用户名: 密码: 验证码:
保护性耕作下黑土有机碳固定机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增加土壤有机碳(Soil organic carbon, SOC)固定不仅可以促进土壤肥力提高和农业持续发展,而且有利于降低土壤CO_2释放,进而减缓温室效应。随着国际社会对农业土壤固定大气CO_2的日益关注,不同耕作方式对SOC固定的影响以及SOC的固定机制问题成为该领域的研究重点。本论文以我国东北中层黑土上进行的保护性耕作定位试验(11年)土壤和加拿大安大略省西南部长期(29年)不同耕作方式定位试验土壤(与我国东北黑土类似的土壤和作物类型)为对象,研究了不同耕作方式下SOC储量的动态变化及其结构稳定性,探讨了各粒级团聚体在SOC固定中的作用,以期寻求促进我国东北黑土SOC固定的最佳耕作方式,为农业土壤固碳机理研究提供参考。
     研究结果说明,保护性耕作促进了供试黑土稳定土壤结构体的形成和大团聚体结合碳的增加,有利于土壤结构的改善,而且垄作(Ridge tillage, RT)的效果比免耕(No-tillage,NT)更明显。RT促进了农田黑土SOC的增加,通过保护大团聚体内颗粒态有机碳(Particulate organic carbon, POC)和促进微团聚体形成而促进了土壤SOC的增加。在质地粘重排水不良的黑土上RT较NT更有利于土壤肥力的改善,是使农田黑土由CO_2“源”变为“汇”的有效农艺措施。
     传统耕作下胡敏酸含量及胡敏酸含碳百分比显著高于长期免耕。随耕作强度的增加,土壤胡敏酸的芳香度增加,脂化度降低,微生物分解产物有向木质素转化的趋势。
     中红外光谱技术可以作为研究土壤颗粒SOC官能团和结构特征的良好手段。曲线拟合技术为进一步解译和提取各个官能团信息提供了可能。在各土壤颗粒组分中,砂粒级组分SOC对耕作方式的响应最为明显。长期免耕下其脂肪碳含量和脂肪碳与芳香碳的比例均显著低于长期传统耕作土壤。
     好氧培养条件下NT土壤CO_2释放较传统耕作强烈,尤其是0.25-0.053mm团聚体。各团聚体结合碳矿化量随团聚体粒级增大而增加;由4-1mm及1-0.25mm团聚体压碎过0.25mm筛后得到的破碎团聚体(0.25-0.053mm)碳矿化量超过4-1mm团聚体,充分说明了大团聚体结构破坏之后SOC因失去保护而矿化损失加剧。
     团聚体结构的核心和表面部分SOC的含量和结构稳定性均有较大差异,尤其在发育良好的森林和草地团聚体体中这种差异比农田团聚体更为明显。好气培养条件下团聚体表面部分SOC矿化量显著高于核心SOC,表面部分的碳库半生命周期也远远低于核心。也就是说,与其核心SOC相比,团聚体表面的SOC活性更强,容易分解矿化。团聚体表面脂肪碳含量显著高于团聚体核心,而芳香碳含量则是核心部分高于表面,这进一步验证了团聚体核心的SOC结构稳定性和腐殖化程度高于其表面。上述结果从团聚体内部结构的角度说明了团聚体对SOC的保护作用机制。
The improvement of soil organic carbon (SOC) sequestration not only helps maintain soilfertility and sustainable development of agriculture, but also contributes to the reduction ofCO_2release from soil, which in turn retards the greenhouse effect. As the sequestration of CO_2in farmland soil becoming a hot research spot, the effects of different tillage managements onSOC sequestration and the sequestration mechanisms is the focus of research in this field. Inthis study, we mainly determined the storage and structure stability of SOC fractions indifferent tillage systems and analyzed the roles aggregates played in SOC sequestration, basedon a short-term tillage trial in black soils in northeast China and a long-term trial in blacksoils in southwest Ontario, Canada. The results are helpful in selecting a suitable tillagesystem in favor of SOC sequestration and in understanding the mechanisms.
     Conservation tillage favors the formation of stable aggregates, improves soil structure,and increases SOC contents in macro-aggregates. The effects of ridge tillage (RT) is moreobvious than no-tillage (NT). RT improves SOC sequestration in black soils of northeastChina in the form of particulate organic carbon (POC) and micro-aggregates occluded inmacro-aggregates. Compared with NT, RT is more favorable to the improvement of soilfertility and turning farmland soil from C “source” into C “sink” in the poorly-drained clayloam soil of northeast China.
     The concentration of humic acid in soil and C concentration in humic acid aresignificantly higher in soil under conventional tillage (CT) than under long-term NT. With theincrease of tillage intensity, the humic acid becomes more humified, and showes a trend oftransformation from microbial decomposition product towards lignin.
     The mid-infrared spectroscopy combined with curve-fitting technique is a good approachto study SOC structure features in soil fractions. The curve-fitting technique makes it possibleto further interpret peak and functional group information in mid-infrared spectra. Comparedto smaller-sized fractions, the SOC in sand-sized fraction responds faster to tillagemanagements. Concentration of aliphatic-C and aliphatic-to aromatic-C ratio are significantly higher in long-term NT soils than in CT soils.
     More CO_2release is observed from NT soil aggregates than CT in aerobic incubation,indicating that the SOC associated with aggregates in NT soil is more easily mineralizable,especially with0.25-0.053mm aggregates. Carbon mineralization from aggregates increaseswith aggregates size. The CO_2release from crushed aggregates (from4-1mm and1-0.25mmto below0.25mm) is higher than from the4-1mm. These results show that C mineralizationincreases when it loses the protection from macro-aggregates structure.
     The SOC concentration and stability differ greatly from the inner cores to the externallayers of aggregates, especially in the well-developed woodlot and grassland soil aggregates.The CO_2released during aerobic incubation was significantly greater from aggregate externallayers than from the cores. The SOC in the cores was associated with a longer half-life and anotably greater stable C (aromatic-C) pool than that in aggregate external layers, whichsuggests that the SOC was more decomposable in the external layers than the cores. Theseresults illustrated the mechanisms of SOC sequestration from an internal aggregate structurepoint of view.
引文
Agustin, L.O., Govaerts, B., Deckers, J., Sayre, K.D.,2006. Soil aggregate and microbial biomass in apermanent bed wheat–maize planting system after12years. Field Crops Research,97:302-309.
    Al-Kaisi, M.M., Yin, X.H., Licht, M. A.,2005. Soil carbon and nitrogen changes as influnenced by tillageand cropping systems in some Iowa soils. Soil and Tillage Research,105:635-647.
    álvaro-Fuentes, J., Cantero-Martínez, C., López, M.V.,2009. Soil aggregation and soil organic carbonstabilization: effects of management in semiarid Mediterranean agroecosystems. Soil Science Societyof America Journal,73:1519-1529.
    Amelung, W., Flach, K.W., Zech, W.,1999. Lignin in particle-size fractions of native grassland soils asinfluenced by climate. Soil Science Society of America Journal,63:1222-1228.
    Amelung, W., Zech, W.,1996. Organic species in ped surface and core fractions along a climosequence inthe prairie, North America. Geoderma,74:193-206.
    Angers, D.A., Bolinder, M.A., Carter, M.R., Gregorich, E.G., Voroney, R.P., Drury, C.F., Liang, B.C.,Simard, R.R., Donald, R.G., Beyaert, R.P., Martel, J.,1997. Impact of tillage practices on organiccarbon and nitrogen storage in cool, humid soils of eastern Canada. Soil and Tillage Research,41:191-201.
    Antil, R.S., Gerzabek, M.H., Haberhauer, G.., Eder, G.,2005. Long-term effects of cropped vs. fallow andfertilizer amendments on soil organic matter I. Organic carbon. Journal of Plant Nutrition and SoilScience,168:108-116.
    Antunes, P.A., Chierice, G.O., Constantino, C.J.L., Aroca. R.F.,2001. Spectroscopic characterization ofN-isobutyl-6-(p-methoxyphenyl)2E,4E-hexadiaeneamide extracted from Ottonia proponqua.Vibrational Spectroscopy,27:175-181.
    Ashagrie, Y., Zech, W., Guggenberger, G., Mamo, T.,2007. Soil aggregation, and total and particulateorganic matter following conversion of native forests to continuous cultivation in Ethiopia. Soil andTillage Research,94:101-108.
    Baes, A.U., Bloom, P.R.,1989. Diffuse reflectance and transmission Fourier transformation infrared(DRIFT) spectroscopy of humic and fulvic acids. Soil Science Society of America Journal,53:695-700.
    Baker, J.M., Ochsner, T.E., Venterea, R.T., Griffis, T.J.,2007. Tillage and soil carbon sequestration-Whatdo we really know? Agriculture, Ecosystems and Environment.118:1-5.
    Balota, E.L., Filho, A.C., Andrade, D.S., Richard, P.D.,2004. Long-term tillage and crop rotation effects onmicrobial biomass and C and N mineralization in a Brazilian Oxisol. Soil and Tillage Research,77:137-145.
    Bayer, C., Martin-Neto, L., Mielniczuk, J., Dieckow, J., Amado, T.J.C.,2006. C and N stocks and the roleof molecular recalcitrance and organomineral interaction in stabilizing soil organic matter in asubtropical Acrisol managed under no-tillage. Geoderma,133:258-268.
    Bayer, C., Martin-Neto, L., Saab, S.C.,2003. Humification decrease of soil organic matter under no-tillage.Revista Brasileira de Ciência do Solo,27:537-544.
    Blanco, M., Villarroya, I.,2002. NIR spectroscopy: a rapid-response analytical tool. Trends in analyticalchemistry,21(4):240-250.
    Blanco-Canqui, H., Lal, R.,2004. Mechanisms of carbon sequestration in soil aggregates. Critical Reviewsin Plant Sciences,23(6):481-504.
    Blanco-Canqui, H., Lal, R.,2004b. Tensile strength of aggregates. In R. Lal (Ed.) Encyclopaedia of SoilSciences, Marcel dekker, New York.
    Bol, R., Amelung, W., Friendrich, C.,2004. Role of aggregate surface and core fraction in the sequestrationof carbon fromdung in a temperate grassland soil. European Journal of Soil Science,55:71-77.
    Bossuyt, H., Denef, K., Six, J., Frey, S.D., Merckx, R., Paustian, K.,2001. I nfluence of microbialpopulations and residue quality on aggregate stability. Applied Soil Ecology.16(3):195-208.
    Bornemann, L., Welp, G., Amelung, W.,2010. Particulate organic matter at the field scale: rapid acquisitionusing mid-infrared spectroscopy. Soil Science Society of America Journal,74:1147-1156.
    Bravo-Garza, M.R., Bryan, R.B., Voroney, P.,2009. Influence of wetting and drying cycles and maizeresidue addition on the formation of water stable aggregates in Vertisols. Geoderma,151:150-156.
    Bu, X.L., Wang, L.M., Ma, W.B., Yu, X.N., McDowell, W.H., Ruan, H.H.,2010. Spectroscopiccharacterization of hot-water extractable organic matter from soils under four different vegetationtypes along an elevation gradient in the Wuyi Mountains. Geoderma,159:139-146.
    Calderón, F.J., Reeves, J.B., Collins, H.P., Paul, E.A.,2011. Chemical differences in soil organic matterfractions determined by diffuse-reflectance mid-infrared spectroscopy. Soil Science Society ofAmerica Journal,75:568-579.
    Carter, M.R., Angers, D.A., Gregorich, E.G., Bolinder, M.A.,2003. Characterizing organicmatter retention for surface soils in eastern Canada using density and particle sizefractions. Canadian Journal of Soil Science,83:11-23.
    Chenu, C., Hassink, J., Bloem, J.,2001. Short-term changes in the spatial distribution of microorganisms insoil aggregates as affected by glucose addition. Biology and Fertility of Soils,34:349-356.
    Chodak, M., Khanna, P., Horvarth, B., Friedrich, B.,2004. Near infrared spectroscopy for determination oftotal and exchangeable cations in geologically heterogeneous forest soils. Journal of Near InfraredSpectroscopy,12:315-324.
    Christensen, B.T.,1987. Decomposability of organic matter in particle size fractions from field soils withstraw incorporation. Soil Biology and Biochemistry,19:429-435.
    Cookson, W.R., Murphy, D.V., Roper, M.M.,2008. Characterizing the relationships between soil organicmatte components and microbial function and composition along a tillage disturbance gradient. SoilBiology and Biochemistry,40:763-777.
    Danten, Y., Tassaing, T., Besnard, M.,2006. Density functional theory (DFT) calculations of the infraredabsorption spectra of acetaminophen complexes formed with ethanol and acetone species. The Journalof Physical Chemistry,110:8986-9001.
    Deen, W., Kataki, P.K.,2003. Carbon sequestration in a long-term conventional versus conservation tillageexperiment. Soil and Tillage Research,74:143-150.
    Denef, K., Six, J., Merckx, R., Paustian, K.,2004. Carbon sequestration in microaggregates of no-tillagesoils with different clay mineralogy. Soil Science Society of America Journal,68:1935–1944.
    Dick,W.A., McCoy, E.L., Edwards, W.M., Lal, R...,1991. Continuous application of no-tillage to Ohiosoils. Agronomy Journal,83:65-73.
    Diekow, J., Mielniczuk, J., Knicker, H., Bayer, C., Dick, D.P., K gel-Knabner, I.,2005. Carbon andnitrogen stocks in physical fractions of a subtropical Acrisol as influenced by long-term no-tillcropping systems and N fertilisation. Plant and Soil,268:319-328.
    Dinesh, R., Chaudhufi, S.G., Ganeshamurthy, A.N., Dey, C.,2003. Changes in soil microbial indices andtheir relationships following deforestation and cultivation in wet tropical forests. Applied Soil Ecology,24:17-26.
    Ding, G., Novak, J.M., Amarasiriwardena, D., Hunt, P.G., Xing, B.,2002. Soil organic matter characteristicsas affected by tillage management. Soil Science Society of America Journal,66:421-429.
    Dong, W.X., Hu, C.S., Chen, S.Y., Zhang, Y.M.,2009. Tillage and residue management effects on soilcarbon and CO2emission in a wheat-corn double-cropping system. Nutrient Cycling inAgroecosystems,83:27-37.
    Du, C., Linker, R., Shaviv, A.,2008. Identification of agricultural Mediterranean soils using mid-infraredphotoacoustic spectroscopy. Geoderma,143:85-90.
    Ellerbrock, R.H., Gerke, H.H.,2004. Characterizing organic matter of soil aggregate coatings and bioporesby Fourier transform infrared spectroscopy. European Journal of Soil Science,55:219-228.
    Elliott, E.T., Coleman, D.C.,1988. Let the soil work for us. Ecological Bulletins,39:23-32.
    Elustondo, J., Angers, D.A., Laverdière, M.R., N’Dayegamiye, A.,1990. étude comparative deI’agrégation et de la matière organique associée aux fractions granulométriques de sept soils sousculture de ma s ou en praire. Canadian Journal of Soil Science,70:395-402.
    Fan, T.W.M., Higashi, R.M., Lane, A.N.,2000. Chemical characterization of a chelatortreated soil humateby solution-state multinuclear two-dimensional NMR with FTIR and pyrolysis-GCMS. EnvironmentalScience Technology,34:1636-1646.
    Fonte, S.J., Barrios, E., Johan, S.,2010. Earthworms, soil fertility and aggregate-associated soil organicmatter dynamics in the Quesungual agroforestry system. Geoderma,155:320-328.
    Francioso, O., Sànchez-Cortéz, S., Tugnoli, V., Ciavatta, C., Sitti, L., Gessa, C.,1996. Infrared, Raman, andnuclear magnetic resonance (1H,13C and31P) spectroscopy in the study of fractions of peat humicacids. Applied Spectroscopy,50:1165-1174.
    Franzluebbers, A.J., Arshad, M.A.,1997. Particulate organic carbon content and potential mineralization asaffected by tillage and texture. Soil Science Society of America Journal,61:1382-1386.
    Franzluebbers, A.J., Stuedemann, J.A.,2002. Particulate and non-particulate fractions of soil organiccarbon under pastures in the Southern Piedmont USA. Environmental Pollution,116:53-62.
    Freixo, A.A, Machado, P.L.O.A., Santos, H.P., Silva, C.A., Fadigas, F.S.,2002. Soil organic carbon andfractions of a Rhodic Ferralsol under the influence of tillage and crop rotation systems in southernBrazil. Soil and Tillage Research,64:221-230.
    García-Oliva, F., Casar, I., Morales, P., Maass, J.M.,1994. Forest-to-pasture conversion influences on soilorganic carbon dynamics in a tropical deciduous forest. Oecologia,99:392-396.
    Garten, C.T., Post, W.M., Hanson, P.J., Cooper, L.W.,1999. Forest soil carbon inventories and dynamicsalong an elevation gradient in the southern Appalachian Mountains. Biogeochemistry,45:115-145.
    Gerzabek, M.H., Haberhaner, G., Kinhmann, H.,2001. Soil organic matter pools and carbon-13naturalabundance in particle-size fractions of a long-term agricultural field experiment receiving organicamendments. Soil Science Society of America Journal,65:352-358.
    Gerzabek, M.H., Antil, R.S., K gel-Knabner, I., Knicker, H., Kirchmann, H., Haberhauer, G.,2006. Howare soil use and management reflected by soil organic matter characteristics: a spectroscopic approach.European Journal of Soil Science,57:485-494.
    Ghadiri, H., Rose, C.W.,1991. Sorbed chemical transport in overland flow: I. A nutrient and pesticideenrichment mechanism. Journal of Environmental Quality,20:628-633.
    Ghani, A., Dexter, M., Perrott, K.W.,2003. Hot-water extractable carbon in soil: a sensitive measurementfor determining impacts of fertilisation, grazing and cultivation. Soil Biology and Biochemistry,35:1231-1243.
    Giusquiani, P.L., Concezzi, L., Busibelli, M., Macchioni, A.,1998. Fate of pig sludge liquid fraction incalcareous soil: agricultural and environmental implications. Journal of Environmetal Quality,27:364-371.
    Golchin, A., Baldock, J.A., Clarke, P., Higashi, T., Oades, J.M.,1997. The effects of vegetation and burningon the chemical composition of soil organic matter of a volcanic ash soil as shown by13C NMRspectroscopy. II. Density fractions. Geoderma,76:175-192.
    González-Pérez, M., Martin-Neto, L., Saab, S.C., Simoes, M.L., da Silva, W.T.L., Pereira-Filho, E.R., deMelo, W.J., Martin-Neto, L.,2004. Characterization of humic acids from a Brazilian Oxisol underdifferent tillage systems by EPR,13C-NMR, FTIR and fluorescence spectroscopy. Geoderma,118:181-190.
    Guggenberger, G., Christensen, B.T., Zech, W.,1994. Land-use effects on the composition of organic matterin particle-size separates of soil. I. Lignin and carbohydrate signature. European Journal of SoilScience,45:449-458.
    Guggenberger, G., Zech, W., Haumaier, L., Christensen, B.T.,1995. Land-use effects on the composition oforganic matter in particle-size separates of soils. II: CPMAS and solution13C NMR analysis.European Journal of Soil Science,46:147-158.
    Harley, J.L., Smith, S.E.,1983. Mycorrhizal Symhiosis, Academic Press, London, UK.
    Hassink, J.,1996. Preservation of plant residues in soils differing in unsaturated protective capacity. SoilScience Society of America Journal,60:487-491.
    Hassink, J.,1997. The capacity of soils to preserve organic C and N by their association with clay and siltparticles. Plant and Soil,191:77-87.
    Hassink, J., Whitmore, A.P.,1997. A model of the physical protection of organic matter in soils. SoilScience Society of American Journal,61:131-139.
    He, Z., Ohno, T., Cade-Menun, B.J., Erich, M.S., Honeycutt, C.W.,2006. Spectral and chemicalcharacterization of phosphates associated with humic substances. Soil Science Society of AmericaJournal,70:1741-1751.
    Helfrich, M., Ludwig, B., Buurman, P., Flessa, H.,2006. Effect of land use on the composition of soilorganic matter in density and aggregate fractions as revealed by solid-state13C NMR spectroscopy.Geoderma,136:331-341.
    Hopkins, D.W., Chudek, J.A., Shiel, R.S.,1993. Chemical characterization and decomposition of organicmatter from two contrasting grassland soil profiles. European Journal of Soil Science,44:147-157.
    Horn, R., Taubner, H., Wuttke, M., Baumgartl, T.,1994. Soil physical properties related to soil structure.Soil and Tillage Research,30:187-216.
    IPCC.,1995. Climate Change: The science of climate change (Report of Group1). New York: CambridgeUniversity Press.
    Jagadamma, S., Lal, R.,2010. Distribution of organic carbon in physical fractions of soils as affected byagricultural management. Biology and Fertility of Soils,46:543-554.
    Janssens, I.A., Lankreijer, H., Matteucci, G., Kowalski, A.S., Buchmann, N., Epron, D., Pilegaard, K.,Kutsch, W., Longdoz, B., Grünwald, T., Montagnani, L., Dore, S., Rebmann, C., Moors, E.J., Grelle,A., Rannik, ü., Morgenstern, K., Oltchev, S., Clement, R., Guemundsson, J., Minerbi, S., Berbigier, P.,Ibrom, A., Moncrieff, J., Aubinet, M., Bernhofer, C., Jensen, N.O., Vesala, T., Granier, A., Schulze,E.D., Lindroth, A., Dolman, A.J., Jarvis, P.G., Ceulemans, R., Valentini, R.,2001. Productivityovershadows temperature in determining soil and ecosystem respiration across European forests.Global Change Biology,7(3):269-278.
    Jasinska, E., Wetzel, H., Baumgartl, T., Horn, R.,2006. Heterogeneity of physic-chemical properties instructured soils and its consequences. Pedosphere,16(3):284-296.
    Jav rek, M., Vach, M., Mikanova, O.,2005. Impact of different methods of field crop stand establishmenton development of soil biota in topsoil and subsoil. Lucrari Stiintifice, vol.48, seria Agronomie,Universitatea de Stiinte Agricole si Medicina Veterinara Iasi, Romania, pp.462-469.
    Kadono, A., Funakawa, A., Kosaki,. T.,2008. Factors controlling mineralization of soil organic matter inthe Eurasian steppe. Soil Biology and Biochemistry,40:947-955.
    Kern, J.S., Johnson, M.G.1993. Conservation tillage impacts on national soil and atmospheric carbonlevels. Soil Science Society of America Journal,57(1):200-210.
    Khalil, M.I., Hossain, M.B., Schmidhalter, U.,2005. Carbon and nitrogen mineralization in different uplandsoils of the subtropics treated with organic materials. Soil Biology and Biochemistry,37:1507-1518.
    Killham, K., Amato, M., Ladd, J.N.,1993. Effect of substrate location in soil and soil pore-water regime oncarbon turnover. Soil Biology and Biochemistry,25:57-62.
    Lal, R.1998. Soil quality changes under continuous cropping for seventeen seasons of an Alfisol in westernNigeria. Land Degradation and Development,9(3):259-274.
    Lal, R.,2004. Soil carbon sequestration impacts on global climate change and food security. Science,304:1623-1627.
    Leifeld, J.,2006. Application of diff use reflectance FT-IR spectroscopy and partial least squares regressionto predict NMR properties of soil organic matter. European Journal of Soil Science,57:846-857.
    Liang, A.Z, Zhang, X.P, Fang, H.J, Yang, X.M., Drury, C.F.,2007. Short-term effects of tillage practices onsoil organic carbon in clay loam soil in Northeast China. Pedosphere,17(5):619-623.
    Liang, A., Mclaughlin N., Zhang, X., Shen Y., Shi X., Fan R.,2011. Short-term effects of tillage practiceson soil aggregate fractions in a Chinese Mollisol. Acta Agriculturae Scandinavica Section B: Soil andPlant Science.61:535-542.
    Liang, B.C., Wang, L.X., Ma, B.L.,2002. Maize root-induced change in soil organic carbon pools. SoilScience Society of America Journal,66:845-847.
    Liu, X.B., Burras, C.L., Kravchenko, Y.S., Duran, A., Huffman, T., Morras, H., Studdert, G., Zhang, X.Y.,Cruse, R.M., Yuan, X.H.,2012. Overview of Mollisols in the world: Distribution, land use andmanagement. Canadian Journal of Soil Science,92:383-402.
    Lorenz, K., Lal, R., Shipitalo, M.J.,2008. Chemical stabilization of organic carbon pools in particle sizefractions in no-till and meadow soils. Biology and Fertility of Soils,44:1043-1051.
    Ludwig, B., Khanna, P.K., Bauhus, J., Hopmans, P.,2002. Near infrared spectroscopy of forest soils todetermine chemical and biological properties related to soil sustainability. Forest Ecology andManagement,171:121-132.
    Madari, B., Machado, P.L.O.A., Torres, E., de Andrade, A.G., Valencia, L.I.O.,2005. No tillage and croprotation effects on soil aggregation and organic carbon in a Rhodic Ferralsol from southern Brazil.Soil and Tillage Research,80:185-200.
    Madari, B.E., Reeves, J.B., Machado, P.L.O.A., Guimar es, C.M., Torres, E., McCarty, G.W.,2006. Mid-and near-infrared spectroscopic assessment of soil compositional parameters and structural indices intwo Ferralsols. Geoderma,136:245-259.
    Madejón, E., Murillo, J.M., Moreno, F., López, M.V., Arrue, J.L., Alvaro-Fuentes, J., Cantero, C.,2009.Effect of long-term conservation tillage on soil biochemical properties in Mediterranean Spanish areas.Soil and Tillage Research,105:55-62.
    Madejova, J., Keckes, J., Paalkova, H., Komadel, P.,2002. Identification of components insmectite/kaolinite mixtures. Clay Minerals,37:377-388.
    Martins, T., Saab, S.C., Milori, D.M.B.P., Brinatti, A.M., Rosa, J.A., Cassaro, F.A.M., Pires, L.F.,2011.Soil organic matter humification under different tillage managements evaluated by Laser InducedFluorescence (LIF) and C/N ratio. Soil and Tillage Research,111:231-235.
    Mrabet, R., Saber, N., El-Brahli, A., Lahlou, S., Bessam, F.,2000. Total, particulate organic matter andstructural stability of a Calcixeroll soil under different wheat rotations and tillage systems in asemiarid area of Morocco. Soil and Tillage Research,57(4):225-235.
    McCarty, G.W., Lyssenko, N.N., Starr, J.L.1998. Short-term changes in soil carbon and nitrogen poolsduring tillage management transition. Soil Science Society of America Journal,62(6):1564-1571.
    Needleman, B.A., Wander, M.M., Bollero, G.A., Boast, C.W., Sims, G.K., Bullock, D.G.,1999. Interactionof tillage and soil texture: Biologically active soil organic matter in Illinois. Soil Science Society ofAmerica Journal,63:1326-1334.
    Nguyen, T., Janik, L.J., Raupach, M.,1991. Diffuse reflectance infrared Fourier transform (DRIFT)spectroscopy in soil studies. Australian Journal of Soil Research,29:49-67.
    Nyamadzawo, G., Nyamangara, J., Nyamugafata, P., Muzulu, A.,2009. Soil microbial biomass andmineralization of aggregate protected carbon in fallow-maize systems under conventional andno-tillage in Central Zimbabwe. Soil and Tillage Research,102:151-157.
    Oades, J.M.,1984. Soil organic matter and structural stability: mechanisms and implications formanagement. Plant and Soil,76(1-3):319-337.
    Olk, D.C., Brunetti, G., Senesi, N.,2000. Decrease in humification of organic matter with intensifiedlowland rice cropping: a wet chemical and spectroscopic investigation. Soil Science Society ofAmerica Journal,64:1337-1347.
    Pandey, C.B., Chaudhari, S.K., Dagar, J.C., Singh, G.B., Singh, R.K.,2010. Soil N mineralization andmicrobial biomass carbon affected by different tillage levels in a hot humid tropic. Soil and TillageResearch,110:33-41.
    Pardo, M.T., Giempaolo S., Almendr, G.,1997. Effect of cultivation on physical speciation of humicsubstances and plant nutrients in aggregate fractions of crusting soils from Zimbabwe. Biology andFertility of Soils,25:95-102.
    Park, E., Smucker, A.J.M.,2005a. Erosive Strengths of concentric regions within soil macroaggregates.Soil Science Society of America Journal,69:1912-1921.
    Park, E., Smucker, A.J.M.,2005b. Dynamics of carbon sequestered in concentric layers of soilmacroaggregates. Korean Journal of Ecology28(4):181-188.
    Paustian, K., Robertson, G.P., Elliottm, E.T.,1995. Management impacts on carbon storage and gas fluxes(CO2, CH4) in midlatitude cropland. pp.69–84. In R. Lal et al.(ed.) Advances in Soil Science. Vol.27.Lewis Publ., Boca Raton, FL.
    Peng, G., Ci, E., Fu, Z., Cao, M., Xie, D.,2011. Effects of conservation tillage on organic carbon andcarbon management index in paddy soil. Applied Mechanics and Materials,71-78:2759-2762.
    Plante, A.F., Fernández, J.M., Haddix, M.L., Steinweg, J.M., Conant, R.T.,2011. Biological, chemical andthermal indices of soil organic matter stability in four grassland soils. Soil Biology and Biochemistry,43:1051-1058.
    Powers, J.S.,2004. Changes in soil carbon and nitrogen after contrasting land-use transitions innortheastern Costa Rica. Ecosystems,7:134-146.
    Priesack, E., Kisser-Priesack, G.M.,1993. Modeling diffusion and microbial uptake of13C-glucose in soilaggregates. Geoderma,56:561-573.
    Provenzano, M.R., Caricasole, P., Brunetti, G., Senesi, N.,2010. Dissolved organic matter extracted with
    water and a saline solution from different soil profiles.Soil Science,175:255-262.
    Razafimbelo, T.M., Albrecht, A., Oliver, R., Chevallier, T., Chapuis-Lardy, L., Feller, C.2008. Aggregateassociated-C and physical protection in a tropical clayey soil under Malagasy conventional andno-tillage systems. Soil and Tillage Research,98(2):140-149.
    Rumpel, C., Janik, L.J., Skjemstad, J.O., Kogel-Knabner, I.,2001. Quantification of carbon derived fromlignite in soils using mid-infrared spectroscopy and partial least squares. Organic Geochemistry,32:831-839.
    Santos, D., Murphy, S.L.S., Taubner, H., Smucker, A.J.M., Horn, R.,1997. Uniform separation ofconcentric surface layers from soil aggregates. Soil Science Society of America Jounal,61:720-724.
    Schimann, H., Joffre, R., Roggy, J.C., Domenach, A.M.,2007. Evaluation of the recovery of microbialfunctions during soil restoration using near-infrared spectroscopy. Applied Soil Ecology,37:223-232.
    Singh, H., Pathak, P., Kumar, M., Raghubanshi, A.S.,2011. Carbon sequestration potential of indo-gangeticagroecosystem soils. Tropical Ecology,52:223-228.
    Six, J., Elliott, T., Paustian, K.,1999. Aggregate and soil organic matter dynamics under conventional andno-tillage systems. Soil Science Society of America Journal,63:1350-1358.
    Six, J., Elliott, E.T., Paustian, K.,2000a. Soil macroaggregate turnover and microaggregate formation: amechanism for C sequestration under no-tillage a culture. Soil Biology and Biochemistry,32:2099-2103.
    Six, J., Paustian, K., Elliott, E.T., Combrink, C.,2000b. Soil structure and soil organic matter I. Distributionof aggregate size classes and aggregate associated carbon. Soil Science Society of America Journal,64:681-689.
    Six, J., Conant, R.T., Paul, E.A., Paustain, K.,2002a. Stabilization mechanisms of soil organic matter:Implications for C-saturation of soils. Plant and Soil,241:155-176.
    Six, J., Feller, C., Denef, K., Ogle, S.M., de Moraes Sa, J.C., Albrecht, A.,2002b. Soil organic matter, biotaand aggregation in temperate and tropical soils—effects of no-tillage. Agronomie,22:755-775.
    Six, J., Bossuyt, H., Degryze, S., Denef, K.,2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research,79:7-31.
    Six, J.,2006. Impact of soil texture on the distribution of soil organic matter in physical and chemicalfractions. Soil Science Society of American Journal,70:287-296.
    Smucker, A., Park, E.J.,2006. Soil biophysical responses by macroaggregates to tillage of two soil types. In:Horn R, Fleige H, Peth S, Peng X (Ed) Soil management for sustainability, Catena Verlag, Reiskirchen,pp456-460.
    Soil Landscapes of Canada Working Group,2011. Soil landscapes of Canada. Version3.2. Agriculture andAgri-Food Canada.(digital map and database at1:1million scale).[Online] Available:http://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/intro.html [2011Mar.10].
    Sollins, P., Homann, P., Caldwell, B.A.,1996. Stabilization and destabilization of soil organic matter:mechanisms and controls. Ggeoderma,74:65-105.
    Solomon, D., Lehmann, J., Kinyangi, J., Liang, B.Q., Schafer, T.,2005. Carbon K-edge NEXAFS andFTIR-ATR spectroscopic investigation of organic carbon speciation in soils. Soil Science Society ofAmerica Journal,69:107-119.
    Spohn, M., Giani, L.,2011. Total, hot water extractable, and oxidation-resistant carbon in sandyhydromorphic soils-analysis of a220-year chronosequence. Plant and Soil,338:183-192.
    Stevenson, F.J.,1982. Humus Chemistry. Wiley. inter Science Publication, pp.374-402.
    Stevenson, F.J.,1994. Humus chemistry-genesis, composition, reactions. John Wiley&Sons, New York.
    Sun, B., Hallett, P.D., Caul, S., Daniell, T.J., Hopkins, D.W.,2011. Distribution of soil carbon andmicrobial biomass in arable soils under different tillage regimes. Plant and Soil,338:17-25.
    Tan, K.H.,2003. Humic Matter in Soil and the Environment Principles and Controversies. Marcel Dekker,Inc., New York.
    Tiessen, H., Stewart, J.W. B.,1983. Particle-size fractions and their use in studies of soil organic matter: II.Cultivation effects on organic matter composition in size fractions. Soil Science Society of AmericaJournal,47:509-514.
    Tisdall, J.M., Oades, J.M.,1982. Organic matter and water-stable aggregates in soils. Journal of SoilScience,33:141-163.
    Urbanek, E., Hallett, P., Feeney, D., Horn, R.,2007. Water repellency and distribution of hydrophilic andhydrophobic compounds in soil aggregates from different tillage systems. Geoderma,140:147-155.
    Urbanek, E., Smucker, A.J.M., Horn, R.,2011. Total and fresh organic carbon distribution in aggregate sizeclasses and single aggregate regions using natural13C/12C tracer. Geoderma,164:172-180.
    UNFCCC.2008. Fact Sheet. The Need for Mitigation. http://unfccc.int/press/items/2794.php.
    Van Veen, J. A., Kuikman, P.J.,1990. Soil structural aspects of decomposition of organic matter bymicro-organisms. Biogeochemistry,11:213-233.
    Viscarra, R.A., Walvoort, D.J.J, McBratney, A.B.,2006. Visible, near infrared, mid infrared or combineddiffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma,131:59-75.
    Wander, M.M., Yang, X.,2000. Influence of tillage on the dynamics of loose-and occluded-particulate andhumified organic matter fractions. Soil Biology and Biochemistry,2000,32:1151-1160.
    Whalen, J.K., Bottomley, P.J., Myrold, D.D.,2000. Carbon and nitrogen mineralization from light-andheavy-fraction additions to soil. Soil Biology and Biochemistry,32:1345-1352.
    Wander, M.M., Bidart, M.G., Aref, S.,1998. Tillage impacts on depth distribution of total and particulateorganic matter in three Illinois soils. Soil Science Society of America Journal,62(6):1704-1711.
    Wander, M.M., Yang, X.,2000. Influence of tillage on the dynamics of loose-and occluded-particulate andhumified organic matter fractions. Soil Biology and Biochemistry,32:1151-1160.
    Winsome, T., McColl, J.G.,1998. Changes in chemistry and aggregation of a California forest soil workedby the earthworm Argilophilus papillifer eisen. Soil Biology and Biochemistry,30(13):1677-1687.
    West, T.O., Marland, G.,2002. A synthesis of carbon sequestration, carbon emissions, and net carbon fluxin agriculture: Comparing tillage practices in the United States. Agriculture, Ecosystems andEnvironment,91(1-3):217-232.
    Wu, T.Y., Schoenau, J.J., Li, F.M., Qian, P.Y., Malhi, S.S., Shi, Y.C.,2006. Influence of tillage and rotationsystems on distribution of organic carbon associated with particle-size fractions in Chernozemic soilsof Saskatchewan, Canada. Biology and Fertility of Soils,42:338-344.
    Yang, X.M., Drury, C.F., Wander, M.M., Kay, B.D.,2008. Evaluating the effect of tillage on carbonsequestration using the minimum detectable difference concept. Pedosphere,18:421-430.
    Yang, Y.S., Guo, J.F., Chen, G.S., Yin, Y.F., Gao, R., Lin, C.F.,2009. Effects of forest conversion on soillabile organic carbon fractions and aggregate stability in subtropical China. Plant and Soil,323:153-162.
    Yang, X.M., Xie, HT., Drury, C.F., Reynolds, D.W., Yang, J.Y., Zhang, X.D.,2012. Determination oforganic carbon and nitrogen in particulate organic matter and particle size fractions of Brookston clayloam soil using infrared spectroscopy. European Journal of Soil Science,63:177-188.
    Yoo, G., Wander, M.M.,2008. Tillage effects on aggregate turnover and sequestration of particulate andhumified soil organic carbon. Soil Science Society of America Journal,72:670-676.
    Zhang, B., Horn, R.,2001. Mechanisms of aggregate stabilization in Ultisols from subtropical China.Geoderma,99:123-145.
    Zhang, Z.D., Yang, X.M., Drury, C.F., Reynolds, W.D., Zhao, L.P.,2010. Mineralization of active soilorganic carbon in particle size fractions of a Brookston clay soil under no-tillage and moldboardplough tillage. Canadian Journal of Soil Science,90:551-557.
    陈庆强,沈承德,彭少麟,易惟熙,孙彦敏,李志安,姜漫涛.2002.华南亚热带山地土壤有机质更新特征及其影响因子.生态学报,22(9):1446-1454.
    窦晶鑫,刘景双,王洋,赵光影.2009.三江平原草甸湿地土壤有机碳矿化对C/N的响应.地理科学,29(5):773-778.
    窦森,张晋金.2001.用δ13C值研究土壤有机质周转的方法及其评价.吉林农业大学学报,23(2):64-67.
    窦森,肖彦春,张晋金.2006.土壤胡敏素各组分数量及结构特征初步研究.土壤学报,43(6):936-940.
    范如芹,梁爱珍,杨学明,张晓平,申艳,时秀焕.2010.耕作方式对黑土团聚体含量及特征的影响.中国农业科学,43(18):3767-3775.
    范如芹,梁爱珍,杨学明,张晓平,时秀焕,贾淑霞.2011.耕作与轮作方式对黑土有机碳和全氮储量的影响.土壤学报,48(4):788-796.
    宫阿都,何毓蓉.2001.金沙江干热河谷典型区(云南)退化土壤的结构性与形成机制.山地学报,19(3):213-219.
    顾志忙,王晓蓉,顾雪元,曹心德..2000.傅里叶变换红外光谱和核磁共振法对土壤中腐殖酸的表征.分析化学(FENXI HUAXUE)研究简报,28(3):314-317.
    胡宁,娄翼来,梁雷.2009.保护性耕作对土壤有机碳、氮储量的影响.生态环境学报,18(6):223-226.
    黄高宝,于爱忠,郭清毅.2007.甘肃河西冬小麦保护性耕作对土壤风蚀影响的风洞试验研究.土壤学报,44(6):968-973.
    李小刚,崔志军,王玲英.2002.施用秸秆对土壤有机碳组成和结构稳定性的影响.土壤学报,39(3):421-428.
    李银科,李小刚,张乎良,尹萍.2007.土地利用方式对荒漠土壤有机碳和养分含量的影响.甘肃农业大学学报,42(2):103-107.
    李恋卿,潘根兴,张旭辉.2000.退化红壤植被恢复中表层土壤团聚体及其有机碳的变化.土壤通报,2000,31(5):193-195.
    李学垣.土壤化学.北京:高等教育出版社,2001:33-40.
    张旭辉,李恋卿,潘根兴.不同轮作制度对淮北白浆土团聚体及其有机碳的积累和分布的影响.生态学杂志,2001,20(2): l6-l9.
    梁爱珍,张晓平,杨学明. Drury, C.F.,2006.耕作方式对耕层黑土有机碳库储量的短期影响.中国农业科学,39(6):1287-1293.
    梁爱珍.2008.东北黑土有机碳的恢复潜力及其机理研究(博士学位论文).长春:中国科学院东北地理与农业生态研究所.
    梁爱珍,杨学明,张晓平,申艳,时秀焕,范如芹,方华军.2009.免耕对东北黑土水稳性团聚体中有机碳分配的短期效应.中国农业科学,42(8):2801-2808.
    梁爱珍,张晓平,杨学明,申艳,石秀焕,范如芹,方华军.2010.黑土颗粒态有机碳与矿物结合态有机碳的变化研究.土壤学报,47(1):153-158.
    刘满强,胡锋,陈小云.土壤有机碳稳定机制研究进展.生态学报,2007,27(4):2642-2650.
    刘世梁.2000.农田土壤有机碳动态模拟研究.硕士学位论文.南京农业大学.
    鲁彩艳,陈欣.2004.有机碳源添加对不同C/N比有机物料氮矿化进程的影响.中国科学院研究生院学报,21(1):108-112.
    潘根兴,李恋卿,张旭辉.2002.土壤有机碳库与全球变化研究的若干前沿问题.南京农业大学学报,25(3):100-109.
    潘根兴,李恋卿,张旭辉,代静玉,周运超,张平究.2003.中国土壤有机碳库量与农业土壤碳固定动态的若干问题.地球科学进展,18(4):609-618.
    潘根兴,周萍,李恋卿,张旭辉.2007.固碳土壤学的核心问题与研究进展.土壤学报,44(2):327-337.
    沈宏,曹志洪,胡正义.1999.土壤活性有机碳的表征及其生态效应.生态学杂志,18(3):32-38.
    申艳.2010.基于光谱技术的黑土有机碳及其组分的定量与结构分析博士学位论文).长春:中国科学院东北地理与农业生态研究所.
    史奕,陈欣,沈善敏.2002.土壤团聚体的稳定机制及人类活动的影响.应用生态学报,13(11):1491-1494.
    史奕,陈欣,闻大中.2005.东北黑土团聚体水稳定性研究进展.中国生态农业学报,13(4):95-98.
    时秀焕.2008.不同耕作方式下农田土壤CO2和土壤有机碳含量的研究(博士学位论文).长春:中国科学院东北地理与农业生态研究所.
    孙本华,高明霞,吕家珑,王星,张一平.2007.农田生态条件对荒漠土养分及胡敏酸特性的影响.中国生态农业学报,15(3):18-20.
    文倩,关欣.2004.土壤团聚体形成的研究进展.干旱区研究,21(4):434-438.
    吴建国,张小全,王彦辉,等.土地利用变化对土壤物理组分中有机碳分配的影响.林业科学,2002,38(4):19-29.
    徐明岗,于荣,孙小凤,刘骅,王伯仁,李菊梅.2006.长期施肥对我国典型土壤活性有机质及碳库管理指数的影响.植物营养与肥料学报,12(4):459-46.
    杨学明,张晓平,方华军.2003.农业土壤固碳对缓解全球变暖的意义.地理科学,23(1):101-106.
    赵兰坡,王杰.1993.不同耕作施肥条件下玉米连作对黑土有机无机复合体性状的影响.吉林农业大学学报,15(3):49-52.
    周立详.1995.城市污泥在林地中分解动态及其对林地生态系统的影响.博士学位论文.
    周萍,张旭辉,潘根兴.2006.长期不同施肥对太湖地区黄泥土总有机碳及颗粒态有机碳含量及深度的影响.植物营养与肥料学报,12(6):765-771.
    周萍,Alessandro Piccolo,潘根兴,Smejkalova, D.,2009.南方典型水稻土长期试验下有机碳积累机制研究III.两种水稻土颗粒有机质结构特征的变化.土壤学报,46(3):398-405.
    朱志建,姜培坤,徐秋芳.2006.不同森林植被下土壤微生物量碳和易氧化态碳的比较.19(4):523-526.
    诸葛玉平.2004.农田黑土物理性有机碳库及其稳定性特征研究.中国科学院沈阳应用生态研究所博士后论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700