively treats tattoos. A controlled, dose-response study," Arch Dermatol, vol. 129, pp.971-978,1993.
    [8]S. L. Kilmer and R. R. Anderson, "Clinical use of the Q-switched ruby and the Q-switched Nd:YAG (1064 nm and 532 nm) lasers for treatment of tattoos," The Journal of dermatologic surgery and oncology, vol.19, pp.330-338,1993.
    [9]S. Konno, T. Kojima, S. Fujikawa and K. Yasui, "High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser," Opt. Lett., vol.25, pp.105-107,2000.
    [10]N. E. Omura, J. S. Dover, K. A. Arndt and A. N. B. Kauvar, "Treatment of reticular leg veins with a 1064 nm long-pulsed Nd:YAG laser," Journal of the American Academy of Dermatology, vol.48, pp.76-81,2003.
    [11]M. Beer, D. Jocham, A. Beer and G. Staehler, "Adjuvant Laser Treatment of Bladder Cancer: 8 Years'Experience with the Nd-YAG Laser 1064 nm," British Journal of Urology, vol.63, pp. 476-478,1989.
    [12]I. J. Booth, J. L. Archambault and B. F. Ventrudo, "Photodegradation of near-infrared-pumped Tm3+-doped ZBLAN fiber upconversion lasers," Opt. Lett., vol.21, pp.348-350,1996.
    [13]Y. Yao, Q. Zheng, D. P. Qu, K. Zhou, Y. Liu and L. Zhao, "All-solid-state continuous-wave frequency-doubled Nd:YAG/LBO laser with 1.2 W output power at 561 nm," Laser Physics Letters, vol.7, pp.112,2010.
    [14]R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna and G. Maze, "230 mW of blue light from a thulium-doped upconversion fiber laser," Selected Topics in Quantum Electronics, IEEE Journal of vol.3, pp.1100-1102,1997.
    [15]N. Moore, W. A. Clarkson, D. C. Hanna, S. Lehmann and J. Bosenberg, "Efficient Operation of a Diode-Bar-Pumped Nd:YAG Laser on the Low-Gain 1123-nm Line," Appl. Opt., vol.38, pp. 5761-5764,1999.
    [16]Y. F. Chen, Y. P. Lan and S. W. Tsai, "High-power diode-pumped actively Q-switched Nd:YAG laser at 1123 nm," Optics Communications, vol.234, pp.309-313,2004.
    [17]E. Raikkonen, O. Kimmelma, M. Kaivola and S. C. Buchter, "Passively Q-switched Nd:YAG/KTA laser at 561 nm," Optics Communications, vol.281, pp.4088-4091,2008.
    [18]S. S. Zhang, Q. P. Wang, X. Y. Zhang, Z. H. Cong, S. Z. Fan, Z. J. Liu and W. J. Sun, "Continuous-wave ceramic Nd:YAG laser at 1123 nm," Laser Physics Letters, vol.6, pp.864, 2009.
    [19]C. Y. Li, Y. Bo, Y. T. Xu, F. Yang, Z. C. Wang, B. S. Wang, J. L. Xu, H. W. Gao, Q. J. Peng, D. F. Cui and Z. Y. Xu, "219.3 W CW diode-side-pumped 1123 nm Nd:YAG laser," Optics Communications, vol.283, pp.2885-2887,2010.
    [20]F. Bai, Q. P. Wang, Z. J. Liu, X. Y. Zhang and W. J. Sun, "Properties of continuous-wave 1123 nm laser with diode-side-pumped Nd:YAG" Laser Physics, vol.20, pp.1935-1940,2010.
    [21]W. Koechner, "Thermal Lensing in a Nd:YAG Laser Rod," Appl. Opt., vol.9, pp.2548-2553, 1970.
    [22]H. P. Kortz, R. Ifflander and H. Weber, "Stability and beam divergence of multimode lasers with internal variable lenses" Appl. Opt., vol.20, pp.4124-4134,1981.
    [23]K. P. Driedger, W. Krause and H. Weber, "Average refractive powers of an alexandrite laser rod," Optics Communications, vol.57, pp.403-406,1986.
    [24]T. Omatsu, Y. Kato, M. Shimosegawa and A. Hasegawa, "Thermal effects in laser diode pumped self-frequency-doubled Nd[X]Y[1-X]Al[3](BO[3])[4](NYAB) microchip laser," (Elsevier, Amsterdam, PAYS-BAS,1995).
    [25]S. C. Tidwell, J. F. Seamans, M. S. Bowers and A. K. Cousins, "Scaling CW diode-end-pumped Nd:YAG lasers to high average powers," Quantum Electronics, IEEE Journal of, vol.28, pp. 997-1009,1992.
    [26]B. Neuenschwander, R. Weber and H. P. Weber, "Determination of the thermal lens in solid-state lasers with stable cavities," Quantum Electronics, IEEE Journal of, vol.31, pp.1082-1087,1995.
    [27]J.-h. Liu, J.-r. Lu, J.-h. Lu, Z.-s. Shao and M.-h. Jiang, "Thermal Lens Determination of End-Pumped Solid-State Lasers by a Simple Direct Approach," Chinese Physics Letters, vol.16, pp.181,1999.
    [28]D. G. Lancaster and J. M. Dawes, "Thermal-lens measurement of a quasi steady-state repetitively flashlamp-pumped Cr, Tm, Ho:YAG laser," Optics & Laser Technology, vol.30, pp.103-108, 1998.
    [29]B. Ozygus and Q. Zhang, "Thermal lens determination of end-pumped solid-state lasers using primary degeneration modes," Applied Physics Letters, vol.71, pp.2590-2592,1997.
    [30]B. Ozygus and J. Erhard, "Thermal lens determination of end pumped solid state lasers with transverse beat frequencies," Applied Physics Letters, vol.67, pp.1361-1362,1995.
    [31]F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh and N. Peyghambarian, "Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers," Applied Physics Letters, vol.81, pp.2145-2147,2002.
    [32]李强,王志敏,王智勇,房明星,左铁钏,"测量Nd:YAG激光器热透镜焦距的新方法,"光电子·激光,vol.15,pp.4,2004.
    [33]赵存华.樊仲维,王培峰,何铁英,"LD侧面泵浦固体激光棒新的热透镜焦距计算,"光电子·激光vol.16, pp.1004-1006、2005.
    [34]汪莎,刘崇,陈军,胡淼,陈哲敏,葛剑虹."固体激光器腔型结构对热透镜焦距测量的影响,’中国激光vol.34, pp.1431-1435,2007.
    [35]W. J. Sun, Q. P. Wang. Z. J. Liu, X. Y. Zhang. F. Bai, X. B. Wan. G. F. Jin. X. T. Tao and Y. X. Sun. "High efficiency KTiOAsO4 optical parametric oscillator within a diode-side-pumped two-rod Nd:YAG laser," Appl. Phys. B, vol.104, pp.87-91,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700