用户名: 密码: 验证码:
电子束泵浦氧化锌基量子阱发光与器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外对紫外发光、激光器件的研发热潮不断。相对于电注入,电子束泵浦的方式具有规避电极接触困难,和不受p型掺杂瓶颈限制的优势;与光泵器件相比,更易集成小型化器件。此外,与光泵浦和电注入相比,电子束激励方式下有源区可以更大,从而可提高器件输出功率。
     氧化锌材料由于兼备带隙(3.37eV)宽,激子结合能(60meV)大等优势,在紫外发光二极管、半导体激光器等方面具有广阔的应用前景。针对目前国际上电子束泵浦发光器件研究方面的不足,以及电子束泵浦氧化锌基量子阱紫外发光器件的研究空白,本论文在金属有机物化学气相沉积和分子束外延技术制备的ZnO基量子阱结构上,开展了电子束泵浦发光特性的研究。
     利用量子阱结构自吸收弱的优势和非对称量子阱量子阱中的激子隧穿,降低了量子阱结构的最佳工作电压,研究了大束流下量子阱的斯塔克效应,初步探索了电子束泵浦氧化锌基量子阱的超辐射行为,提高了量子阱发光的内量子效率;合金表面等离激元对氧化锌基材料的光致和电子束泵浦发光表现出了波长选择性增强。具体内容概述如下:
     一、针对器件小型化需要,最佳工作电压益不超过5KV。一般而言,量子效率低和自吸收强是制约电子束泵浦半导体器件的瓶颈。非对称阱设计促成的宽阱中激子浓度提高,降低了器件的最佳工作电压。观察到了大束流电子束泵浦下的量子限域斯塔克效应。由于发现不随穿透深度而变化的阱区发光峰红移,从而排除红移来源于自吸收过程的可能,证明了电子束泵浦条件下量子限域斯塔克效应的存在。
     二、观测到电子束泵浦下的超辐射现象。发光的积分强度随泵浦功率超线性增加是超辐射现象的重要判据。非对称阱比对称阱更明显的超线性行为,其原因被归结为激子隧穿注入增强了泵浦效率。针对一般电子束泵浦发光器件内量子效率较低的情况,设计结构提高了内量子效率。与对称量子阱相比,氧化锌基非对称双量子阱发光的内量子效率提高了约百分之五十。光致发光光谱和时间分辨光谱测试结果都表明,非对称阱中存在激子从窄阱向宽阱的隧穿注入。这提高了非对称阱发光的内量子效率。
     三、设计并蒸镀银铝合金薄膜,使表面等离激元的共振能量恰好和氧锌镁薄膜374nm紫外发光峰位匹配,缺陷发光受到选择性抑制,近带边的紫外发射得到增强,光致发光的增强可达到约150倍。我们证明了合适比例表面粗糙银铝合金薄膜的表面等离激元的共振能量波长可以调至374nm左右的紫外波段,对电子束泵浦和光致发光的影响都有明显的波长选择性。
Ultraviolet light sources, especially compact ultraviolet laser devices, arecurrently expected to be used in various fields. Practitioners have proposedpromising electron beam pumped (EBP) semiconductor-based light sources. Suchdevices need no p-n junction or electrode contacts, which is the unique advantages ofelectron beam excitation. Therefore, the problems on p-type doping, which has beenblocking the realizing of current pumped light emitting diodes (LEDs) based forwide band gap materials, especially for ZnO, need not be taken into account. Inaddition, the thickness of the active region can be much larger than that in injectionpumped devices, which means higher output power.
     ZnO is a promising wide bandgap (3.37eV) material with a largeexciton-binding energy (Eb=60meV), which have broad application prospects inultraviolet (UV) LEDs and laser diodes (LD). Aiming at the inadequate of theresearch on EBP portable light source, as well as the blank of the study on EBPZnO-based quantum-well UV light-emitting devices, this dissertation adopted themetal organic chemical vapour deposition and the molecular beam epitaxytechnology to fabricate the EBP ZnO-based UV light-emitting device, and carriedout a number of connected research.
     Take advantage of refractive index difference between well-layer and barrier layer of quantum-well samples reduced the self-absorption,the large exciton-bindingenergy of ZnO-based semiconductor, and the characteristics of exciton tunneling,optimal acceleration voltage (OAV) of the device was reduced, quantum-confinedstark effect caused by electron accumulation on the sample surface andsuperradiance with a superlinear increase in emission intensity were observed,internal quantum efficiency of ZnO/MgZnO quantum wells was increased; the alloysurface plasmon resonance showed light wavelength selective enhancement. Thesummary of specific content is as follows:
     1. Cathodoluminescence behavior vs accelerating voltage of electron beam inZnO/MgZnO multi-quantum wells was reported. The samples were grown onsapphire substrate by plasma-assisted molecular beam epitaxy. In a sample withasymmetric double-quantum-wells, a marked reduction of the OVA from7kV to5kV was obtained compared to the symmetrical multi-quantum well sample.Excitontunneling assisted injection is attributed to the main reason of the decrease of OVA.Monte Carlo simulation agrees well with the CL results.
     A marked red shift of the emission peak was observed clearly under largebeam current excitation, which is attributed to quantum-confined Stark effect causedby electron accumulation on the sample surface.
     2. We report the cathodoluminescence (CL) property in a ZnO/MgZnOasymmetric double-quantum-well (ADQW) sample compared to that in amulti-quantum-wells (MQWs) sample. Under the same excitation density andacceleration voltage, an18-time enhancement in emission intensity was observed inthe ADQW sample compared to the MQW sample. With increasing the excitationdensity, superlinear increase of emission intensity was observed. Time-resolvedphotoluminescence (TRPL) spectroscopy were used to analysis the exciton tunnelingfrom the narrow well to the wide well. With increasing gradually the excitationdensity, superradiance with a superlinear increase in emission intensity was observed.
     We report a significant increase in the internal quantum efficiency (IQE) ofZnO/MgZnO multi-quantum wells (MQWs) fabricated on c-plane sapphire substrate by introducing asymmetric double-quantum-well (ADQW) structure. A markedenhancement in efficiency, by as much as1.56times, was observed for a ZnO/MgZnO five-period ADQW grown by plasma-assisted molecular beam epitaxy(P-MBE), that replaced the usual ten-period symmetrical MQWs with asymmetricstructure. The effects of excitons tunnel from the narrow well to the wide well,which proved by photoluminescence spectra and time-resolved photoluminescence(TRPL) spectroscopy, can influence the IQE.
     3. We design and evaporate silver/aluminum alloy thin film.The alloy surfaceplasmon resonance energy just match MgZnO film peak position which peaked at374nm, which defect emission was shown to be inhibited, and the near band edgeUV radiation was enhanced. The photoluminescence could be150times stronger.We preliminarily proved that energy resonance wavelength of the appropriateproportion of silver/aluminum alloy film with rough surface can be adjusted toapproximately374nm UV wave band, which can influence electron beam pumpedemitting and photoluminescence wavelength selective obviously.
引文
[1]. zgür,aYa. I. Alivov, C. Liu, A. Teke,bM. A. Reshchikov, S. Do an,cV.Avrutin,S.-J. Cho, and H. Morko n A comprehensive review of ZnO materialsand devices J. Appl. Phys.98,(041301)2005
    [2]Segawa Y, Ohtomo A, Kawasaki M, Growth of ZnO Thin Film by Laser MBE:Lasing of Exciton at Room Temperature[J].Phys. Stat. Sol.(b)(1997)202669.
    [3]Wang Z L. Zinc oxide nanostructures: growth, properties and applications [J], J.Phys.: Condens. Matter,2004,16, R829-R858.
    [4]朱海中国科学院长春光学精密机械与物理研究所[D]博士论文,第一章
    [5]E. Kuokstis, J. Zhang, Q. Fareed, et al. Near-band-edge photoluminescence ofwurtzite-type AlN [J], Appl. Phys. Lett.,2002,81(15):2755-2757.
    [6]Z.K Tang, G.K.L. Wong, P.Yu,Room-temperature ultraviolet laser emission fromself-assembled ZnO microcrystallite thin films, Appl. Phys. Lett.,72,2466-2468,(1998)
    [6]Yang W, Hullavarad S S, et al. Compositionally-tuned epitaxial cubic MgxZn1-xOon Si (100) for deep ultraviolet photodetectors [J]. Appl. Phys. Lett.,2003,82,3424-3426.
    [7] Claus Klingshirn, J. Falle rt, H. Zhou, J. Sartor, C. Thiele, F. Maier-Fl aig, D. Schneider, and H. Kalt65years of ZnO research–old and very recent results Phys.Status Solidi B247, No.6,(2010)1424–1447
    [8]W. I. Park, G. C. Yi, H. M. Jang, et al. Metalorganic vapor-phase epitaxial growthand photoluminescent properties of Zn1xMgxO (0≤x≤0.49) thin films [J]. Appl.Phys. Lett.,2001,79,2022.
    [9]Yungryel Ryu, Tae-Seok Lee, Jorge A. Lubguban, Henry W. White, Bong-Jin Kim,ZnO-based ultraviolet light emitting diodes, Appl. Phys. Lett.(2006),88,241108-241110.
    [10]Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, and B.J. Kim, Excitonic ultraviolet lasing in ZnO-based light emitting devices, Appl.Phys. Lett.(2007)90,131115.
    [11]Ohtomo, M. Kawasaki, I. Ohkubo, Structure and optical properties ofZnO/Mg0.2Zn0.8O superlattices,Appl.Phys.Lett.,(1999)75,980-982.
    [12]A. Ohtomo, K. Tamura, M. Kawasaki,Room-temperature stimulated emission ofexcitons in ZnO/Mg,Zn.O superlattices,Appl.Phys.Lett.,(2000)77,2204-2206;
    [13]Sun H D,Makino T, Tuan N T, Stimulated emission induced by exciton–excitonscattering in ZnO/ZnMgO multiquantum wells up to room temperature [J].Appl.Phys.Lett.,(2000)77,4250-4252
    [14]Sun J W, Lu Y M, Liu Y C,et al, Room temperature excitonic spontaneous andstimulated emission properties in ZnO/MgZnO multiple quantum wells grownon sapphire substrate [J].J. Phys. D: Appl. Phys.(2007)406541–6544
    [15]宿世臣中国科学院长春光学精密机械与物理研究所[D]博士论文,第五章
    [16]H.M.Manasevit, Appl.Phys.Lett.,(1968),12,156.
    [17]张振中,李炳辉,张吉英等编写的内部资料《宽禁带II-VI族半导体实验讲义》
    [18]马金鑫朱国凯《扫描电子显微镜入门》科学出版社1985p49
    [19]虞丽生编著,半导体异质结物理(第二版)[M],科学出版社,2006年.
    [20]沈学础,半导体光谱和光学性质,科学出版社.
    [21]黄昆、韩汝琦,固体物理学,高等教育出版社,447页.
    [22]C.F.Klingshirn, et al. semiconductor optice New York: Beijing World PublishingCorporation,1999,240.
    [23]李岚河北工业大学博士论文
    [24]任娃山东大学硕士论文,第一章
    [25]Takao Oto, Ryan G. Banal, Ken Kataoka, Mitsuru Funato and Yoichi Kawakami,Nature Photon.4767-771(2010)
    [26]S. V. Gronin, S. V. Sorokin, I. V. Sedova, S. V. Ivanov, E. V. Zdanova,M. M.Zverev, Phys. Status Solidi C71694–1696(2010)
    [27]Kenji Watanabe, Takashi Taniguchi, Takahiro Niiyama, Kenta Miya and MasateruTaniguchi, Nature Photon.3591-594(2009)
    [28]Kenji Watanabe, Takashi Taniguchi and Hisao Kanda, Nature materials.3404-409(2004)
    [29]Th. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag, Appl. Phys. Lett.84,5359-5361(2004).
    [30]S. C. Su, Y. M. Lu, Z. Z. Zhang, C. X. Shan, D. Z. Shen, B. Yao, J. Y. Zhang, B. HLi, D. X. Zhao, X. W. Fan, Appl.Phys.Lett.93,082108(2008).
    [31]J. W. Sun, Y. M. Lu, Y. C. Liu, D. Z. Shen, Z. Z. Zhang, B. H. Li, J. Y. Zhang, BYao, D. X. Zhao and X. W. Fan, J.Phys.D:Appl.Phys.406541-6544(2007).
    [32]Z. P. Wei, Y. M. Lu, D. Z. Shen, C. X. Wu, Z. Z. Zhang, D. X. Zhao, J. Y. Zhang,X. W. Fan, Journal of Luminescence119-120551-555(2006).
    [33]J. D. Ye, H. Zhao, W. Liu, S. L. Gu, R. Zhang, Y. D. Zheng, S. T. Tan, X. W. Sun,G. Q. Lo, and K. L. Teo, Appl. Phys. Lett.92,131914(2008).
    [34]Kanaya K. and Okayama S, J. Phys. D.,5,43(1972)
    [35]D. Drouin, A. R. Couture, D. Joly, X. Tastet, Aimez, and R. Gauvin, Scanning29,92-101(2007)
    [36]Guangyou Yu, Xiwu Fan, Jiying Zhang, Baojun Yang, Dezhen Shen, and XiaoweiZhao, Journal of Electronic Materials, Vol.27,No.91007-1009(1998).
    [37]Guangyou Yu, Xiwu Fan, Jiying Zhang, Baojun Yang, Xiaowei Zhao, DezhenShen, Solid State Communications110127-130(1999).
    [38]S.C. Su et al, Superlattices and Microstructures48485–490(2010)
    [39]S. V. Gronin, S. V. Sorokin, I. V. Sedova, S. V. Ivanov, E. V. Zdanova,M. M.Zverev,7:1694–1696. Phys. Status Solidi C (2010)
    [40]T. Makino, K. Tamura, C. H.Chia, Y. Segawa, M. Kawasaki, A.Ohtomo and H.Koinuma, Appl.Phys.Lett.81,1323(2002).
    [41]B. P. Zhang, B. L. Liu, J.Z. Yu, Q. M. Wang, C. Y. Liu, Y. C. Liu, and Y. SegawaAppl. Phys. Lett.90,132113(2007)
    [42]T. Bretagnon, P.Lefebvre, T. Guillet, T. Taliercio, B. Gil and C. Morhain, Appl.Phys. Lett.90,201912(2007).
    [43]T. Makino, Y. Segawa, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, Appl. Phys.Lett.93,121907(2008).
    [44]O. Gelhausen, M. R. Phillips, and M. Toch, J.Appl.Phys.89,6(2001)
    [45]L.Esaki, R.Tus, IBM Res.Note, RC-2418, Mar.(1969)
    [46]S.Ten, M.F.Krol, B.P.McGinnis, M.J.Hayduk, G.Khitrova, N.Peyghambaniem,J.Appl.Phys.,79,1526(1996)
    [47]M.F.Krol, S.Ten, B.P.McGinnis, M.J.Hayduk, G.Khitrova, N.Peyghambarian,Phys.Rev. B52,14344(1995)
    [48]N.Sawaki, R.A.Hopfel, E.Gornik, H.Kano, Appl.Phys.Lett.,55,1996(1989)
    [49]Karl Leo, Jagdeep Shah, E.O.Gobel, J.P.Gordon, Stefan Schmitt-Rink,Semicond.Sci.Technol.,7, B394(1992)
    [50] J.Kuhl, R.Strobel, R.Eccleston, K.Kohler, Semicond.Sci.Technol.,7, B418(1992)
    [51]D.Y.Oberli, Jagdeep Shah, T.C.Damen, J.M.Kuo, J.E.Henry, Jenifer Lary, StephenM.Goodnick, Appl.Phys.Lett.,56,1239(1990)
    [52]R.Sauer, K.Thonke, W.T.Tsang, Phys.Rev.Lett.,61,609(1988)
    [53]A.Tackeughi, A.P.Heberle, W.W.Ruhle, K.Kohler, S.Muto, Jpn.J.Appl.Phys.,34,L543(1995)
    [54]S.Haacke, N.T.Pelekanos, H.Mariette, A.P.Heberle, W.W.Ruhle, M.Zigone,J.Crystal Growth,138,831(1994)
    [55]K.Kuroyanagi, N.Sawaki, T.Takatsuka, I.Akasaki, T.Kawakam, G.Goto,Semicond. Sci.Technol.,7, B424(1992)
    [56]S.Ten, F.Henneberger, M.Rabe, N.Peyghambarian, Phys.Rev. B53,12637(1996)
    [57]P.D.Coleman, J.Freeman, H.Morkoc, K.Hess, B.Streetman, M.Keever,Appl.Phys.Lett.,40,493(1982)
    [58]S.W.Kirchoefer, R.Magno, J.Comas, Appl.Phys.Lett.,44,1054(1984)
    [59]Pond J M, Kirchoefer S W, Cukauskas E J, Microwave amplification to2.5GHzin a quantum state transfer device [J].Appl.Phys.Lett.,(1985)47,1175
    [60]Sawaki N, et al. Photo-luminescence studies of hot electrons and real spacetransfer effect in a double quantum well superlattice [J]. Superlattice andMicrostructures,(1986)2,281
    [61]Kano H, Tanaka Y, Sawaki N, Negative differential resistance device built in abiwell GaAs/AlGaAs superlattice [J].J.Cryst.Growth,(1987)81,144
    [62]D.F.Nelson, R.C.Miller, D.A.Kleinman, A.C.Gossard, Phys.Rev. B34,8671(1986)
    [63]T.Weil, B.Vinter, J.Appl.Phys.,60,3227(1986)
    [64]B.Deveaud, A.Chomette, F.Clerot, P.Auvray, A.Regreny, R.Ferreira, G.Bastard,Phys.Rev. B42,7021(1990)
    [65]D.Y.Oberl, J.Shap, T.C.Damen, J.M.Kuo, J.E.Henry, J.Lary, S.M.Goodnick,Appl.Phys.Lett.,56,1239(1990)
    [66]A.P.Heberle, W.W.Ruhle, M.G.W.Alexander, K.Kohler, Semicond.Sci.Technol.,7,B421(1992)
    [67]A.P.Heberle, X.Q.Zhou, A.Tackeuchi, W.W.Ruhle, K.Kohler,Semicond.Sci.Technol.,9,519(1994)
    [68] S.Ten, M.F.Krol, B.P.McGinnis, M.J.Hayduk, G.Khitrova, N.Peyghambarian,J.Appl.Phys.,79,1526(1996)
    [69]M.F.Krol, R.P.Leavitt, J.T.Pham, B.P.McGinnis, N.Peyghambarian,Appl.Phys.Lett.,66,3045(1995)
    [70] S.Haacke, N.T.Pelekanos, H.Mariette, M.Zigone, A.P.Heberle, W.W.Ruhle,Phys.Rev. B47,16643(1993)
    [71] R Thierry, G Perillat-Merceroz, P H Jouneau, P Ferret and G Feuillet,Nanotechonlogy.23(2012)1-6.
    [72] Yanfeng Zhang and Richard E. Russo and Samuel S.Mao, Appl.phys.Lett.87(2005)043106
    [73] Dong Kwon Kim and D.S.Citrin.IEEE Journal of Quantum Electronics.(2007)9(43)
    [74]M.F.Krol, R.P.Leavitt and J.T.Pham, B.P.McGnnis and N.PeyghambarianAppl.phys.Lett.66(22),29May (1995)
    [75]D.F.Nelson, R.C.Miller, D.A.Kleinman, and A.C.Gossard, Phys.Rev.B34,8617(1986)7021.
    [76] Mariano A. Zimmler, Jiming Bao, Federico, Federico Capasso, Sven Müller, andCarsten Ronning. Appl.Phys.Lett.93,051101(2008).
    [77]C.X.Xu, X.W.Sun, ClementYuen, B.J.Chen, S.F.Yu, and Z.L.Dong.Appl.Phys.Lett.86,011118(2005).
    [78] J. D. Ye, H. Zhao, W. Liu, S. L. Gu, R. Zhang, Y. D. Zheng, S. T. Tan, X. W. Sun,G. Q. Lo, and K. L. Teo, Appl. Phys. Lett.92,131914(2008).
    [79] O. Gelhausen, M. R. Phillips, and M. Toch, J.Appl.Phys.89,6(2001)
    [80] Jie Chen, L.Aé, Ch.Aichele, and M.Ch.Lux-Steiner, Appl.phys.Lett.92161906(2008).
    [81] D.F.Nelson, R.C.Miller, D.A.Kleinman, and A.C.Gossard, Phys.Rev.B34,8617(1986)7021.
    [82]唐天同、刘纯亮编著,电子束与离子束物理,西安交通大学出版社,2001年.
    [83] C.J. Powell, J.B. Swan, Phys. Rev.115,869(1959).
    [84] Y.Y.Teng, E.A.Stern, Phys. Rev. Lett.19,511(1967).
    [85]Ernst Jan R.Vesseur, Javier Aizpurua, Toon Coenen, Alejandro Reyes-Coronado,Philip E. Batson, and Albert Plasmonic excitation and manipulation with an electronbeam Polman Mrs Bulletin Volume37August2012
    [86]王彦杰浙江大学硕士论文
    [87]W.L.Barnes, Eleetromagnetic crystals for surface Plasmon Polaritons and theextraetion of1ight from emissive devices. Journal of Lightwave Technology,1999,17(11)2170-2182
    [88]C. W. Lai, J. An, and H. C. Ong, Surface-plasmon-mediated emission frommetal-capped ZnO thin films [J], Appl. Phys. Lett.,2005,86(25):251105-251103.
    [89] J. B. You, X. W. Zhang, Y. M. Fan, S. Qu, and N. F. Chen, Surface plasmonenhanced ultraviolet emission from ZnO films deposited on Ag Si(001) bymagnetron sputtering [J], Appl. Phys. Lett.,2007,91(23):231907.
    [90] J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Cai, and N. F. Chen, Effects ofthe morphology of ZnO/Ag interface on th e surface-plasmon-enhanced emissionof ZnO films [J], J. Phys. D: Appl. Phys.,2008,41(20):205101
    [91]W.F.Yang,R.Chen,B.Liu,GG.Gurzadyan,L.M.Wong,S.J.Wang,and H.D.Sun.Surface-Plasmon enhancement of bandgap emission from ZnCdO thin films bygold Partieles. APPlied Physies Letters,2010,97(6):061104.
    [92] K.W.Liu,Y.D.Tang,C.X.Cong, T.C.Sum,A.C.Huan,2.X.Shen, L.Wang.F.Y.Jiang,X.W.Sun,and H.D.Sun.Giant enhancement of to Pemission from ZnOthin films by nano Patterned Pt APPliedPhysiesLetters,2009,94(15):151102.
    [93] Matthew Rycenga, Claire M. Cobley, Jie Zeng, Weiyang Li, Christine H. Moran,Qiang Zhang, Dong Qin,and Younan Xia*Controlling the Synthesis andAssembly of Silver Nanostructures for Plasmonic Applications Chem. Rev.2011,111,3669–3712
    [94] Yanjie Wang, Haiping He, Yalin Zhang, Luwei Sun, Liang Hu Kewei Wu,Jingyun Huang, and Zhizhen Ye. APPLIED PHYSICS LETTERS100,112103(2012) Metal enhanced photoluminescence from Al-capped ZnMgO films:Theroles of plasmonic coupling and non-radiative recombination

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700