用户名: 密码: 验证码:
中国大陆东部和近海卷云—晴空大气过渡带的光学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来众多研究发现,被气溶胶粒子包围的云周围有光学性质急剧变化的过渡区。云粒子的形成和消亡与气溶胶粒子的水合、脱水使得云和气溶胶的数量、相态、形状、尺度等都发生着剧烈变化,并改变着大气的热力结构和光学性质。卷云侧边界面对水汽不饱和的晴空大气,二者之间也应有过渡带存在。卷云过渡带的宏微观性质、过渡的物理机制以及由此产生的辐射和降水变化等问题尚未得到充分研究。
     激光雷达能够提供高分辨率探测廓线,卫星平台帮助我们获得了全球范围长时间持续观测能力。二者结合成为气溶胶、薄卷云、云边界和过渡带精细结构研究的有力手段。本文利用星载激光雷达CALIOP分析了一次秸秆焚烧排放气溶胶事件,然后使用此观测资料对卷云进行了重点研究,即从探测得到的后向散射系数、双波长比和退偏振率等光学性质入手,对中国大陆东部上空卷云-晴空大气过渡带的光学特征进行了分析,并以之与东部、南部海区作比较。本文还选取过渡带宽度为过渡带性质的指标,使用GMAO模式同化资料和NCEP-CFSR再分析资料分析了大气环境参数特征,以探讨过渡的物理机制。本文得到的主要研究结论如下:
     1)卷云侧边界附近光学性质的水平廓线和散射粒子的变化
     大气光学性质的水平廓线在卷云侧边界附近都明确表现出阶梯状过渡,反映了从云内强烈的后向散射到晴空大气内很弱的后向散射,从云内较大的粒子尺度到晴空大气内较小的粒子尺度,从云内显著不规则形状到晴空大气内近球形的变化特征。
     后向散射系数和退偏振率,在对数空间和线性空间内,可表示为水平位置的函数,在卷云内部和过渡带、晴空大气内部能够分别与二次拟合和线性拟合很好地吻合。气层可以分为卷云-过渡带-晴空大气三段结构,过渡区又可以进一步细分为云内缓变区、线性剧变区和云外缓变区。过渡带大致在-12kmm至8km间,过渡现象局限于此。线性剧变区大致在-4km至lkm间,此处光学性质变化最剧烈。
     在卷云内部、过渡带和晴空大气内部,光学性质之间的相关性不同。过渡带位置的概率密度分布也呈现出了不同于光学性质水平廓线的结构特征。这表明光学性质的变化主要产生于散射粒子物理性质及其光学特征的内在变化,而并非来源于卷云冰晶和云外粒子的简单混合。
     具有云内冰晶典型特征的散射粒子表现为双波长比0.55至1.25、退偏振率大于0.12。具有这一特征的粒子比例也显示出阶梯状过渡的水平廓线,但其与光学性质水平廓线的对应关系在三个区域内各不相同,反映了散射粒子从云到气溶胶的内在变化,再次表明这一变化并非仅仅由粒子数量变化引起。
     2)不同区域上空卷云-晴空大气过渡带光学性质的异同
     本文选择气溶胶含量和成分不同的相邻三个区域——中国大陆东部和东部、南部海区进行比较。大陆东部经济发达人口稠密,气溶胶含量高且包含大量大陆性和人工源气溶胶,处于西风带下游的东部海区也受其影响,南部海区较洁净,在沙尘暴平静期和夏季风控制下以海洋性气溶胶为主。
     光学性质的水平廓线在三个区域内都表现出阶梯状过渡,呈水平均匀的晴空背景大气、光学性质急剧变化的过渡带和水平均匀的卷云这三段式结构。过渡带也都可细分为云内缓变区、线性剧变区和云外缓变区。在卷云内部、过渡带和晴空大气内部,双波长比和退偏振率的概率密度分布大体一致。典型粒子特征和典型粒子比例也相当。
     晴空大气内的光学性质显示了气溶胶含量差异。卷云内部后向散射系数及其过渡梯度的大小关系,均为大陆东部强于东部海区强于南部海区。卷云内部退偏振率及其过渡梯度的大小关系,正好相反。卷云内部粒子尺寸以南部海区为最大。
     3)温湿条件、大尺度运动和气溶胶含量、成分对过渡的影响
     在不同的温湿条件和大尺度动力条件下,过渡带宽度的分布跨度都很大。这意味着单方面因素对过渡现象的决定性都不强,过渡应是多方面因素共同作用的结果。
     过渡带宽度呈现出随温度升高、相对湿度降低而收窄的变化趋势,意味着温度和饱和度控制升华速率、继而影响过渡的作用机制。过渡带宽度随垂直速度和水平风速增大而变宽,这一趋势与垂直速度和水平风速的方向无关。气流运动会加强卷云侧边界附近的物质交换,有利于冰晶的水平扩散,使得过渡带宽度变大。
     在低于-30℃条件下,过渡带宽度随温度降低有较一致的规律:大值区的样本量增多,小值区的样本量减少,分布跨度增大,最大概率密度向较大宽度移动。这是由于较低温度(较高高度)下升华较困难,增强的水平风也会加剧冰粒子的水平扩散,把过渡带“拉”宽。不同于-30℃以下,过渡带宽度的分布跨度和平均值在-30℃以上时都较小,这可能与混杂在卷云中的过冷液态水滴有关。
     温度也影响散射粒子的微物理性质,过渡带内退偏振率随温度降低而增大。退偏振率及其变化梯度的区域差异可归结为温度影响。退偏振率随后向散射系数、相对湿度和大尺度运动的变化幅度并不明显。
     后向散射系数变化梯度的区域差异,与温度和相对湿度的区域差异有关,升华为其中可能的物理机制。卷云后向散射系数和双波长比的区域差异可能与气溶胶有关。大陆性和海洋性气溶胶通过异质核化和同质核化、并藉由温度、相对湿度等成云条件,对卷云的宏微观性质产生影响。气溶胶成分也影响冰晶升华、卷云消亡以及卷云冰晶尺寸。这使得大陆上空冰核较丰沛,冰晶较细小,卷云更浓密,过渡更剧烈。气溶胶含量和卷云后向散射的关系也体现了]Twomey效应。
Several recent studies have found that clouds are surrounded by a transition zone of rapidly changing optical properties. The cloud particles'formation and elimination and aerosol particles'hydration and dehydration could change their concentration, phase, shape, size, and change the thermal structure and optical feature of atmosphere consequently. A transition zone should exist near cirrus lateral boundary facing unsaturated sky. The problems, such as macro-and micro-characteristics of cirrus transition zone, and its physic mechanism, the resulting radiation and precipitation, have not been solved adequately.
     Lidar could provide high resolution profiles, and satellite could gain continuous global detection. A combination of both has become powerful means for analyzing fine structures of aerosol, thin cirrus, cloud boundary and transition zone. In this paper the Cloud-Aerosol Lidar with Orthogonal Polarization(CALIOP) was applied for detecting a crop burning case, and then mainly used on the research on the properties of cirrus. Backscatter coefficient, color ratio and depolarization ratio computed from CALIOP dataset were used on analysis of the optical features of cirrus-sky transition zone over China eastern land, which were consequently compared with eastern sea and southern sea. Transition zone width was selected as indicator of transition zone characteristics, analyzed its dependence on meteorological conditions using GMAO and NCEP-CFSR data to understand the physic mechanism.
     The main conclusions of this study are listed as following:
     1) Horizontal profiles of optical properties and changing particles in cirrus-sky layer
     The horizontal profiles of optical properties all clearly shown stair-step shape, reflects the change of concentration, size and shape。
     The horizontal profiles of backscatter coefficient and depolarization ratio, respectively in log-space and linear-space, could be expressed as functions of distance. The quadratic-fitting in cirrus and linear fitting in transition zone and clear sky can be in good agreement with the statistics. The layer shown the three sections of cirrus body, transition zone and clear sky, and the transition zone could be further subdivided into an intra-cloud gently-changing area, a linear abruptly-changing area and an external- cloud gently-changing area. The transition zone was located between-12km and8km, and the linear abruptly-changing area lied between-4km and lkm, where optical characteristics changed most radically.
     Optical properties shown different relationship in cirrus, transition zone and clear sky,.and the probability density distribution (PDF) of transition zone position presented a structure different from the horizontal profiles of optical properties. It implies that the transition took place within the internal change of micro-physical and optical features, but not the mixing of different particles.
     Typical features of ice particles presented0.55-1.25of color ratio and>0.12of depolarization ratio. The proportion of typical-feature particles also demonstrated stepped horizontal profile, its relationship with the optical-property profiles was different in the three sections, which reflected the internal change of scattering particles. The transition was not solely caused by the concentration changes of particle.
     2) The similarities and differences of optical features in transition zone over different regions
     This study compared three adjacent regions, China eastern land (Land), eastern sea (SeaE) and southern sea (SeaS), which take on different aerosol content and composition. High-loading aerosols over China eastern land contain a large number of continental and anthropological aerosols, and affected the eastern sea in the westerly downstream. The atmosphere over southern sea is clearer, and the predominated aerosols are from ocean in sand storm quiescence and under summer monsoon control.
     The horizontal profiles of backscatter coefficient, color ratio and depolarization ratio, all presented stair-step shape, showing horizontal-homogeneous clear sky, changing transition zone and horizontal-homogeneous cirrus. Transition zone could also be subdivided into an intra-cloud gently-changing area, a linear abruptly-changing area and an external-cloud gently-changing area. The PDF of depolarization ratio and color ratio were largely consistent across the three regions, so as the typical ice feature and its proportion.
     The mean values of backscatter coefficient and depolarization ratio in clear sky has demonstrated the different aerosol content. The relative order of cirrus backscatter coefficient is Land>SeaE>SeaS, so as the gradient of backscatter. But the relative orders of cirrus depolarization ratio and its gradient are just the reverse from backscatter. Cirrus over southern sea showed larger size.
     3) The influence of temperature, relative humidity, large-scale dynamics and aerosols on transition
     Large span of transition zone width on different temperature, relative humidity and large scale dynamics conditions implies that the determinism of any unilateral factors was not strong. Transition should be the result of the combined action of a number of factors together.
     Transition zone width presented a decreasing tendency with increasing temperature and decreasing relative humidity, which implies the mechanism that temperature and saturation ratio control sublimation rate and then transition zone width afterwards。Transition zone width increases with the increase of vertical velocity and horizontal wind speed, but has nothing to do with airflow direction. Atmospheric motion improving material exchange near cirrus lateral boundary is benefit to horizontal diffusion of ice and stretches out transition zone width.
     Below-30℃, transition zone width variation showed a regular pattern that with the decrease of temperature sample size in high (low) value region increases (decreases), the span of transition zone width increases and maximum probability density increases. It is because sublimation occurs difficultly on lower temperature (higher altitude), and strengthen wind intensifies horizontal diffusion of cloud particles to stretch transition zone out. Different from that below-30℃, the span and average of transition zone width appeared narrow above-30℃, which could be involved in super-cooled liquid water mixed in cirrus.
     Temperature also affects the micro-physical properties of the scattering particles. Depolarization ratio reduces along with temperature increases in transition zone. The regional difference of depolarization ratio and its gradient could be attributed to temperature. The amplitude of depolarization ratio change with backscatter coefficient, relative humidity and large scale dynamics, were not distinct.
     Regional difference of the backscatter coefficient gradient, is relevant to the regional differences of temperature and relative humidity, sublimation would be potential physic mechanism. Regional difference of cirrus backscatter coefficient and color ratio may be related to aerosol. Continental aerosols and marine aerosols participating in heterogeneous nucleation and homogeneous nucleation, with the aid of temperature and relative humidity, could affect the macro-and micro-features of cirrus. Aerosol composition could also affect ice shape and sublimation. The content and composition of aerosols could make more ice nuclei, small ice crystal, more dense cirrus and more dramatic transition over China eastern land. The relationship of aerosol content and cirrus backscatter also presented Twomey effect.
引文
Abbatt J, Beyer K D, Fucaloro A F, et al. Interaction of Hcl Vapor with Water-Ice- Implications for the Stratosphere[J]. Journal of Geophysical Research-Atmospheres,1992,97(D14):15819-15826.
    Abbatt J, Molina M J. The Heterogeneous Reaction of HOC1+HC1-Cl2+H2O on Ice and Nitric Acid Trihydrate:Reaction Probabilities and Stratospheric Implications [J]. Geophysical Research Letters,1992,19(5):461-464.
    Albrecht B A. Aerosols, Cloud Microphysics, and Fractional Cloudiness[J]. Science,1989,245(4923): 1227-1230.
    Alkezweeny A J. Field Observations of in-Cloud Nucleation and the Modification of Atmospheric Aerosol-Size Distributions After Cloud Evaporation[J]. Journal of Applied Meteorology,1995, 34(12):2649-2654.
    Anderson T L, Charlson R J, Bellouin N, et al. An "A-Train" strategy for quantifying direct climate forcing by anthropogenic aerosols[J]. Bulletin of the American Meteorological Society,2005, 86(12):1795.
    Angione R J, Medeiros E J, Roosen R G. Stratospheric Ozone as Viewed From Chappuis Band[J]. Nature,1976,261(5558):289-290.
    Archuleta C M, Demott P J, Kreidenweis S M. Ice Nucleation by Surrogates for Atmospheric Mineral Dust and Mineral Dust/Sulfate Particles at Cirrus Temperatures [J]. Atmospheric Chemistry and Physics,2005,5:2617-2634.
    Baker M B. Cloud Microphysics and Climate[J]. Science,1997,276(5315):1072-1078.
    Baran A J. A Review of the Light Scattering Properties of Cirrus[J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2009,110(14-16):1239-1260.
    Bergeron T. On the Physics of Cloud and Precipitation:memoire pr6sente a L'Association de Meteorologie de L'U.G.G.I., Lisbon,1935[C].
    Bi L, Yang P, Kattawar G W, et al. Simulation of the Color Ratio Associated with the Backscattering of Radiation by Ice Particles at the Wavelengths of 0.532 and 1.064 Mm[J]. Journal of Geophysical Research-Atmospheres,2009,114(D00H08).
    Blanchard D O. Assessing the Vertical Distribution of Convective Available Potential Energy[J]. Weather and Forecasting,1998,13(3Part 2):870-877.
    Bodhaine B A, Wood N B, Dutton E G, et al. On Rayleigh Optical Depth Calculations[J]. Journal of Atmospheric and Oceanic Technology,1999,16(11Part2):1854-1861.
    Borrmann S, Solomon S, Dye J E, et al. The Potential of Cirrus Clouds for Heterogeneous Chlorine Activation[J]. Geophysical Research Letters,1996,23(16):2133-2136.
    Bowdle D A, Rothermel J, Vaughan J M, et al. Aerosol backscatter measurements at 10.6 micrometers with airborne and ground-based CO2 doppler lidars over the Colorado high-plains 2. backscatter structure[J]. Journal of Geophysical Research-Atmospheres,1991,96(D3):5337-5344.
    Brand P, Meyer T, Sommerer K, et al. Alveolar Deposition of Monodisperse Aerosol Particles in the Lung of Patients with Chronic Obstructive Pulmonary Disease[J]. Experimental Lung Research, 2002,28(1):39-54.
    Bucholtz A. Rayleigh-Scattering Calculations for the Terrestrial Atmosphere[J]. Applied Optics,1995, 34(15):2765-2773.
    Burkhardt U, Karcher B, Schumann U. Global Modeling of the Contrail and Contrail Cirrus Climate Impact[J]. Bulletin of the American Meteorological Society,2010,91(4):479.
    Cairo F, Buontempo C, Mackenzie A R, et al. Morphology of the Tropopause Layer and Lower Stratosphere Above a Tropical Cyclone:A Case Study On Cyclone Davina (1999)[J]. Atmospheric Chemistry and Physics,2008,8(13):3411-3426.
    Cairo F, Di Donfrancesco G, Adriani A, et al. Comparison of Various Linear Depolarization Parameters Measured by Lidar[J]. Applied Optics,1999,38(21):4425-4432.
    Chelliah M, Ebisuzaki W, Weaver S, et al. Evaluating the tropospheric variability in National Centers for Environmental Prediction's climate forecast system reanalysis[J]. Journal of Geophysical Research-Atmospheres,2011,116(D17107).
    Chen T, Rossow W B, Zhang Y C. Radiative Effects of Cloud-Type Variations[J]. Journal of Climate, 2000,13(1):264-286.
    Chen W N, Chiang C W, Nee J B. Lidar Ratio and Depolarization Ratio for Cirrus Clouds[J]. Applied Optics,2002,41(30):6470-6476.
    Chen Y L, Kreidenweis S M, Mcinnes L M, et al. Single Particle Analyses of Ice Nucleating Aerosols in the Upper Troposphere and Lower Stratosphere[J]. Geophysical Research Letters,1998,25(9): 1391-1394.
    Chepfer H, Noel V. A tropical "NAT-like" belt observed from space[J]. Geophysical Research Letters, 2009,36.
    Chiang C W, Chen W N, Liang W A, et al. Optical Properties of Tropospheric Aerosols Based On Measurements of Lidar, Sun-Photometer, and Visibility at Chung-Li (25°N,121°E)[J]. Atmospheric Environment,2007,41(19):4128-4137.
    Chuang M, Chang S, Lin N, et al. Aerosol Chemical Properties and Related Pollutants Measured in Dongsha Island in the Northern South China Sea During 7-Seas/Dongsha Experiment[J]. Atmospheric Environment,(0).
    Chylek P, Dubey M K, Lohmann U, et al. Aerosol Indirect Effect Over the Indian Ocean[J]. Geophysical Research Letters,2006,33(L068066).
    Clarke A D, Howell S, Quinn P K, et al. INDOEX Aerosol:A Comparison and Summary of Chemical, Microphysical, and Optical Properties Observed From Land, Ship, and Aircraft[J]. Journal of Geophysical Research-Atmospheres,2002,107(8033D19).
    Clarke A D, Varner J L, Eisele F, et al. Particle production in the remote marine atmosphere:Cloud outflow and subsidence during ACE 1[J]. Journal of Geophysical Research-Atmospheres,1998, 103(D13):16397-16409.
    Collis R. Lidar Observation of Cloud[J]. Science,1965,149(3687):978.
    Comstock J M, Ackerman T P, Mace G G. Ground-Based Lidar and Radar Remote Sensing of Tropical Cirrus Clouds at Nauru Island:Cloud Statistics and Radiative Impacts[J]. Journal of Geophysical Research-Atmospheres,2002,107(4714D23).
    Corti T, Luo B P, Fu Q, et al. The Impact of Cirrus Clouds On Tropical Troposphere-to-Stratosphere Transport[J]. Atmospheric Chemistry and Physics,2006,6:2539-2547.
    Cziczo D J, Murphy D M, Hudson P K, et al. Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE[J]. Journal of Geophysical Research- Atmospheres,2004,109(D04201D4).
    Demott P J, Cziczo D J, Prenni A J, et al. Measurements of the Concentration and Composition of Nuclei for Cirrus Formation[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(25):14655-14660.
    Demott P J, Prenni A J, Liu X, et al. Predicting Global Atmospheric Ice Nuclei Distributions and their Impacts On Climate[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(25):11217-11222.
    Ebisuzaki W, Zhang L. Assessing the Performance of the CFSR by an Ensemble of Analyses[J]. Climate Dynamics,2011,37(11-12):2541-2550.
    Fernald F G. Analysis of Atmospheric Lidar Observations- Some Comments[J]. Applied Optics,1984, 23(5):652-653.
    Fu Q, Liou K N. Parameterization of the Radiative Properties of Cirrus Clouds[J]. Journal of the Atmospheric Sciences,1993,50(13):2008-2025.
    Gettelman A, Randel W J, Wu F, et al. Transport of Water Vapor in the Tropical Tropopause Layer[J]. Geophysical Research Letters,2002,29(10091).
    Gierens K. On the Transition Between Heterogeneous and Homogeneous Freezing[J]. Atmospheric Chemistry and Physics,2003,3:437-446.
    Grabowski W W, Moncrieff M W, Kiehl J T. Long-Term Behaviour of Precipitating Tropical Cloud Systems:A Numerical Study[J]. Quarterly Journal of the Royal Meteorological Society,1996, 122(533Part a):1019-1042.
    Grund C J, Eloranta E W. The 27-28 October 1986 Fire IFO Cirrus Case-Study-Cloud Optical-Properties Determined by High Spectral Resolution Lidar[J]. Monthly Weather Review,1990, 118(11):2344-2355.
    Haag W, Karcher B. The Impact of Aerosols and Gravity Waves On Cirrus Clouds at Midlatitudes[J]. Journal of Geophysical Research-Atmospheres,2004,109(D12202D12).
    Haladay T, Stephens G. Characteristics of Tropical Thin Cirrus Clouds Deduced From Joint CloudSat and CALIPSO Observations [J]. Journal of Geophysical Research-Atmospheres,2009, 114(D00A25).
    Hand J L, Kreldenweis S M, Sherman D E, et al. Aerosol Size Distributions and Visibility Estimates During the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study[J]. Atmospheric Environment,2002,36(32):5043-5055.
    Hansen J, Sato M, Ruedy R. Radiative Forcing and Climate Response[J]. Journal of Geophysical Research-Atmospheres,1997,102(D6):6831-6864.
    Hanson D R, Ravishankara A R. The reaction probabilities of ClONO2 and N2O5 on polar stratospheric cloud materials[J]. Journal of Geophysical Research-Atmospheres,1991,96(D3): 5081-5090.
    Hanson D R, Ravishankara A R. Investigation of the reactive and nonreactive processes involving ClONO2 and HCl on water and nitric-acid doped ice[J]. Journal of Physical Chemistry,1992, 96(6):2682-2691.
    Hara Y, Yumimoto K, Uno I, et al. Asian Dust Outflow in the PBL and Free Atmosphere Retrieved by Nasa CALIPSO and an Assimilated Dust Transport Model[J]. Atmospheric Chemistry and Physics,2009,9(4):1227-1239.
    Hegg D A, Covert D S, Jonsson H, et al. Observations of the Impact of Cloud Processing On Aerosol Light-Scattering Efficiency[J]. Tellus Series B-Chemical and Physical Meteorology,2004,56(3): 285-293.
    Hegg D A, Radke L F, Hobbs P V. Particle-Production Associated with Marine Clouds[J]. Journal of Geophysical Research-Atmospheres,1990,95(D9):13917-13926.
    Hendricks J, Karcher B, Lohmann U, et al. Do Aircraft Black Carbon Emissions Affect Cirrus Clouds On the Global Scale?[J]. Geophysical Research Letters,2005,32(L1281412).
    Heymsfield A J, Platt C. A Parameterization of the Particle-Size Spectrum of Ice Clouds in Terms of the Ambient-Temperature and the Ice Water-Content[J]. Journal of the Atmospheric Sciences, 1984,41(5):846-855.
    Hlavka D L, Yorks J E, Young S A, et al. Airborne Validation of Cirrus Cloud Properties Derived From CALIPSO Lidar Measurements:Optical Properties[J]. Journal of Geophysical Research-Atmospheres,2012,117(D09207).
    Hoppel W A, Frick G M, Fitzgerald J, et al. Marine Boundary-Layer Measurements of New Particle Formation and the Effects Nonprecipitating Clouds Have On Aerosol-Size Distribution[J]. Journal of Geophysical Research-Atmospheres,1994,99(D7):14443-14459.
    Hoppel W A, Frick G M, Larson R E. Effect of nonprecipitating clouds on the aerosol size distribution in the marine boundary-layer[J]. Geophysical Research Letters,1986,13(2):125-128.
    Hostetler C A, Liu Z, Reagan J, et al. CALIOP Algorithm Theoretical Basis Document Calibration and Level 1 Data Products[Z]. Release 1.0 ed.2006:2012-12-24.
    Houghton J T, Ding Y, Griggs D J, et al. Climate Change 2001:The Scientific Basis[G]. Cambridge: Cambridge University Press,2001.
    Hu Y X, Winker D, Yang P, et al. Identification of cloud phase from PICASSO-CENA lidar depolarization:a multiple scattering sensitivity study [J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2001,70(4-6):569-579.
    Hu Y. Depolarization ratio-effective lidar ratio relation:Theoretical basis for space lidar cloud phase discrimination[J]. Geophysical Research Letters,2007,34(11).
    Hu Y, Liu Z, Winker D, et al. Simple Relation Between Lidar Multiple Scattering and Depolarization for Water Clouds[J]. Optics Letters,2006,31(12):1809-1811.
    Hu Y, Stamnes K, Vaughan M, et al. Sea Surface Wind Speed Estimation From Space-Based Lidar Measurements[J]. Atmospheric Chemistry and Physics,2008,8(13):3593-3601.
    Hu Y, Vaughan M, Liu Z, et al. The depolarization-attenuated backscatter relation:CALIPSO lidar measurements vs. theory[J]. Optics Express,2007,15(9):5327-5332.
    Hu Y, Yang P, Lin B, et al. Discriminating between spherical and non-spherical scatterers with lidar using circular polarization:a theoretical study [J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2003,79-80(0):757-764.
    Huang J P, Minnis P, Yi Y H, et al. Summer Dust Aerosols Detected From CALIPSO Over the Tibetan Plateau[J]. Geophysical Research Letters,2007,34(18):5.
    Hunt W H, Winker D M, Vaughan M A, et al. CALIPSO Lidar Description and Performance Assessment J]. Journal of Atmospheric and Oceanic Technology,2009,26(7):1214-1228.
    Jaegle L, Jacob D J, Brune W H, et al. Photochemistry of HOx in the upper troposphere at northern midlatitudes[J]. Journal of Geophysical Research-Atmospheres,2000,105(D3):3877-3892.
    Jensen E J, Pfister L, Ackerman A S, et al. A Conceptual Model of the Dehydration of Air Due to Freeze-Drying by Optically Thin, Laminar Cirrus Rising Slowly Across the Tropical Tropopause[J]. Journal of Geophysical Research-Atmospheres,2001,106(D15):17237-17252.
    Jensen E J, Toon O B, Selkirk H B, et al. On the Formation and Persistence of Subvisible Cirrus Clouds Near the Tropical Tropopause[J]. Journal of Geophysical Research-Atmospheres,1996, 101(D16):21361-21375.
    Jensen E J, Toon O B, Vay S A, et al. Prevalence of Ice-Supersaturated Regions in the Upper Troposphere:Implications for Optically Thin Ice Cloud Formation[J]. Journal of Geophysical Research-Atmospheres,2001,106(D15):17253-17266.
    Jensen E, Pfister L. Transport and Freeze-Drying in the Tropical Tropopause Layer[J]. Journal of Geophysical Research-Atmospheres,2004,109(D02207D2).
    Jin Y, Kai K, Shibata T, et al. Validation of the Dust Layer Structure Over the Taklimakan Desert, China by the CALIOP Space-Borne Lidar Using Ground-Based Lidar[J]. Sola,2010,6:121-124.
    Justice C O, Giglio L, Korontzi S, et al. The MODIS Fire Products[J]. Remote Sensing of Environment,2002,83(1-2):244-262.
    Karcher B. Cirrus Clouds in the Tropical Tropopause Layer:Role of Heterogeneous Ice Nuclei[J]. Geophysical Research Letters,2004,31(L1210112).
    Karcher B. Supersaturation Fluctuations in Cirrus Clouds Driven by Colored Noise[J]. Journal of the Atmospheric Sciences,2011,69(2):435-443.
    Karcher B, Lohmann U. A Parameterization of Cirrus Cloud Formation:Heterogeneous Freezing[J]. Journal of Geophysical Research-Atmospheres,2003,108(D14).
    Khain A, Rosenfeld D, Pokrovsky A. Aerosol Impact On the Dynamics and Microphysics of Deep Convective Clouds[J]. Quarterly Journal of the Royal Meteorological Society,2005,131(611Part a):2639-2663.
    Kim S W, Berthier S, Raut J C, et al. Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea[J]. Atmospheric Chemistry and Physics,2008,8(13):3705-3720.
    Lee S S, Penner J E. Aerosol Effects On Ice Clouds:Can the Traditional Concept of Aerosol Indirect Effects be Applied to Aerosol-Cloud Interactions in Cirrus Clouds?[J]. Atmospheric Chemistry and Physics,2010,10(21):10345-10358.
    Lelieveld J, Bruhl C, Jockel P, et al. Stratospheric Dryness:Model Simulations and Satellite Observations[J]. Atmospheric Chemistry and Physics,2007,7:1313-1332.
    Lelieveld J, Heintzenberg J. Sulfate cooling effect on climate through in-cloud oxidation of anthropogenic SO2[J]. Science,1992,258(5079):117-120.
    Li F, Lu D. Features of Aerosol Optical Depth with Visibility Grade over Beijing[J]. Atmospheric Environment,1997,31(20):3413-3419.
    Lin Y, Farley R D, Orville H D. Bulk Parameterization of the Snow Field in a Cloud Model[J]. Journal of Climate and Applied Meteorology,1983,22(6):1065-1092.
    Liou K N. Influence of Cirrus Clouds On Weather and Climate Processes:A Global Perspective[J]. Monthly Weather Review,1986,114(6):1167-1199.
    Liou K N, Lahore H. Laser Sensing of Cloud Composition-Backscattered Depolarization Technique[J]. Journal of Applied Meteorology,1974,13(2):257-263.
    Liou K. N大气辐射导论[M].郭彩丽,周诗健,译.北京:气象出版社,2004.
    Liu H Y, Jacob D J, Bey I, et al. Constraints From Pb-210 and be-7 On Wet Deposition and Transport in a Global Three-Dimensional Chemical Tracer Model Driven by Assimilated Meteorological Fields[J]. Journal of Geophysical Research-Atmospheres,2001,106(D11):12109-12128.
    Liu Z Y, Vaughan M A, Winker D M, et al. Use of Probability Distribution Functions for Discriminating Between Cloud and Aerosol in Lidar Backscatter Data[J]. Journal of Geophysical Research-Atmospheres,2004,109(D15202D15).
    Liu Z Y, Vaughan M, Winker D, et al. The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance[J]. Journal of Atmospheric and Oceanic Technology,2009,26(7):1198-1213.
    Liu Z, Omar A H, Hu Y, et al. CALIOP Algorithm Theoretical Basis Document Part 3:Scene Classification Algorithms[J].2005.
    Lohmann U, Feichter J. Global Indirect Aerosol Effects:A Review[J]. Atmospheric Chemistry and Physics,2005,5:715-737.
    Lohmann U, Karcher B. First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM general circulation model[J]. Journal of Geophysical Research-Atmospheres, 2002,107(4105D10).
    Lohmann U, Karcher B, Timmreck C. Impact of the Mount Pinatubo Eruption On Cirrus Clouds Formed by Homogeneous Freezing in the ECHAM4 GCM[J]. Journal of Geophysical Research-Atmospheres,2003,108(4568D18).
    Lu M L, Wang J, Freedman A, et al. Analysis of Humidity Halos Around Trade Wind Cumulus Clouds[J]. Journal of the Atmospheric Sciences,2003,60(8):1041-1059.
    Luo Z Z, Rossow W B, Inoue T, et al. Did the Eruption of the Mt. Pinatubo Volcano Affect Cirrus Properties?[J]. Journal of Climate,2002,15(19):2806-2820.
    Mace G G, Clothiaux E E, Ackerman T P. The Composite Characteristics of Cirrus Clouds:Bulk Properties Revealed by One Year of Continuous Cloud Radar Data[J]. Journal of Climate,2001, 14(10):2185-2203.
    Mamouri R E, Amiridis V, Papayannis A, et al. Validation of CALIPSO Space-Borne-Derived Attenuated Backscatter Coefficient Profiles Using a Ground-Based Lidar in Athens, Greece[J]. Atmospheric Measurement Techniques,2009,2(2):513-522.
    Marshak A, Wen G, Coakley J A, et al. A Simple Model for the Cloud Adjacency Effect and the Apparent Bluing of Aerosols Near Clouds[J]. Journal of Geophysical Research-Atmospheres, 2008,113(D14S17D14).
    Martonen T, Katz I, Cress W. Aerosol Deposition as a Function of Airway Disease-Cystic-Fibrosis[J]. Pharmaceutical Research,1995,12(1):96-102.
    Massie S T, Gille J, Craig C, et al. Hirdls and CALIPSO Observations of Tropical Cirrus[J]. Journal of Geophysical Research-Atmospheres,2010,115(D00H11).
    Mcgill M J, Vaughan M A, Trepte C R, et al. Airborne Validation of Spatial Properties Measured by the CALIPSO Lidar[J]. Journal of Geophysical Research-Atmospheres,2007,112(D20).
    Mckendry I, Strawbridge K, Karumudi M L, et al. Californian Forest Fire Plumes Over Southwestern British Columbia:Lidar, Sunphotometry, and Mountaintop Chemistry Observations[J]. Atmospheric Chemistry and Physics,2011,11(2):465-477.
    Meier A, Hendricks J. Model studies on the sensitivity of upper tropospheric chemistry to heterogeneous uptake of HNO3 on cirrus ice particles[J]. Journal of Geophysical Research-Atmospheres,2002,107(4696D23).
    Meyer R, Mannstein H, Meerkotter R, et al. Regional Radiative Forcing by Line-Shaped Contrails Derived From Satellite Data[J]. Journal of Geophysical Research-Atmospheres,2002, 107(4104D10).
    Min M, Wang P C, Campbell J R, et al. Cirrus Cloud Macrophysical and Optical Properties Over North China From CALIOP Measurements [J]. Advances in Atmospheric Sciences,2011,28(3):653-664.
    Minnis P, Ayers J K, Palikonda R, et al. Contrails, Cirrus Trends, and Climate[J]. Journal of Climate, 2004,17(8):1671-1685.
    Minnis P, Schumann U, Doelling D R, et al. Global Distribution of Contrail Radiative Forcing[J]. Geophysical Research Letters,1999,26(13):1853-1856.
    Mioche G, Josset D, Gayet J F, et al. Validation of the CALIPSO-CALIOP extinction coefficients from in situ observations in midlatitude cirrus clouds during the CIRCLE-2 experiment[J]. Journal of Geophysical Research-Atmospheres,2010,115.
    Molina M J, Tso T L, Molina L T, et al. Antarctic Stratospheric Chemistry of Chlorine Nitrate, Hydrogen-Chloride and Ice-Release of Active Chlorine[J]. Science,1987,238(4831):1253-1257.
    Murayama T, Muller D, Wada K, et al. Characterization of Asian Dust and Siberian Smoke with Multiwavelength Raman Lidar Over Tokyo, Japan in Spring 2003[J]. Geophysical Research Letters,2004,31(L2310323).
    Noel V, Chepfer H. A Global View of Horizontally Oriented Crystals in Ice Clouds From Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)[J]. Journal of Geophysical Research-Atmospheres,2010,115.
    Noel V, Chepfer H, Ledanois G, et al. Classification of Particle Effective Shape Ratios in Cirrus Clouds Based On the Lidar Depolarization Ratio[J]. Applied Optics,2002,41(21):4245-4257.
    Novakov T, Penner J E. Large Contribution of Organic Aerosols to Cloud-Condensation-Nuclei Concentrations[J]. Nature,1993,365(6449):823-826.
    Pappalardo G, Wandinger U, Mona L, et al. EARLINET correlative measurements for CALIPSO:First intercomparison results[J]. Journal of Geophysical Research-Atmospheres,2010,115.
    Parungo F, Nagamoto C, Zhou M Y, et al. Aeolian Transport of Aerosol Black Carbon from China to the Ocean[J]. Atmospheric Environment,1994,28(20):3251-3260.
    Pfister L, Selkirk H B, Jensen E J, et al. Aircraft Observations of Thin Cirrus Clouds Near the Tropical Tropopause[J]. Journal of Geophysical Research-Atmospheres,2001,106(D9):9765-9786.
    Pierce R J, Rubinfeld A R. Aerosol Delivery in Lung-Disease[J]. Medical Journal of Australia,1990, 153(6):357-359.
    Platt C. Remote Sounding of High Clouds 3. Monte-Carlo Calculations of Multiple-Scattered Lidar Returns[J]. Journal of the Atmospheric Sciences,1981,38(1):156-167.
    Platt C, Dilley A C. Remote Sounding of High Clouds 4. Observed Temperature-Variations in Cirrus Optical-Properties[J]. Journal of the Atmospheric Sciences,1981,38(5):1069-1082.
    Platt C, Scott J C, Dilley A C. Remote Sounding of High Clouds 6. Optical-Properties of Midlatitude and Tropical Cirrus[J]. Journal of the Atmospheric Sciences,1987,44(4):729-747.
    Platt C, Young S A, Austin R T, et al. LIRAD observations of tropical cirrus clouds in MCTEX. Part I: Optical properties and detection of small particles in cold cirrus [J]. Journal of the Atmospheric Sciences,2002,59(22):3145-3162.
    Platt C, Young S A, Manson P J, et al. The Optical Properties of Equatorial Cirrus From Observations in the ARM Pilot Radiation Observation Experiment[J]. Journal of the Atmospheric Sciences, 1998,55(11):1977-1996.
    Platt C, Young S A, Manson P J, et al. The optical properties of equatorial cirrus from observations in the ARM Pilot Radiation Observation Experiment[J]. Journal of the Atmospheric Sciences,1998, 55(11):1977-1996.
    Podgorny I A. Three-Dimensional Radiative Interactions in a Polluted Broken Cloud System[J]. Geophysical Research Letters,2003,30(177114).
    Ponater M, Marquart S, Sausen R. Contrails in a Comprehensive Global Climate Model: Parameterization and Radiative Forcing Results[J]. Journal of Geophysical Research-Atmospheres,2002,107(4164D13).
    Qiu J H, Yang L Q. Variation Characteristics of Atmospheric Aerosol Optical Depths and Visibility in North China During 1980-1994[J]. Atmospheric Environment,2000,34(4):603-609.
    Ramanathan V, Collins W. Thermodynamic Regulation of Ocean Warming by Cirrus Clouds Deduced From Observations of the 1987 El-Nino[J]. Nature,1991,351(6321):27-32.
    Redemann J, Zhang Q, Russell P B, et al. Case Studies of Aerosol Remote Sensing in the Vicinity of Clouds[J]. Journal of Geophysical Research-Atmospheres,2009,114(D06209).
    Remer L A, Kaufman Y J, Tanre D, et al. The MODIS aerosol algorithm, products, and validation[J]. Journal of the Atmospheric Sciences,2005,62(4):947-973.
    Remer L A, Kleidman R G, Levy R C, et al. Global Aerosol Climatology From the MODIS Satellite Sensors[J]. Journal of Geophysical Research-Atmospheres,2008,113(D14).
    Rind D, Lonergan P, Shah K. Modeled Impact of Cirrus Cloud Increases Along Aircraft Flight Paths[J]. Journal of Geophysical Research-Atmospheres,2000,105(D15):19927-19940.
    Rogers R R, Hostetler C A, Hair J W, et al. Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar[J]. Atmospheric Chemistry and Physics,2011,11(3):1295-1311.
    Rosenfield J E, Considine D B, Schoeberl M R, et al. The Impact of Subvisible Cirrus Clouds Near the Tropical Tropopause On Stratospheric Water Vapor[J]. Geophysical Research Letters,1998, 25(11):1883-1886.
    Saha S, Moorthi S, Pan H, et al. The NCEP Climate Forecast System Reanalysis[J]. Bulletin of the American Meteorological Society,2010,91(8):1015-1057.
    Sassen K. The Polarization Lidar Technique for Cloud Research-A Review and Current Assessment[J]. Bulletin of the American Meteorological Society,1991,72(12):1848-1866.
    Sassen K, Cho B S. Subvisual Thin Cirrus Lidar Dataset for Satellite Verification and Climatological Research[J]. Journal of Applied Meteorology,1992,31(11):1275-1285.
    Sassen K, Comstock J M. A Midlatitude Cirrus Cloud Climatology From the Facility for Atmospheric Remote Sensing. Part Ⅰⅱ:Radiative Properties[J]. Journal of the Atmospheric Sciences,2001, 58(15):2113-2127.
    Sassen K, Horel J D. Polarization Lidar and Synoptic Analyses of an Unusual Volcanic Aerosol Cloud[J]. Journal of the Atmospheric Sciences,1990,47(24):2881-2889.
    Sassen K, Liou K N, Kinne S, et al. Highly Supercooled Cirrus Cloud Water:Confirmation and Climatic Implications[J]. Science,1985,227(4685):411-413.
    Sassen K, Wang Z, Liu D. Global Distribution of Cirrus Clouds From CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Measurements[J]. Journal of Geophysical Research-Atmospheres,2008,113(D00A12D20).
    Sassen K, Zhu J. A Global Survey of CALIPSO Linear Depolarization Ratios in Ice Clouds:Initial Findings[J]. Journal of Geophysical Research-Atmospheres,2009,114(DOOH07).
    Schotland R M, Sassen K, Stone R. Observations by Lidar of Linear Depolarization Ratios for Hydrometeors[J]. Journal of Applied Meteorology,1971,10(5):1011-1017.
    Sequeira R, Lai K H. The Effect of Meteorological Parameters and Aerosol Constituents on Visibility in Urban Hong Kong[J]. Atmospheric Environment,1998,32(16):2865-2871.
    Shaw G E. Atmospheric Ozone-Determination by Chappuis-Band Absorption[J]. Journal of Applied Meteorology,1979,18(10):1335-1339.
    She C Y. Spectral Structure of Laser Light Scattering Revisited:Bandwidths of Nonresonant Scattering Lidars[J]. Applied Optics,2001,40(27):4875-4884.
    Solomon S, Borrmann S, Garcia R R, et al. Heterogeneous Chlorine Chemistry in the Tropopause Region[J]. Journal of Geophysical Research-Atmospheres,1997,102(D17):21411-21429.
    Stephens G L, Tsay S C, Stackhouse P W, et al. The Relevance of the Microphysical and Radiative Properties of Cirrus Clouds to Climate and Climatic Feedback[J]. Journal of the Atmospheric Sciences,1990,47(14):1742-1753.
    Stephens G L, Vane D G. Cloud Remote Sensing From Space in the ERA of the a-Train[J]. Journal of Applied Remote Sensing,2007,1(013507).
    Su W Y, Schuster G L, Loeb N G, et al. Aerosol and Cloud Interaction Observed From High Spectral Resolution Lidar Data[J]. Journal of Geophysical Research-Atmospheres,2008,113(D24202).
    Tackett J L, Di Girolamo L. Enhanced Aerosol Backscatter Adjacent to Tropical Trade Wind Clouds Revealed by Satellite-Based Lidar[J]. Geophysical Research Letters,2009,36(L14804).
    Tao W K, Lang S, Simpson J, et al. Mechanisms of Cloud-Radiation Interaction in the Tropics and Midlatitudes[J]. Journal of the Atmospheric Sciences,1996,53(18):2624-2651.
    Tao Z M, Mccormick M P, Wu D, et al. Measurements of Cirrus Cloud Backscatter Color Ratio with a Two-Wavelength Lidar[J]. Applied Optics,2008,47(10):1478-1485.
    Thomason L W, Pitts M C, Winker D M. CALIPSO Observations of Stratospheric Aerosols:A Preliminary Assessment [J]. Atmospheric Chemistry and Physics,2007,7(20):5283-5290.
    Tolbert M A, Rossi M J, Malhotra R, et al. Reaction of Chlorine Nitrate with Hydrogen-Chloride and Water at Antarctic Stratospheric Temperatures[J]. Science,1987,238(4831):1258-1260.
    Twohy C H, Clement C F, Gandrud B W, et al. Deep convection as a source of new particles in the midlatitude upper troposphere[J]. Journal of Geophysical Research-Atmospheres,2002, 107(4560D21).
    Twohy C H, Coakley J A, Tahnk W R. Effect of Changes in Relative Humidity On Aerosol Scattering Near Clouds[J]. Journal of Geophysical Research-Atmospheres,2009,114(D05205).
    Twohy C H, Poellot M R. Chemical Characteristics of Ice Residual Nuclei in Anvil Cirrus Clouds: Evidence for Homogeneous and Heterogeneous Ice Formation[J]. Atmospheric Chemistry and Physics,2005,5:2289-2297.
    Twomey S A. Pollution and Cloud Albedo[J]. Transactions-American Geophysical Union,1977,58(8): 797.
    Twomey S A, Piepgrass M, Wolfe T L. An Assessment of the Impact of Pollution On Global Cloud Albedo[J]. Tellus Series B-Chemical and Physical Meteorology,1984,36(5):356-366.
    Twomey S. Pollution and Planetary Albedo[J]. Atmospheric Environment,1974,8(12):1251-1256.
    Varnai T, Marshak A. Global CALIPSO Observations of Aerosol Changes Near Clouds[J]. IEEE Geoscience and Remote Sensing Letters,2011,8(1):19-23.
    Vaughan M A, Kuehn R E, Young S A, et al. Validating Cirrus Cloud Optical Properties Retrieved by CALIPSO:24th International Laser Radar Conference:23-27 June 2008, Boulder, Colarado, 2008[C]. The Conference Steering Committee of the 24th ILRC.
    Vaughan M A, Winker D M, Powell K A. CALIOP Algorithm Theoretical Basis Document Part 2: Feature Detection and Layer Properties Algorithms[J].2005.
    Vernier J P, Pommereau J P, Gamier A, et al. Tropical Stratospheric Aerosol Layer From CALIPSO Lidar Observations [J]. Journal of Geophysical Research-Atmospheres,2009,114(D00H10).
    Voigt C, Schlager H, Ziereis H, et al. Nitric Acid in Cirrus Clouds[J]. Geophysical Research Letters, 2006,33(L058035).
    Von Hobe M, Grooss J U, Gunther G, et al. Evidence for Heterogeneous Chlorine Activation in the Tropical UTLS[J]. Atmospheric Chemistry and Physics,2011,11(1):241-256.
    Wang P H, Minnis P, Mccormick M P, et al. A 6-Year Climatology of Cloud Occurrence Frequency From Stratospheric Aerosol and Gas Experiment II Observations (1985-1990)[J]. Journal of Geophysical Research-Atmospheres,1996,101(D23):29407-29429.
    Wang Z Z, Chi R L, Bo L, et al. Depolarization Properties of Cirrus Clouds From Polarization Lidar Measurements Over Hefei in Spring[J]. Chinese Optics Letters,2008,6(4):235-237.
    Wegener A. Thermodynamik Der Atmosphare[M]//Leipzig:J. A. Barth,1911:331.
    Wen G Y, Marshak A, Cahalan R F, et al.3-D Aerosol-Cloud Radiative Interaction Observed in Collocated MODIS and ASTER Images of Cumulus Cloud Fields[J]. Journal of Geophysical Research-Atmospheres,2007,112(D13204D13).
    Winker D M, Hunt W H, Mcgill M J. Initial performance assessment of CALIOP[J], Geophysical Research Letters,2007,34(19):
    Winker D M, Hunt W, Hostetler C. Status and Performance of the CALIOP Lidar[J]. Laser Radar Techniques for Atmospheric Sensing,2004,5575:8-15.
    Winker D M, Trepte C R. Laminar cirrus observed near the tropical tropopause by LITE[J]. Geophysical Research Letters,1998,25(17):3351-3354.
    Winker D. Accounting for Multiple Scattering in Retrievals From Space Lidar[M]//2003:128-139.
    Wu D, Wang Z, Wang B, et al. CALIPSO Validation Using Ground-Based Lidar in Hefei (31.9°N, 117.2°E), China[J]. Applied Physics B-Lasers and Optics,2011,102(1):185-195.
    Wylie D P, Menzel W P, Woolf H M, et al.4 Years of Global Cirrus Cloud Statistics Using HIRS[J]. Journal of Climate,1994,7(12):1972-1986.
    Xu L, Okada K, Iwasaka Y, et al. The Composition of Individual Aerosol Particle in the Troposphere and Stratosphere Over Xianghe (39.45°N,117.0°E), China[J]. Atmospheric Environment,2001, 35(18):3145-3153.
    Yin Y, Carslaw K S, Feingold G. Vertical Transport and Processing of Aerosols in a Mixed-Phase Convective Cloud and the Feedback On Cloud Development[J]. Quarterly Journal of the Royal Meteorological Society,2005,131(605Part a):221-245.
    Yorks J E, Hlavka D L, Vaughan M A, et al. Airborne Validation of Cirrus Cloud Properties Derived From CALIPSO Lidar Measurements:Spatial Properties[J]. Journal of Geophysical Research-Atmospheres,2011,116(D19207).
    Yorks J E, Mcgill M, Rodier S, et al. Radiative Effects of African Dust and Smoke Observed From Clouds and the Earth's Radiant Energy System (CERES) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) Data[J]. Journal of Geophysical Research-Atmospheres,2009, 114.
    Young A T, Kattawar G W. Rayleigh-Scattering Line-Profiles[J]. Applied Optics,1983,22(23):3668-3670.
    Young S A, Winker D M, Vaughan M A, et al. CALIOP Algorithm Theoretical Basis Document Part 4:Extinction Retrieval Algorithms[J].2008.
    Zeng X, Tao W, Zhang M, et al. An Indirect Effect of Ice Nuclei On Atmospheric Radiation[J]. Journal of the Atmospheric Sciences,2009,66(1):41-61.
    伯广宇,刘东,王邦新,等.探测云和气溶胶的机载双波长偏振激光雷达[J].中国激光,2012,(10):209-214.
    曹国良,张小曳,王丹,等.中国大陆生物质燃烧排放的污染物清单[J].中国环境科学,2005,(04):389-393.
    曹国良,张小曳,郑方成,等.中国大陆秸秆露天焚烧的量的估算[J].资源科学,2006,(01):9-13.
    邓学良,潘德炉,何冬燕,等.中国海域MODIS气溶胶光学厚度检验分析[J].大气科学学报,2009,32(4):558-564.
    杜睿.大气生物气溶胶的研究进展[J].气候与环境研究,2006,(04):546-552.
    恩格斯.自然辩证法[M].中共中央马克思恩格斯列宁斯大林著作编译局,译.第1版.人民出版社,1972.
    黄嘉佑.气象统计分析与预报方法[G].3.北京:气象出版社,2004.
    贾璇,王文彩,陈勇航,等.华北地区沙尘气溶胶对云辐射强迫的影响[J].中国环境科学,2010,30(8):1009-1014.
    李成才,毛节泰,刘启汉.利用MODIS遥感大气气溶胶及气溶胶产品的应用[J].北京大学学报(自然科学版),2003,39(z1):108-117.
    李成才,毛节泰,刘启汉,等.利用MODIS研究中国东部地区气溶胶光学厚度的分布和季节变化特征[J].科学通报,2003,48(19):2094-2100.
    李娟,毛节泰.冰晶性质对卷云辐射特征影响的模拟研究[J].气象,2006,(02):9-13.
    刘东,戚福弟,金传佳,等.合肥上空卷云和沙尘气溶胶退偏振比的激光雷达探测[J].大气科学,2003,(06):1093-1100.
    刘瑞金,张镭,王宏斌,等.半干旱地区卷云特征的激光雷达探测[J].大气科学,2011,(05):863-870.
    闵敏,王普才,宗雪梅.中国地区卷云消光后向散射比的星载激光雷达遥感[J].大气科学,2010,(3):506-512.
    石爱丽.层状云降水微物理特征及降水机制研究概述[J].气象科技,2005,33(2):104-108.
    王丽,李雪铭,许妍.中国大陆秸秆露天焚烧的经济损失研究[J].干旱区资源与环境,2008,(02):170-175.
    王向川,饶瑞中.大气气溶胶和云雾粒子的激光雷达比[J].中国激光,2005,(10).
    王雨,傅云飞.利用MODIS卫星资料对中国中东部和印度次大陆气溶胶特性的分析[J].气候与环境研究,2007,(02):137-146.
    吴东,张小雪,阎逢旗,等.基于星载激光雷达数据的海面风速探测[J].光学学报,(2).
    吴明心,郭松平.卷云形态与降水[J].气象,1982,(11):14-15.
    许绍祖.大气物理学基础[G].北京:气象出版社,1993.
    杨东旭,刘毅,陈文忠,等.基于船载太阳光度计的中国海域MODIS卫星反演气溶胶光学参数验 证[J].遥感技术与应用,2009,24(6):749-756.
    杨东旭,刘毅,夏俊荣,等.华北及其周边地区秋季气溶胶光学性质的星载和地基遥感观测[J].气候与环境研究,2012,17(4):422-432.
    杨平,蔡启铭,蒋兴安.太阳辐射波段内的卷云辐射特性[J].高原气象,1992,(03):223-234.
    叶爱芬,伍志方,肖伟军,等.对流有效位能在强对流预报中的应用研究[J].热带气象学报,2006,(05):484-490.
    张道民.过渡现象的一般性研究及其启示[J].科学技术与辩证法,2004,21(1):15-18.
    张道民.系统发展论与过渡现象研究[J].系统科学学报,2006,14(1):35-39.
    张莹,孙照渤.中国中东部MODIS与MISR气溶胶光学厚度的对比[J].气象科学,2010,30(1):48-54.
    赵春生,丁守国,秦瑜.云内辐射传输过程对对流降水过程的影响[J].自然科学进展,2003,13(10):1060-1066.
    周军,岳古明,戚福第,等.大气气溶胶光学特性激光雷达探测[J].量子电子学报,1998,(02):140-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700