用户名: 密码: 验证码:
四川盆地中—新生代盆—山结构与油气分布
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盆-山结构及其动力学过程是21世纪大陆动力学研究重要的基本内容之一,也是中生代以来中国西部大陆构造的基本格局。四川盆地地处青藏高原东缘特提斯-喜马拉雅构造域和滨西太平洋构造域的交接转换部位。它既是沉积盆地和构造盆地,又是地貌盆地,盆地与周缘造山带构成一个典型的复合盆-山结构体系。本论文运用构造地质学、低温热年代学、地球化学等理论和技术方法,以“结构-构造-油气分布”为主线,将盆-山结构、构造演化与周缘板块围限多动力背景结合起来,分析中-新生代四川盆地沉积充填、抬升剥蚀与周缘造山带构造演化、扩展变形等关系,建立四川盆地多盆-山体系结构-构造格架,探讨不同盆-山结构与盆内浅部地表过程(如:构造变形、隆升剥露、沉积充填、流体活动等)差异性,揭示盆-山结构与油气分布关系。论文取得了如下主要成果与认识:
     (1)基于四川盆地及周缘造山带不同地质结构、构造和热隆升-沉降过程等,将其分为板缘(龙门山、米仓山和大巴山)突变型盆-山结构和板内(齐岳山、大娄山和大凉山)渐变型盆-山结构两类。
     板缘突变型盆-山结构具有显著深部结构差异性,浅部构造形成典型的冲断带(山)和前陆盆地(盆)二元结构;结构-构造上具明显的倾向上分带、走向上分段及垂向上分层性,构造演化上具倾向上前展性(和/或走向上扩展性)、造山带隆升剥蚀和盆内坳陷沉降-沉积具典型耦合特征;现今山-盆地貌反差大、地形坡度陡、盆-山边界明晰。板缘突变型盆-山耦合关系主要受控于差异性深部结构及其造山带的形成演化过程。如:龙门山-川西前陆突变型盆-山结构带晚三叠世-早侏罗世沉积中心沿走向迁移与砾岩展布特征、不整合界面走向迁移等具有明显的等时性和一致性,揭示出盆-山结构带倾向上前展式扩展和走向上分段式递进性(或序次性)的三维盆山耦合空间演化趋势。
     板内渐变型盆-山结构具相似的深部结构特征和挤压-坳陷结构的浅部构造特征,不发育冲断推覆和前陆盆地;结构和构造上分带性、分段性不明显,不存在典型而明显的边界控制断裂(系),具有相似弥散式挤压褶皱变形特征,盆缘造山带隆升剥蚀和盆内坳陷沉降-沉积不具耦合特征;现今山-盆地貌反差小、盆-山边界不清、盆-山为渐变过渡关系。板内渐变型盆-山结构主要受控于(盆缘或盆外)邻区构造扩展变形过程和盆内沉积盖层多层次滑脱变形过程。如:大娄山渐变型盆山结构带不具明显的东、西分段和倾向分带性特征,多期叠加构造特征揭示受雪峰陆内造山系统控制。
     (2)长波长、低起伏度渐变型盆-山地貌地区构造变形与浅表等温面挠曲具多种端元模型,基于单一结构上多系统低温热年代学特征揭示隆升剥露过程和褶皱变形相关事件。大凉山渐变型盆-山结构带单一背斜结构上(或典型花岗岩体)锆石和磷灰石(U-Th)/He年龄、磷灰石裂变径迹年龄与重建结构深度关系图(或海拔高程)关系研究表明,川西南地区主体构造格架变形事件发生于古新世末期-始新世早期(~40Ma),随后区域发生持续的抬升剥蚀作用。四川盆地东南缘及南缘地区~10Ma以前经历长时间的缓慢抬升冷却过程,速率大致为~0.15mm/yr,随后发生加速抬升冷却事件,其剥露速率为~0.3-0.8mm/yr。现今大凉山地区地表抬升剥蚀量约为~3-5km,四川盆地西南地区地表抬升剥蚀量约为~1-2km。它们共同揭示出晚新生代青藏高原沿鲜水河-小江断裂系走滑边界的东向扩展变形作用最终决定着大凉山渐变型盆-山结构区的快速隆升剥露过程。
     (3)利用钻井和地表样品低温热年代学手段(AFT、(U-Th)/He)和数字热模型等手段,揭示四川盆地区域晚中、新生代阶段性构造抬升剥露过程及刚性基底结构与盆-山结构对其抬升剥蚀过程的复合-联合控制作用。
     盆地区域(尤其是盆内华蓥山和川西前陆地区)的磷灰石裂变径迹(AFT)研究揭示,四川盆地区域具有阶段性沉降-隆升剥露过程,即早期沉积后沉降埋深阶段(~80Ma以前)、中期缓慢抬升冷却(80~20Ma)和晚期快速抬升剥露阶段(~20Ma-现今)。盆地中心及西北部地区(华蓥山断裂带北西)具显著的磷灰石裂变径迹年龄环带中心,体现出盆地中心(原地隆起区)及盆地西北地区(川北突变型盆-山结构区)较低的抬升剥蚀作用,它与区域空间上较弱的构造变形作用具有明显的耦合关系。
     AFT热模型及连续井剖面镜质体特征揭示盆地晚中-新生代地表抬升剥蚀总厚度普遍大于~2000-3000m,新近纪快速抬升剥蚀幅度普遍大于~1000m。晚中-新生代隆升剥蚀总幅度体现出板缘突变型盆-山结构区最低、盆地腹地次之、板内渐变型盆-山结构区最大的特征。同时,盆地空间上由北东向南西具AFT年龄逐渐变小、径迹长度逐渐增大、新生代平均剥露速率逐渐增大的趋势。它们共同揭示盆地基底结构与盆缘造山带对盆地抬升剥蚀过程的复合-联合控制作用。
     (4)根据四川盆地与环盆造山带的不同盆-山结构、构造变形及其建造定型过程等主要控制因素,将四川盆地复合盆-山体系划分为五大盆-山结构分区:Ⅰ区-川北突变型盆山结构区(秦岭构造控制域)、Ⅱ区-川西突变型盆山结构区(青藏构造控制域)、Ⅲ区-川东渐变盆山结构区(雪峰构造控制域)、Ⅳ区-川西南渐变型盆山结构区(雪峰-青藏-基底构造联合控制域)和Ⅴ区-川中原地隆起-盆地区(基底构造控制域)。受不同构造变形域控制,环四川盆地各盆-山结构区构造格架定型期总体体现出北西、北和北东边界早、东边界较晚、西南边界最晚(川北突变型盆-山结构区→川东渐变型盆-山结构区→川西南渐变型盆-山结构区)。四川盆地浅部地貌和结构-构造变形及其演化特征等主要受控于盆缘不同盆-山结构与盆地基底结构的联合-复合控制作用。
     (5)基于不同盆-山结构变形作用、差异抬升剥蚀过程等与流体活动特性研究,揭示四川盆地盆-山结构通过褶皱冲断变形和稳态抬升剥蚀作用的复合-联合作用过程控制着流体活动特性及其保存条件,从而控制和制约着盆地现今油气分布。
     不同构造变形、抬升剥蚀作用等特征的盆山结构区(古)流体活动特征研究表明,板缘突变型盆-山结构带体现出强冲断作用与浅部流体垂向跨层和深部流体侧向运移活动的特性;渐变型盆-山结构带具与多层次滑脱褶皱变形相关的贯通裂缝系统渗流生长形成与流体垂向跨层运移特征。强构造变形区域,受控于盆缘造山带向盆地的扩展变形过程,以褶皱冲断构造变形为主控制和影响流体活动特性;受盆地刚性基底结构控制的盆内弱构造变形带以稳态抬升剥蚀作用为主控制和影响流体活动特性。由于地表浅部Brown-Hoek应力模式和/或构造变形作用影响,强、弱隆升剥蚀作用过程对区内流体和油气具有明显不同的能量场和再运聚影响。强隆升剥蚀作用过程中,不同岩石破裂行为特征的非连续性结构叠加改造,导致大规模流体幕式跨层流动和降温-降压的流体沸腾作用,油气保存条件破坏。弱隆升剥蚀作用过程中(贯通)裂缝系统的发育对流体活动性、连通性和油气调整聚集成藏具至关重要的作用,因而次生油气藏普遍体现出与裂缝系统具有较高的关联性。
     盆-山结构主要通过构造变形强度、地表抬升剥蚀作用和陆相地层展布因素控制和影响盆地现今区域保存条件。四川盆地晚三叠世以来(残存)陆相碎屑岩较厚沉积地区(大于~3000m)主要分布在盆地西北及北部突变型盆-山结构区,(残存)陆相沉积厚度与晚三叠世以来的不同时期沉积中心相叠置,受控于环盆地不同突变型盆-山结构带中-新生代差异构造变形活动,具有较低的构造变形作用强度和晚-中新生代抬升剥蚀总厚度。因此,四川盆地现今(残存)大中型油气藏(田)和天然气的大部分主要分布于板缘突变型盆-山结构区(尤其是秦岭构造控制域)和川中原地隆起-盆地区(基底构造控制域)。
The basin-mountain systems and its geodynamics is one of the importantcomponents of the continential dynamics and was subject of tectonic studies inwestern China. The Sichuan basin located the eastern margin of the Tibetan Plateau ata transfer zone between the Tethys-Himalaya domain and the western Pacific domainis a complex sedimentary, tectonic and topographic basin. The basin and its peripheralmountains comprise composite basin-mountain system. This study uses structures,lower-temperature thermochronology, geochemistry etc., to document the relationshipbetween the basin-mountain system and the oil/gas distribution in the Sichuan basin.
     (1) The composite basin-mountain system in the Sichuan basin and its peripheralmountains can be divided into two types-margin-plate systems and interior-platesystems.
     The margin-plate basin-mountain systems include the Sichuan basin and itssurrounding Longmen Mountains, Micang Mountains and Daba Mountains. All ofthose are located at the western and northern marginal area of the Sichuan basin,representing the western margin of the Yangtze plate (South China Block). Themargin-plate basin-mountain systems,with binary units of large-scale thrust belts andforeland basins, have different deep lithospheric structures, abrupt boundaries andlarge contrast in today’s geomorphology. The coupling of the foreland basins andadjacent mountains is chiefly controlled by the diversity in the lithospheric structure.Sedimentary data from field and borehole investigations allow reconstruction of thesouthwesterly variations in proximal sedimentary processes along the Longmenshanthrust belt during Late Triassic and Early Jurassic and their relation to thedevelopment of a transpression basin.
     In contrast, the interior-plate basin-mountain systems represented by the Sichuan basin and its adjacent interior-plate Qiyue Mountains, Dalou Mountains and DaliangMountains; located within the Yangtze plate, represent the eastern and southernmarginal area of the Sichuan basin. Due to gradual boundaries in shallow structureand similar deep lithospheric structure, the interior-plate basin-mountain systems lackof large-scale thrust belts and thrust-loaded foreland basins. The coupling of the basin(Sichuan basin) and the interior-plate mountains largely depends on the degree ofdeformation of the interior-plate mountains and multi-layer detachments in thesedimentary cover of the basin. For example, the superimposed structures indicate thatthe Daloushan basin-mountain system has experienced multistage build-up episodesunder the control of Xuefeng intercontinental orogen, accompanied by the northwardpartition of the Paleo-Yangtze basin.
     (2) Due to different models between folding and deflected isotherm withinlow-relief and long-wavelength topography in the interior-plate basin-mountainsystems, it could unravel the processes of uplift/exhumation and folding deformationby multi-system lower-temperature thermochronology at a fold or anticline.
     New apatite and zircon (U-Th)/He thermochronometry results using the age vs.elevation/structural depth relationship in the Daliang Mountains, support that,(1)cooling and exhumation with apparent rates of~0.15mm/yr from~30to~10Ma, waspervasive across the region after the build-up time of the orogen,(2) a differentexhumation occurred at the Daliang Mountains and southwestern part of the Sichuanbasin; the former has~3-5km exhumation magnitude while the latter~1-2kmexhumation, and (3) Late Cenozoic eastward growth of the Tibetan Plateau controlledthe rapid post~10Ma cooling and denudation, with rates of~0.4-0.8mm/yr in theDaliang Mountains.
     (3) Based on the lower-temperature thermochronology and thermal models, it issuggested that there were different uplift and exhumation processes across theSichuan basin, controlled by a coupling between basement and compositebasin-mountain systems.
     Modeled temperature-time histories and the Boomerang plot of AFT datasetacross the Sichuan basin suggest two-stage cooling and exhumation processes. Afterreaching their maximum burial depth during120~80Ma, it was followed significantacceleration in cooling rate during last20~10Ma. In particular, nested old-age centerseparated by Huayun Mts. was found in the center-to-northwest part of the Sichuanbasin, coupled with the low-grade deformation in the basin center. It indicatessignificant change in exhumation (at least~2000m) across the Huayun Mts.
     The magnitude of exhumation across the Sichuan basin was more than~2000-3000m since the Late Cretaceous, while more than1000m in the Neogene. Ingeneral, the lowest exhumation area is located at the margin-plate basin-mountainsystems, while the largest exhumation area is at the interior-plate basin-mountainsystems. The exhumation in the basin center have magnitude averaging betweent thethe latter two. A simplified one-dimensional, steady-state solution model wasdeveloped to calculate the mean exhumation rate, which is0.05~0.2mm/yr in mostof the basin. It suggests slow uplift and exhumation across much of the basin. Theregional pattern of AFT age, length and erosion rate support a progressive changefrom the nested old-age center towards the southwest. This pattern supports theprolonged, steady-state uplift and exhumation across the basin, controlled by cratonicbasin structure. The eastern growth of the Tibetan Plateau has exerted significantcontrol on the rapid exhumation of the southwestern part of the Sichuan basin, but noton all of the basin during the Late Cenozoic.
     (4) Considering the different features such as structure, deformation, evolutionand dynamics etc., the Sichuan basin can be subdivided into five units.
     Unit I-North Sichuan margin-plate basin-mountain system (under the control ofQinling orogen), Unit II-West Sichuan margin-plate basin-mountain system (underthe control of Tibetan Plateau), Unit III-East Sichuan interior-plate basin-mountainsystem (under the control of Xuefeng orogen), Unit IV-SW Sichuan interior-platebasin-mountain system (under a composite control of Xuefeng orogen, TibetanPlateau and basement structures), Unit V-Central Sichuan interior-plate uplift (underthe control of basement structures). Due to different dynamics, these five units havedifferent build-up time; the Unit I has been formed during the Late Yanshanian, theUnit II and III during the Himalayan period, and the Unit IV during Late Cenozoic.Thus, the evolution of the basin and its topography are controlled by couplingprocesses between basement structures and composite basin-mountain systems of theSichuan basin.
     (5) The basin-mountain systems in the Sichuan basin exert major control ontoday’s oil/gas distribution across the basin chiefly by their controlling influence onthe fluid flow and petroleum reservoirs preservation. It is controlled by the couplingprocesses between the steady-state uplift and exhumation and the thrusting andfolding deformation.
     The margin-plate basin-mountain system with strong thrusting deformation, ischaracteristic by vertically throughgoing fluid flow in shallow system, and lateral fluid flow in the deep system. Whilest the interior-plate basin-mountain system ischaracteristic by throughgoing fluid flow closely correlated with a percolating clustermodel of veins. In general, the fluid flow is controlled by the thrusting and folding.However, the fluid flow shows a close correlationship with the steady state uplift andexhumation in the basin center under control of a basement.
     The strong uplift and exhumation with a magnitude larger than~3000-4000m,exerts major control on the energy change and accumulation of fluid and oil/gas.During the progressive uplift and exhumation, the shallow strata attained differenttypes of fractures and joints, etc. that formed under different stress-strain regimewithin shallow and/or deep depth. The connection among different types of fractureand joint resulted in multistage fluid flow with boiling features, and finally in adestraction of petroleum reservoirs. Presence of fractures and joints have significantinfluence on the fluid flow, its connectivity and accumulation. There is a goodcorrelation betweent the gas field and fractures in the Sichuan basin, with fieldspreferentially located in an areas of a weak uplift and low exhumation.
     The tectonics, terrestrial strata distribution and the late Mesozoic-Cenozoic upliftaccompanied by denudation, control the regional conditions for natural gas reservoirpreservation in the Sichuan basin. The foreland basins of the margin-platebasin-mountain systems contain (more than3000m) thick T3—K terrestrialsedimentary strata, controlled by tectonics and formation of the basin-mountainsystems. These strata were subjected only to a low degree of uplift and denudationand to weak tectonic deformation, which resulted in good preservation of oil/gasreservoirs. Therefore, today’s natural gas proven reserves and medium-large sizenatural gas fields in Sichuan basin are mainly located within the foreland basins at themargin-plate basin-mountain systems.
引文
[1] An, Y.F., Han, Z.J., Wan, J.L. Fission track dating of the Cenozoic uplift in Mabian area,southern Sichuan Province, China [J]. Science in China Series D: Earth Sciences,2008,51:1238-1247.
    [2] Andre-Mayer, A., Sausse, J. Thickness and spatial distribution of veins in a porphyry copperdeposit, Rosia Poieni, Romania [J]. Journal of Structural Geology,2007,29:1695-1708.
    [3] Allen, P.A., Allen, J.R. Basin Analysis—Principles and Applications [M]. Oxford: BlackwellPublishing,2005.
    [4] Arne, D., Worley, B., Wilson, C., et al. Differential exhumation in response to episodicthrusting along the eastern margin of the Tibet and Plateau [J]. Tectonophysics,1997,280:239-256.
    [5] Ball, A.W., Snelson, S. Realms of subsidence [M]. In: Facts and Principles of WorldPetroleum Occurrence, Canadian Society of Petroleum Geologists Memoir,6,9-75.
    [6] Berkowitz, B., Hadad, A. Fractal and multifractal measures of natural and synthetic fracturenetworks [J]. Journal of Geophysical Research,1997,102:12205-12218.
    [7] Becker, A., Gross, M.R. Mechanism for joint saturation in mechanically layered rocks: Anexample from southern Israel [J]. Tectonophysics,1996,257:223-237.
    [8] Berkowitz, B., Adler, P. Stereological analysis of fracture network structure in geologicalformations [J]. Journal of Geophysical Research,1998, B103:15339.
    [9] Billi, A., Tiberti, M.M. Possible causes of arc development in the Apennines, central Italy [J].GSA Bulletin,2009,121(9/10):1409-1420.
    [10] Biswas, S., Coutand, I., Grujic, D., et al. Exhumation and uplift of the Shillong plateau and itsinfluence on the eastern Himalayas: New constraints from apatite and zircon (U-Th-[Sm])/Heand apatite fission track analyses [J]. Tectonics,2007,26, TC6013,doi:10.1029/2007TC002125.
    [11] Bonnet, E, Bour, O., Odling, N. E. et al. Scaling of fracture systems in geological media [J].Reviews of Geophysics,2001,39(3):347-383.
    [12] Braun, J.. Quantifying the effect of recent relief changes on age-elevation relationship [J].Earth and Planetary Science Letters,2002,200:331-343.
    [13] Brandon, M.T., Roden-Tice, M.K., Garver, J.I. Late Cenozoic exhumation of the Cascadiaaccretionary wedge in the Olympic Mountains, northwest Washington State [J]. GAS Bulletin,1998,110:985-1009.
    [14] Brooks, C.M., Brantley, S.L., Fisher, D.M. Power-law vein-thickness distributions andpositive feedback in vein growth [J]. Geology,1995,23(11):975-987.
    [15] Brown, E.T., Hoek, E. Trends in relationships between measured in situ stress and depth [J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1978,15:211-215.
    [16] Burchfiel, B.C., Chen, Z.L., et al. Tectonics of Longmenshan and adjacent regions, centralChina [J]. International Geological Review,1995,37:661-735.
    [17] Burchfiel, B.C., Royden, L.H, van der Hilst, R.D., et al. A geological and geophysical contextfro the Wenchuan earthquake of12May2008, Sichuan, PRC [J]. GSA Today,2008,18(7):doi:10.1130/GSA TG18A.1.
    [18] Burbank, D.W., Beck, R.A., Mulder, T. The Himalayan Foreland [M]. In: An, Y., andHarrison, M.(Eds.), Asian Tectonics: Cambridge University Press,1996,149-188.
    [19] Burbank, D.W., Derry, L.A., France-Lanord, C. Reduced Himalayan sediment production8Myr ago despite an intensified monsoon [J]. Nature,1993,364:48.
    [20] Burke, K. Plate Tectonics, theWilson Cycle, and Mantle Plumes: Geodynamics from the Top[J]. Annu. Rev. Earth Planet. Sci.,2011.39:1-29.
    [21] Burov, E., Toussaint, G. Surface processes and tectonics: Forcing of continental subductionand deep processes [J]. Global and Planetary Change,2007,58:141-164.
    [22] Busby, C., Azor, A. Tectonics of Sedimentary Basins—Recent Advances [M].Wiley-Blackwell,2012.
    [23] Carlson, W.D., Donelick, R.A., Ketcham, R.A. Variability of apatite fission-track annealingkinetics: I. Experimental results [J]. American Mineralogist,1994,84:1213-1223.
    [24] Chen, S.F., Wilson, C.G.L., Worley, B.A. Tectonic transition from the Songpan-Ganzi Foldbelt to the Sichuan Basin, southwestern China [J]. Basin Research,1995,7:235-253.
    [25] Chen, S.F., Wilson, C.G.L. Emplacement of the Longmenshan Thrust-Nappe Belt along theeastern margin of the Tibetan Plateau [J]. Journal of Structural of Geology,1996,18:413-430.
    [26] Chen, S.F., Wilson C.J.L., Deng Q.D. et al. Active faulting and block movement associatedwith large earthquakes in the Min Shan and Longmenshan northern Tibetan Plateau [J].Journal of Geophysical Research,1994,99:24025-24038.
    [27] Clark, M., Brantley, S., Fisher, D. Power-law vein-thickness distributions and positivefeedback in vein growth [J]. Geology,1995,23:975-978.
    [28] Cloetingh, S., Ziegler, P.A., Bogaard, P. et al. TOPO-EUROPE: The geoscience of coupleddeep Earth-surface processes [J]. Global and Planetary Change,2007,58:1-118.
    [29] Cloetingh, S., Thybo, H., Faccenna, C. TOPO-EUROPE: Studying continental topographyand Deep Earth—Surface processes in4D [J]. Techonophysics,2009,474:4-32.
    [30] Cosgrove, J.W. Hydraulic fracturing during the formation and deformation of a basin: Afactoring the dewatering of low-permeability sediments [J]. AAPG Bulletin,2001,85(4):737-748.
    [31] Davila, F.M, Astini, R.A., Cenozoic provenance history of synorogenic conlogmerates inwestern Argentina (Famatina belt): Implications for Central Andean foreland development [J].GSA Bulletin,2007,119(5/6):609-622.
    [32] Decelles, P.G., Robinson, D.M., Zandt, G. Implications of shortening in the Himalayanfold-thrust belt for uplift of the Tibetan Plateau [J]. Tectonics,2002,21,doi:10.1029/2001TC001322.
    [33] Densmore, A.L., Gupta, S., Allen, P.A., et al. Transient landscapes at fault tips [J]. J.Geophys. Res.,2007,112, F03S08.
    [34] Dirks, P.H.G.M., Wilson, C.G.L., Chen, S.F., et al.Tectonic evolution of the NE margin ofthe Tibetan Plateau: Evidence from the central Longmenshan, Sichuan Province, China [J].Journal of Southeast Asian Earth Sciences,1994,9:181-192.
    [35] Dickinson, W.R. Plate tectonics and sedimentation [M]. In: Tectonics and Sedimentation,1-27, Special Publication of Society of Economic Plaeontologists and Mineralogists,22,Tulsa, Oklahoma.
    [36] Donelick, R.A., Ketcham R.A., Carlson, W.D. Variability of apatite fission-track annealingkinetics: II. Crystallographic orientation effects [J]. American Mineralogist,1999,84:1224-1234.
    [37] Ehlers, T., Willett, S.D., Armstrong, P.A., et al. Exhumation of the central WasatchMountains, Utah:2. Thermokinematic model of exhumation, erosion, and thermochronometerinterpretation [J]. Journal of Geophysical Research,2003,108, doi:10.1029/2001JB001723.
    [38] Ehlen, J. Fractal analysis of joint patterns in granite [J]. International Journal of RockMechanics and Mining Sciences,2000,37:909-922.
    [39] Enkelmann, E., Weislogel, A., Ratschbacher, L., et al. How was the Triassic Songpan-Ganzebasin filled? A provenance study [J]. Tectonics,2007,26, doi:10.1029/2006TC002078.
    [40] Enkelmann, E., Ratschbacher, L., Jonchheere, R., et al. Cenozoic exhumation anddeformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow divergingaround the Sichuan Basin [J]. Geological Society of American Bulletin,2006,6:651-671.
    [41] Farley, K.A., Wolf, R.A., Silver, L.T. The effects of long alpha-stopping distances onU-Th/He dates [J]. Geochimica et Cosmochimica Acta,1996,60:4223-4230.
    [42] Farley, K.A. Helium diffusion from apatite: General behavior as illustrated by Durangofluorapatite [J]. Journal of Geophysical Research,2000,105:2903-2914.
    [43] Fellin, M.G., Reiners, P.W., Brandon, M.T., et al. Thermochronologic edvidence fro theexhumational history of the Apli Apuane metamorphic core complex, northern Apennines,Italy [J]. Tectonics,2007,26, doi:10.1029/2006TC002085.
    [44] Finn, M.D., Gross, M.R., Eyal, Y., et al. Kinematics of throughgoing fractures in jointedrocks [J]. Tectonophysics,2003,376:151-166.
    [45] Finnegan, N.J., Hallet, B., Montgomery, D.R., et al. Coupling of rock uplift and river incisionin the Namche Barwa-Gyala Peri massif, Tibet [J]. GSA Bulletin,2008,120:142-155.
    [46] Fitzgerald, P.G., Baldwin, S.L., Webb, et al. Interpretation of (U-Th)/He single grain agesfrom slowly cooled crustal terranes: A case study from the Transantarctic Mountains ofsouthern Victoria Land [J]. Chemical Geology,2006,225:91-120.
    [47] Flowers, R., Shuster, D., Wernicke, B., et al. Radiation damage control on apatite (U-Th)/Hedates from the Grand Canyon region, Colorado Plateau [J]. Geology,2007,35:447-450.
    [48] Fuller, C.W., Willett, S.D., Fisher, D., et al. A thermomechanical wedge model of Taiwanconstrained by fission-track thermochronometry [J]. Tectonophysics,2006,425:1-24.
    [49] Galbraith, R. F., Laslett, G. M. Statistical models for mixed fission track ages [J]. Nucl.Tracks Radiat. Meas.,1993,21:459-470.
    [50] Gleadow, A.J.W., Kohn, B.P., Brown, R.W., et al. Fission track thermotectonic imaging ofthe Australian continent [J]. Tectonophysics,2003,349:5-12.
    [51] Gale, J.F.W., Reed, R.M., Holder, J. Natural fractures in the Barnett Shale and theirimportance for hydraulic fracture treatments [J]. AAPG,2007,91(4):603-622.
    [52] Gillespie, P. A., Howard, C., Walsh, J.J., et al. Measurement and characterization fo spatialdistributions of fractures [J]. Tectonophysics,1993,226:113-141.
    [53] Gillespie, P.A., Johston, J.D., Loriga, M.A., et al. Influence of layering on vein systematics inline sample [J]. In: McCaffrey, K.J.M., Loneran, L., Wilkinson, J.J.(Eds), Fractures, FluidFlow and Mineralization, Geological Society Special Publications,1995,155:35-56.
    [54] Gillespie, P.A., Walsh, J.J., Watterson, J., et al. Scaling relationships of joint and vein arraysfrom the Burren Co. Clare, Ireland [J]. Journal of Structural Geology,2001,23:183-201.
    [55] Godard, V., Pik, R., Lave, J., et al. Late Cenozoic evolution of the central Longmenshan,eastern Tibet: Insight from (U-Th)/He thermochronometry [J]. Tetonics,2009,28,doi:10.1029/2008TC002407.
    [56] Green, P.F. On the thermo-tectonic evolution of Northern England: evidence from fissiontrack analysis [J]. Geological Magazine,1986,123:493-506.
    [57] Gross, M.R., Eyal, Y. Throughgoing fractures in layered carbonate rocks [J]. GeologicalSociety of America Bulletin,2007,(11/12):1387-1404.
    [58] Hafner, W. Stress distributions and faulting [J]. Gol Soc Am Bull,1951,62:373-398.
    [59] Harrowfield, M.J., Wilson, C.J.L. Indosinian deformation of the Songpan Garze Fold Belt,northeast Tibetan Plateau [J]. Journal of Structural Geology,2005,27:101-117.
    [60] Henck, A.C., Huntington, K.W., Stone, J.O., et al. Spatial controls on erosion in the ThreeRivers Region, southeastern Tibet and southwestern China [J]. Earth and Planetary ScienceLetters,2011, doi:10.1016/j.epsl.2010.12.038.
    [61] Hourigan, J. K., Reiners, P. W., Brandon, M. T. U-Th zonation-dependent alpha-ejection in(U-Th)/He chronometry [J]. Geochimica et Cosmochimica Acta,2005,69:3349-3365.
    [62] Hu, S.B., He, L.J., Wang, J.Y. Heat flow in the continental area of China: a new data set [J].Earth and Planetary Science Letters,2000,179:407-419.
    [63] Huang, M., Maas, R., Buick, I.S., et al. Crustal response to continental collision between theTibet, Indian, South China and North china blocks: Geochronological constraints from theSongpan-Ganzi orogenic belt, western China [J]. Journal of Metamorphic Geology,2003,21:223-240.
    [64] Hubbard, J,, Shaw. J.H. Uplift of the Longmen Shan and Tibetan plateau, and the2008Wenchuan (M=7.9) earthquake [J]. Nature,2008,(458/12): March, doi:10.1038.
    [65] Hurford, A. J., Green P. F. A users’ guide to fission-track dating calibration [J]. Earth Planet.Sci. Lett.,1982,59:343-354.
    [66] Hurford, A. J. Standardization of fission track dating calibration: recommendation by thefission-track working group of the I.U.G.S. Subcommission on Geochronology [J]. Chem.Geol.,1990,80:171-178.
    [67] Ingersoll, R.V. Tectonics of sedimentary basins [J]. Geological Society of America Bulletin,1998,100:1704-1719.
    [68] Jia, D., Wei, G.Q., Chen, Z.X., et al. Longmenshan fold-thrust belt and its relation to westernSichuan Basin in central China: New insights from hydrocarbon exploration [J]. AAPG,2006,90:1425-1447.
    [69] Jiang, X.D., Jin, Y. Mapping the deep lithospheric structure beneath the eastern margin of theTibetan Plateau from gravity anomalies [J]. Journal of Geophysical Research,2005,110:1-14.
    [70] Jin, W.Z., Tang, L.J., Yang, K., et al. Transfer zones within the Longmenshan thrust belt, SWChina [J]. Geosciences Journal,2009,12:1-14.
    [71] Johnston, J.D., McCaffrey, K.J.W. Fractal geometry of vein systems and the variation ofscaling relationships with mechanism [J]. Journal of Structural Geology,1996,18:349-358.
    [72] Ketcham, R.A., Donelick, R.A., Carlson, W.D. Variability of apatite fission-track annealingkinetics: III. Extrapolation to geological time scales [J]. American Mineralogist,1999,84:1235-1255.
    [73] Ketcham, R.A., Donelick, R.A., Donelick, M.B., et al. AFTsolve: A program for multi-kineticmodeling of apatite fission-track date [J]. Geological Materials Research,2000,2(1):1-32.
    [74] Kingston, D.R., Dishroon, C.P.,Williams, P.A. Hydrocarbon plays and global basinClassification [J]. AAPG,1983,67:2194-2198.
    [75] Kirby, E., Reiners, P.W., Krol, M.A., et al. Late Cenozoic evolution of the eastern margin ofthe Tibetan Plateau: Inference from40Ar/39Ar and (U-TH)/He thermo-chronology [J].Tectonics,2002,21, doi:10.1029/2000TC001246.
    [76] Kohn, B.P., Gleadow, A.J.W., Brown, R.W., et al. Visualizing thermotectonic and denudationhistories using apatite fission track thermochronology [J]. Reviews in Mineralogy&Geochemistry,2005,58:527-565.
    [77] Kwon, S., Mitra, G. Three-dimensional finite-element modeling of a thin-shinned fold-thrustbelt wedge: Provo salient, Sevier belt, Utah [J]. Geology,2004,32(7):561-564.
    [78] Lacombe, O., Lave, J., Roure, F., et al. Thrust belts and Foreland basins [M]. Berlin: Springer,2007.
    [79] Lai, Q.Z., Ding, L., Wang, H.W., et al. Constraining the stepwise migration of the easternTibetan Plateau margin by apatite fission track thermochronology [J]. Science in China SeriesD: Earth Sciences,2007,50:172-183.
    [80] Laslett, G. M., Green, P. F., Duddy, I. R., et al. Thermal annealing of fission tracks in apatite2. A quantitative analysis [J]. Chemical Geology,1987,65:1-13.
    [81] Li, S.Z., Kusky, T.M., Wang, L., et al. Collision leading to multiple-stage large-scaleextrusion in the Qinling orogen: Insights from the Mianlue suture [J]. Gondwana Research,2007,12:121-143.
    [82] Leeder, M.R. Tectonic sedimentology: sediment systems deciphering global to local tectonics[J]. Sedimentology,2011,58:2-56.
    [83] Li, Y., Allen, P.A., Densmore, A.L., et al. Evolution of the Longmenshan foreland basin(western Sichuan Basin) during the Late Triassic Indosinian orogen [J]. Basin Research,2003,15:117-138.
    [84] Liu, S.F., Steel, R., Zhang, G.W. Mesozoic sedimentary basin development and tectonicimplication, northern Yangtze Block, eastern China: record of continent-continent collision[J]. Journal of Asian Earth Sciences,2005,25:9-27.
    [85] Liu S.G., Luo Z.L., Dai S.L., et al. The uplift of the Longmenshan Thrust Belt and subsidenceof the West Sichuan Foreland Basin [J]. ACTA Geologica Sinca,1996,9:16-26.
    [86] Liu, S.G., Wang, H., Sun, W., et al. Energy Field Adjustment and Hydrocarbon PhaseEvolution in Sinian-Lower Plaeozoic Sichuan Basin [J]. Journal of China University ofGeosicences,2008,19(6):700-706.
    [87] Ma, Y.S., Guo, X.S., Guo, T.L., et al. The Puguang gas field: New giant discovery in themature Sichuan Baisn, southwest China [J]. AAPG,2007,91(5):627-643.
    [88] Macedo, J.M., Marshak, S. Controls on the geometry of fold-thrust belt salients [J].Geological society of American Bulletin,1999,111:1808-1822.
    [89] Mancktelow, N.S., Grasemann, B. Time-dependent effects of heat advection and topographyon cooling histories during erosion [J]. Tectonophysics,1997,270:167-195.
    [90] Mandelbrot, B.. The Fractal Geometry of Nature [M]. Freeman, New York.1983.
    [91] Marques, F.O., Cobbold, P.R. Effects of topography on the curvature of fold and thrust beltsduring shortening of a2-layer model of continental lithosphere [J]. Tectonophysics,2006,415,(1–4):65–80.
    [92] Marshak, S. Kinematics of orocline and arc formation in thin-skinned orogens [J]. Tectonics,1988,7:73-86.
    [93] Marshak, S. Salents, recesses, arcs, oroclines, and styntaxes-A review of ideas concerning theformation of map-view curves in fold-thrust belts. Thrust tectonics and hydrocarbon system[J]. AAPG Memoir,2004,82:131-156.
    [94] Mattauer, M., Matte, P., Malavieille, J., et al. Tectonics of the Qinling belt: Build-up andevolution of eastern Asia [J]. Nature,1985,317:496-500.
    [95] McCaffrey, K.J.W., Johnston, J.D., Feely, M. Use of fractal statistics in the analysis ofCu-Mo mineralisation at Mace Head, Co. Galway [J]. Ir. J. Earth Sci.,1993,12:139-148.
    [96] McCaffrey, K.J.W., Loneran, L., Wilkinson, J.J.,(eds.) Fractures, Fluid Flow andMineralization [M]. The Geological Society London, Special Publications, v.155, London,1999.
    [97] McClay, K.R. Thrust tectonics and hydrocarbon system [M]. AAPG Memoir,82.2004
    [98] McClay, K.R., Whitehouse, P.S. Analog modeling of doubly vergent thrust wedges [M]. InMcClay K.R., ed, Thrust tectonics and hydrocarbon system: AAPG Memoir,2004,82,184-206.
    [99] McQuarrie, N., Barnes, J.B., Ehlers, T.A. Geometric, kinematic, and erosional history of thecentral Andean Plateau, Bolivia (15-17°S)[J]. Tectonics,2008,27,doi:10.1029/2006TC002054.
    [100] Meng, Q.R., Zhang, G.W. Geologic framework and tectonic evolution of the Qinling orogen,central China [J]. Tectonophysics,2000,323:183-196.
    [101] Meng, Q.R., Wang, E.Q., Hu, J.M. Mesozoic sedimentary evolution of the northwest Sichuanbasin: Implication for continued clockwise rotation of the South China block [J]. GSABulletin,2005,117:396-410.
    [102] Metcalf, J.R., Fitzgerald, P.G., Baldwin, S.L., et al. Thermochronology of a convergentorogen: Constraints on the timing of thrust faulting and subsequent exhumation of theMaladeta Pluton in the Central Pyrenean Axial Zone [J]. Earth and Planetary Science Letters,2009,28:488-503.
    [103] Mitra, G. Evolution of salients in a fold-and-thrust belt: the effects of sedimentary basingeometry, strain distribution and critical taper [M], in S. Sengupta, ed. Evolution ofgeological structures in micro-to macro-scale: London, Chapman&Hall,1997.
    [104] Molnar, P. Late Cenozoic increase in accumulation rates of terrestrial sediments: How mightclimate change have affected erosion rates?[J] Annual Review of Earth and PlanetaryScience,2004,32:67-89.
    [105] Montgomery, D.R., Brandon, M.T. Topographic controls on erosion rates in tectonicallyactive mountain ranges [J]. Earth and Planetary Science Letters,2002,201:481-489.
    [106] Nadan, B.J., Engelder, T. Microcracks in New England granitoids: A record of thermoelasticrelaxation during exhumation of intracontinental crust [J]. GSA Bulletion,2009,121(1/2):80-99.
    [107] Odling, N.E.. Network properties of a two-dimensional natural fracture pattern [J]. Pure andApplied Geophysics,1992,138:96-114.
    [108] Odling, N.E. Scaling and connectivity of joint systems in sandstones from western Norway[J]. Journal of Structural Geology,1997,19:1257-1271.
    [109] Ohm, S.E., Karlsen, D.A., Austin, T.J.F. Geochemically driven exploration models in upliftedareas: Examples from the Norwegian Barents Sea [J]. AAPG Bulletin,2008,92(9):1191-1223.
    [110] Ouimet, W., Whipple, K., Royden, L., et al. Regional incision of the eastern margin of theTibetan Plateau [J]. Lithosphere,2010,2:50-63.
    [111] Passchier, C.W., Trouw, R.A.J. Microtectonics [M]. Berlin: Springer,2005.
    [112] Paulsen, T., Marshak, S. Origin of the Uinta recess, Sevier fold-thrust belt, Utah: Infulence ofbasin architecture on fold-thrust belt geometry [J]. Tectonophysics,1999,312:203-216.
    [113] Peacock, D., Harris, S., Mauldon, M. Use of curved scanlines and boreholes to predictfracture frequencies [J]. Journal of Structural Geology,2003,25(1):109-119.
    [114] Pickering, G., Bull, J., Sanderson, D. Sampling power law distributions [J]. Tectonophysics,1995,248:1-20.
    [115] Price, N.J., Cosgrove, J.W. Analysis of geological structures [M]. Cambridge UniversityPress,1990.
    [116] Ramsay, J.G., Huber, M.I. The Techniques of Modern Structural Geology: Folds andFractures [M]. London: Academic Press,1987.
    [117] Ratschbacher, L., Hacker, B.R., Calvert, A., et al. Tectonics of the Qinling (Central China):tecnonostratigraphy geochronology, and deformation history [J]. Tectonophysics,2003,366,1-53.
    [118] Renshaw, C.E.,1996. Influence of subcritical fracture growth on the connectivity of fracturenetwork [J]. Water Resources Research,2003,32:1519-1530.
    [119] Reich, M., Ewing, R. C., Ehlers, T. A., et al. Low-temperature anisotropic diffusion of heliumin zircon: Implications for zircon (U-Th)/He thermochronometry[J]. Geochimica etCosmochimica Acta,2007,71:3119-3130
    [120] Reiners, P.W., and Farley, K.A. Influence of crystal size on apatite (U-Th)/Hethermochronology: an example from the Bighorn Mountains, Wyoming [J]. Earth andPlanetary Science Letters,2001,188:413-420.
    [121] Reiners, P.W., Spell, T.L., Nicolescu, S., et al. Zircon (U-Th)/He thermochronometry: Hediffusion and comparisons with40Ar/39Ar dating [J]. Geochimica et Cosmochimica Acta,2004,68:1857-1887.
    [122] Reiners, P.W., Zhou, Z.Y., Ehlers, T.A., et al. Post-orogenic evolution of the Dabie Shan,Eastern China, from (U-Th)/He and fission-tack thermochronology [J]. American Journal ofScience,2003,303:489-518.
    [123] Reiners, P.W., Brandon, M. Using thermochronology to understand orogenic erosion [J].Annu. Rev. Earth Planet. Sci.,2006,34:419-466.
    [124] Richardson, N.J., Densmore, A.L., Seward, D., et al. Extraordinary denudation in the SichuanBasin: Insights from low-temperature thermochronology adjacent to the eastern margin of theTibetan Plateau [J]. Journal of Geophysical Research,2008,113, doi:10.1029/2006JB004739.
    [125] Rijken, P., Cooke, M.L. Role of shale thickness on vertical connectivity of fractures:Application of crack-bridging theory to the Austin Chalk, Texas [J]. Tectonophysics,2001,337:117-133.
    [126] Roberts, S., Sanderson, D., Gumiel, P. Fractal analysis and percolation properties of veins
    [M]. In: McCaffrey, K.J.M., Loneran, L., Wilkinson, J.J.(Eds), Fractures, Fluid Flow andMineralization, Geological Society Special Publications,1999.
    [127] Roger, F., Malavieille, J., Leloup, Ph. H., et al. Timing of granite emplacement and cooling inthe Songpan-Ganzi Fold Belt (eastern Tibetan Plateau) with tectonic implications [J]. Journalof Asian Earth Sciences,2004,22:465-481.
    [128] Roger, F., Jolivet, M., Malavieille, J. The tectonic evolution of the Songpan-Garze (NorthTibet) and adjacent areas from Proterozoic to Present: A synthesis [J]. Journal of Asian EarthSciences,2010,39:254-269.
    [129] Rosenbaum, G., Lister, G.S. Formation of arcuate orogenic belts in the westernMediterranean region, in Sussman A.J. and Weil A.B. eds., Orogenic curvature: Intergratingpaleomagnetic and structural analyses [J]. Geological society of American Special Paper383,2004, p.41-56.
    [130] Royden, L.H., Burchfiel, B.C., King, R.W., et al. Surface deformation and lower crustal flowin Eastern Tibet [J]. Science,1997,276:788-790.
    [131] Royden, L.H., Burchfiel, B.C., van der Hilst, R.D. The geological evolution of the TibetanPlateau [J]. Science,2008,321:1054-1058.
    [132] Sanderson, D., Roberts, S., Gumiel, P. A fractal relationship between vein thickness and goldgrade in drill core from La Codosera, Spain [J]. Economic Geology,1994,89:168-173.
    [133] Shackleton, J.R., Cooke, M.L., Sussman, A.J. Evidence for temporally changing mechanicalstratigraphy and effects on joint-network architecture [J]. Geology,2005,33:101-104.
    [134] Shen, Z.K., Lü, J.N., Wang, M., et al. Contemporary curstal deformation around the southeastborderland of the Tibetan Plateau [J]. Journal of Geophysical Research,2005,110,doi:10.1029/2004JB003421.
    [135] Shen, C.B., Mei, L.F., Xu, S.H. Fission trakc dating of Mesozoic sandstone and its tectonicsignificance in the Eastern Sichuan basin, China [J]. Radiation Measurements,2009,44:945-949.
    [136] Shuster, D.L., Flowers, R., Farley, K. The influence of natural radiation damage on heliumdiffusion kinetics in apatite [J]. Earth and Planetary Science Letters,2006,249:148-161.
    [137] Smith, B., Aubourg, C., Guezou, J.C., et al. Kinematics of a sigmoidal fold and vertical axisrotation in the east of the Zagros-Makran syntaxis (southern Iran): Paleomagnetic, magneticfabric and microtectonic approaches [J]. Tectonophysics,2005, doi:10.1016/j.tecto.2005.08.024.
    [138] Sobel, E.R., Seward, D. Influence of etching conditions on apatite fission-track etch pitdiameter [J]. Chemical Geology,2010,271:59-69.
    [139] Spiegel, C., Barry, K., Belton, D., et al. Apatite (U-Th-Sm)/He thermochronology of rapidlycooled samples: The effect of He implantation [J]. Earth and Planetary Science Letters,2009,285:105-114.
    [140] Stüwe, K., White, L., Brown, R. The influence of eroding topography on stead-stageisotherms. Application to fission track analysis [J]. Earth and Planetary Science Letters,1994,124:63-74.
    [141] Stüwe, K., Hintermüller, M. Topography and isotherms revisited: the influence of laterallymigrating drainage divides [J]. Earth and Planetary Science Letters,2000,184:287-303.
    [142] Stüwe, K., Robl, J., Hergarten, S., Evans, L. Modeling the influence of horizontal advection,deformation, and late uplift on the drainage development in the India-Asia collision zone [J].Tectonics,2008,27, doi:10.1029/2007TC002186.
    [143] Sussman, A.J., Butler, R.F., Dinares-Turell, J., et al. Vertical-axis rotation of a foreland forldand implications for orogenic curvature: an example from the Southern Pyrenees, Spain [J].Earth and Planetary Science Letters,2004,218:435-449.
    [144] Sussman, A.J., Weil, A.B. Orogenic curvature: Intergrating paleomagnetic and structuralanalyses [J]. Geological society of American Special Paper383,2004.
    [145] Sussman, A.J., Butler, R.F., Dinares-Turell, J., et al. Vertical-axis rotation of a foreland foldand implications for orogenic curvature: an example from the Southern Pyrenees, Spain [J].Earth and Planetary Science Letters,2004,218:435-449.
    [146] Surdam, R.C, Jiao, Z.A., Heasler, H.P. A nomalously pressured gas compartments inCretaceous Rocks of Laramide basins of EYoming: A new class of hydrocarbonaccumulation, Traps, and the Petrolum Systems [J]. AAPG memoir67,1997,199-222.
    [147] Tapponnier, P., Molar, P. Slip-line field theory and large-scale continental tectonics [J].Nature,1976,264:319-324.
    [148] Thomas, W. A., Whiting, B.M. The Alabama Promontory: an example of the evolution of anAppalachian-Ouachita thrust belt recess at a promontory of the rifted continental margin [J].Geological Association of Canada, Special Paper41,1995,1-20.
    [149] Thiede, R.C., Arrowsmith, J.R., Bookhagen, B., et al. From tectonically to erosionallycontrolled development of the Himalayan orogen [J]. Geology,2005,33:689-692.
    [150] Thomson, S.N., Brandon, M.T., Reiners, P.W., et al. Thermochronologic evidence fororogen-parallel variability in wedge kinematics during extending convergent orogenesis ofthe north Apennines, Italy [J]. GSA Bulletin,2010,122, doi:10.1130/B26573.1.
    [151] Tian, H., Xiao, X.M., Wilkins, R.W., et al. New insights into the volume and pressurechanges during the thermal cracking of oil to gas in reservoirs: Implications for the in-situaccumulation of gas cracked from oils [J]. AAPG Bulletin,2008,92:181-200.
    [152] Varban, B., Plint, A.G. Sequence stacking patterns in the Western Canada foredeep: influenceof tectonics, sediment loading and eustasy on deposition of the Upper Cretaceous Kaskapauand Cardium Formations [J]. Sedimentology,2008,55:395-421.
    [153] Vernon, A.J., van der Beek, P.A., Sinclair, H.D., et al. Increase in late Neogene denudation ofthe European Alps confirmed by analysis of a fission-track thermochronology database [J].Earth and Planetary Science Letters,2008,270:316-329.
    [154] Wallis, S., Tsujimori, T., Aoya, M., et al. Cenozoic and Mesozoic metamorphism in theLongmenshan orogen: Implications for geodynamic models of eastern Tibet [J]. Geology,2003,31:745-748.
    [155] Wang, J.Q. Relationship between tectonic evolution and hydrocarbon in the foreland of theLongmenshan [J]. Journal of Southeast Asian Earth Sciences,1996,13:327-336.
    [156] Wang, C.Y., Han, W.B., Wu, J.P., et al. Crustal structure beneath the eastern margin of theTibetan Plateau [J]. Journal of Geophysical Research,2007,112, doi:10.1029/2005JB003873.
    [157] Weil, A.B., Yonkee, A., Sussman A. Reconstructing the kinematic evolution of curvedmountain belts: A paleomagnetic study of Triassic red beds form the Wyoming salient, Sevierthrust belt, U.S.A [J]. GSA Bulletin,2010,122(1/2):3-23.
    [158] Weislogel, A. L., Graham, S. A., Chang, E.Z., et al. Detrital zircon provenance of the LateTriassic Songpan-Ganzi complex: Sedimentary record of collision of the North and SouthChina blocks [J]. Geology,2006,34:97-100.
    [159] Whittaker, A.C., Cowie, P.A., Attal, M., et al. Contrasting transient and steady-state riverscrossing active normal faults: new field observations from the Central Apennines, Italy [J].Basin Res.,2007,19:529-556.
    [160] Whipple, K.X., Meade, B.J. Orogen response to change in climatic and tectonic forcing [J].Earth and Planetary Science Letters,2006,243:218-228.
    [161] Willett, S.D., Brandon, M.T. On steady states in mountain belts [J]. Geology,2002,30:175-178.
    [162] Wilson, C.J.L, Fowler, A.P. Denudational response to surface uplift in east Tibet: Evidencefrom apatite fission-track thermochronology [J]. GSA Bulletin,2011, doi:10.1130/B30331.1.
    [163] Wilson, C.J.L., Harrowfield, M.J., Reid, A.J. Brittle modifcation of Triassic architecture ineastern Tibet: implications for the construction of the Cenozoic plateau [J]. Journal of AsianEarth Sciences,2006,27:341-357.
    [164] Witte, J., Bonora, M., Carbone, C., et al. Fracture evolution in oil-producing sills of the RioGrande Valley, northern Neuquen Basin, Argentina [J]. AAPG Bulletin,2012,96(7):1253-1277.
    [165] Worley, B.A., Wilson, C.J.L. Deformation partitioning and foliation reactivation duringtranspressional orogenesis, and example from the central Longmenshan, China [J]. Journal ofStructural Geology,1996,18:395-411.
    [166] Xu, G.Q., Kamp, P.J. Tectonics and denudation adjacent to the Xuanshuihe Fault, easternTibetan Plateau: Constraints from fission track thermo-chronology [J]. Journal ofGeophysical Research,2000,105:19231-19251.
    [167] Yan, D.P., Zhang, B., Zhou, M.F., et al. Constrains on the depth, geometry and kinematics ofblind detachment faults provided by fault-propagation folds: An example from the Mesozoicfold belt of South China [J]. Journal of Structural Geology,2009,31:150-160.
    [168] Yin, A., Nie, S.Y. An indentation model for the North and South China collision and thedevelopment of the TanLu and Honam fault system: East Asia [J]. Tectonics,1993,12:801-813.
    [169] Yonkee A., Weil A.B. Reconstructing the kinematic evolution of curved mountain belts:Internal strain patterns in the Wyoming salient, Sevier thrust belt, U.S.A [J]. GSA Bulletin,2011,122(1/2):24-49.
    [170] Yuan, C., Zhou, M.F., Sun, M., et al. Triassic granitoids in the eastern Songpan-Ganzi FoldBelt, SW China: Magmatic response to geodynamics of the deep lithosphere [J]. EPSL,2010,290:481-492.
    [171] Zazoun, R.S. The Fadnoun area, Tassili-n-Azdjer, Algeria: Fracture network geometryanalysis [J]. Journal of African Earth Sciences,2008,50:273-285.
    [172] Zhang, H.F., Zhang, L., Harris, N., et al. U-Pb zircon ages, geochemical and isotopiccompositions of granitoids in Songpan-Ganzi fold belt, eastern Tibetan Plateau: constraintson petrogenesis and tectonic evolution of the basement [J]. Contrib. Mineral. Petrol.,2006,152:75-88.
    [173] Zhao, X.X., Coe, R.S. Paleomagnetic constraints on the collision and rotation of north andsouth China [J]. Nature,1978,327:141-144.
    [174] Zoback, M.D. Reservoir Geomechanics [M]. New York: Cambridge University Press,2007.
    [175]安其美,丁立丰,王海忠等.龙门山断裂带的性质与活动性研究[J].大地测量与地球动力学,2004,24(2):115-119.
    [176]卞从胜,王红军,尹平等.广安气田须家河组天然气大面积成藏的条件[J].天然气工业,2009,29(6):19-22.
    [177]常远,许长海, Reiners P W等.米仓山-汉南隆起白垩纪以来的剥露作用:磷灰石(U-Th)/He年龄记录[J].地球物理学报,2010,53(4):912-919.
    [178]车国琼,龚昌明,汪楠等.广安地区须家河组气藏成藏条件[J].天然气工业,2007,27(6):1-6.
    [179]陈衍景,张静,张复新等.西秦岭地区卡林-类卡林型金矿床及其成矿时间、构造背景和模式[J].地质论评,2004,50(2):134-152.
    [180]陈义才,蒋裕强,郭贵安等.川中地区上三叠统天然气成藏机理[J].天然气工业,2007,27(6):27-30.
    [181]程顺有,张国伟,李立.秦岭造山带岩石圈电性结构及其地球动力学意义[J].地球物理学报,2003,46(3):390-397.
    [182]崔秉荃,龙学明,李元林.川西拗陷的沉降与龙门山的崛起[J].成都理工学院学报,1991,18(1):39-45.
    [183]崔作舟,陈纪平.龙门山及川西高原地区的地壳结构与深部构造[J].中国地质科学院562综合大队集刊,1994,第11-12号,1-19.
    [184]代寒松,刘树根,孙玮等.龙门山-米仓山地区下组合地表沥青特征研究[J].成都理工大学学报(自然科学版),2009,36(6):687-697.
    [185]戴金星.威远气田成藏期及气源[J].石油实验地质,2003,25(5):473-481.
    [186]邓康龄.龙门山构造带印支期构造递进变形与变形时序[J].石油与天然气地质,2007,28(4):485-490.
    [187]董树文,胡健民,施炜等.大巴山侏罗纪叠加褶皱与侏罗纪前陆[J].地球学报,2006,27(5):403-410.
    [188]董云鹏,查显峰,付明庆等.秦岭南缘大巴山褶皱-冲断带推覆构造的特征[J].地质通报,2008,27(9):1493-1508.
    [189]范翔宇,康海涛,龚明等.川东北山前高陡构造地应力精细计算方法[J].西南石油大学学报(自然科学版),2012,34(3):41-47.
    [190]郭正吾,邓康龄,韩永辉等.四川盆地形成与演化[M].北京:地质出版社,1996.
    [191]郭彤楼,张元春,邹华耀.川东北碳酸盐岩层系现今应力场与裂缝特征[J].断块油气田,2010,17(6):718-722.
    [192]韩玉林,许长海,周祖翼等.扬子褶皱带侏罗纪砂岩古地磁及其褶皱带弧形弯曲的成因[J].地球物理学报,2009,52(12):3072-3082.
    [193]黄继钧.川黔南北向构造带古构造特征[J].地质力学学报,1998,4(1):19-24.
    [194]郝芳,邹华耀,方勇等.断-压双控流体流动与油气幕式快速成藏[J].石油学报,2004,25(6):38-47.
    [195]郝国丽,柳广弟,谢增业等.川中-川南地区上三叠统须家河组气藏异常压力分布及成因[J].世界地质,29(2):298-305.
    [196]何登发,李德生,童晓光.中国多旋回叠合盆地立体勘探论[J].石油学报,2010,31(5):695-709.
    [197]何建坤,卢华复,张庆龙等.南大巴山冲断构造及其剪切挤压动力学机制[J].高校地质学报,1997,3(4):419-428.
    [198]何鲤,刘莉萍,罗潇等.川西龙门山推覆构造特征及有利油气勘探区块预测[J].石油实验地质,2007,29(3):247-252.
    [199]何志国,王信,黎从军等.川西坳陷碎屑岩超压储层与油气关系研究[J].天然气勘探与开发,2001,24(4):6-15.
    [200]胡健民,董树文,孟庆任等.大巴山西段高川地体的构造变形及其意义[J].地质通报,2008,27(12):2031-2044.
    [201]胡健民,施炜,渠洪杰等.秦岭造山带大巴山弧形构造带中生代构造变形[J].地学前缘(中国地质大学(北京);北京大学),2008,16(3):49-68.
    [202]胡健民,施炜,渠洪杰等.秦岭造山带大巴山弧形构造带中生代构造变形[J].地学前缘,2009,16(3):49-68.
    [203]黄籍中,陈盛吉,宋家荣等.四川盆地烃源体系与大中型气田形成[J].中国科学(D辑),1996,126(6):504-510.
    [204]黄籍中.从四川盆地看古隆起成藏的两重性[J].天然气工业,2009,29(2):12-17.
    [205]贾东,陈竹新,贾承造等.龙门山前陆褶皱带构造解析与川西前陆盆地的发育[J].高校地质学报,2003,9(3):402-410.
    [206]贾承造,何登发,石昕等.中国油气晚期成藏特征[J].中国科学D辑:地球科学,2006,36(5):412-420.
    [207]姜振学,庞雄奇,金之钧等.地层抬升过程中的砂体回弹作用及其油气成藏效应[J].地球科学,2004,29(4):420-427.
    [208]江在森,马宗晋,张希等.青藏块体东北缘水平应变场与构造变形分析[J].地震地质,2001,23(3):337-345.
    [209]金文正,汤良杰,杨克明等.川西龙门山褶皱冲断带分带性变形特征[J].地质学报,2007,81(8):1072-1080.
    [210]金宠,李三忠,王岳军等.雪峰山陆内复合构造系统印支-燕山期构造穿时递进特征[J].石油与天然气地质,2009,30(5):598-608.
    [211]金之钧,蔡立国.中国海相层系油气地质理论的继承与创新[J].石油与天然气地质,2007,27(6):722-729.
    [212]李登华,李伟,汪泽成等.川中广安气田天然气成因类型及气源分析[J].中国地质,2007,34(5):829-837.
    [213]李德威,夏义平,徐礼贵.大陆板内盆山耦合及盆山成因—以青藏高原及周边盆地为例[J].地学前缘,2009,16(3):110-119.
    [214]李留伟,吴建军,龙学等.川西新场构造地应力分布规律研究及其应用[J].天然气工业,2008,28(9):80-82.
    [215]李明诚.石油与天然气运移[M].北京:石油工业出版社,2004.
    [216]李双建,李建明,周雁等.四川盆地东南缘中新生代构造隆升的裂变径迹证据[J].岩石矿物学杂志,2011,30(2):225-233.
    [217]李晓清,汪泽成,张兴为等.四川盆地古隆起特征及对天然气的控制作用[J].石油与天然气地质,2001,22(4):347-352.
    [218]李伟,秦胜飞,胡国艺等.水溶气脱溶成藏-四川盆地须家河组天然气大面积成藏的重要机理之一[J].石油勘探与开发,2011,38(6):662-671.
    [219]李伟,秦胜飞,胡国艺等.四川盆地须家河组水溶气的长距离侧向运移与聚集特征[J].天然气工业,2012,32(2):31-37.
    [220]李勇,曾允孚.龙门山逆冲推覆作用的地层标识[J].成都理工学院学报,1995,22(2):1-10.
    [221]李勇,曾允孚,伊海生.龙门山前陆盆地沉积及构造演化[M].成都:成都科技大学出版社,1995.
    [222]李毓,李楠,王洪辉等.川西凹陷侏罗系应力场分布规律与构造关系特征研究[J].断块油气田,2005,12(5):5-6.
    [223]李岩峰,曲国胜,刘殊等.米仓山、南大巴山前缘构造特征及其形成机制[J].大地构造与成矿学,2005,32(3):285-292.
    [224]李智武,刘树根,罗玉宏等.南大巴山前陆冲断带构造样式及变形机制分析[J].大地构造与成矿学,2006,30(3):294-304.
    [225]李智武,刘树根,陈洪德等.龙门山冲断带分段-分带性构造格局及其差异变形特征[J].成都理工大学学报(自然科学版),2008,35(4):440-454.
    [226]李智武,刘树根,陈洪德等.川西坳陷复合-联合构造及其对油气的控制[J].石油勘探与开发,2011,38(5):538-552.
    [227]梁兴中,高钧成.断裂成矿年龄的石英ESR研究[J].矿物岩石,1999,19(2):69-71.
    [228]林茂炳,吴山.龙门山推覆构造变形特征[J].成都地质学院学报,1991,18(1):46-55.
    [229]林茂炳.初论龙门山推覆构造带的基本结构样式[J].成都理工学院学报,1994,21(3):1-7.
    [230]林茂炳,苟宗海,王国芝等.龙门山中段地质[M].成都:成都科技大学出版社,1996.
    [231]刘斌,沈昆.流体包裹体动力学[M].北京:地质出版社,1999.
    [232]刘和甫,梁慧社,蔡立国等.川西龙门山冲断系统构造样式与前陆盆地演化[J].地质学报,1994,68(2):101-118.
    [233]刘少锋,张国伟.盆山关系研究的基本思路、内容和方法[J].地学前缘,2005,12(3):101-111.
    [234]刘树根,罗志立,曹树恒.四川龙门山冲断带(中北段)岩石圈的层圈性和多级滑脱推覆[J].四川地质学报,1990,10(3):145-150.
    [235]刘树根.龙门山冲断带与川西前陆盆地的形成演化[M].成都:成都科技大学出版社,1993.
    [236]刘树根,罗志立,戴苏兰.龙门山冲断带的隆升和川西前陆盆地的沉降[J].地质学报,1995,69(3):205-214.
    [237]刘树根,李国蓉,李巨初等.川西前陆盆地流体的跨层流动和天然气爆发式成藏[J].地质学报,2005,79(5):690-699.
    [238]刘树根,李智武,刘顺等.大巴山前陆盆地-冲断带的形成演化[M].北京:地质出版社,2006.
    [239]刘树根,孙玮,李智武等.四川盆地晚白垩世以来的构造隆升作用与天然气成藏[J].天然气地球科学,2008,19(3):293-300.
    [240]刘树根,马永生,孙玮等.四川盆地威远气田和资阳含气区震旦系油气成藏差异性研究[J].地质学报,2008,82(3):328-337.
    [241]刘树根,汪华,孙玮等.四川盆地海相领域油气地质条件专属性问题分析[J].石油与天然气地质,2008,29(6):781-793.
    [242]刘树根,李智武,曹俊兴等.龙门山陆内复合造山带的四维结构构造特征[J].地质科学,2009,44(4):1151-1180.
    [243]刘树根,秦川,孙玮等.四川盆地震旦系灯影组油气四中心耦合成藏过程[J].岩石学报,28(3):879-888.
    [244]刘昭茜,梅廉夫,郭彤楼等.川东北地区海相碳酸盐岩油气成藏作用及其差异性-以普光、毛坝气藏为例[J].石油勘探与开发,2009,36(5):552-562.
    [245]刘池洋,张复新,高飞.沉积盆地成藏(矿)系统[J].中国地质,2007,34(3):355-374.
    [246]卢庆治,胡圣标,郭彤楼等.川东北地区异常高压形成的地温场背景[J].地球物理学报,2005,48(5):1110-1116.
    [247]卢庆治,马永生,郭彤楼等.鄂西-渝东地区热史恢复及烃源岩成烃史[J].地球科学,2007,42(1):189-198.
    [248]龙学明.龙门山中北段地史发展的若干问题[J].成都地质学院学报,1991,18(1):8-16.
    [249]罗志立,金以钟,朱夔玉等.试论上扬子地台的峨眉地裂运动[J].地质论评,1988,34(1):11-23.
    [250]罗志立,龙学明.龙门山造山带崛起和川西陆前盆地沉降[J].四川地质学报,1992,12(1):204-318.
    [251]罗志立.四川盆地基底结构的新认识[J].成都理工学院学报,1998,25(2):191-200.
    [252]罗启后,王世谦.四川盆地中西部三叠系重点含气层天然气富集条件研究[J].天然气工业,1996,16(1):45-54.
    [253]马永生,郭旭生,郭彤楼等.四川盆地普光大型气田的发现与勘探启示[J].地质论评,2005,51(4):477-480.
    [254]马永生,蔡勋育.四川盆地川东北区二叠系-三叠系天然气勘探成果与前景展望[J].石油与天然气地质,2006,27(6):741-751.
    [255]马永生,蔡勋育,赵培荣等.四川盆地大中型天然气田分布特征与勘探方向[J],石油学报,2010,31(3):347-355.
    [256]梅廉夫,刘昭茜,汤济广等.湘鄂西-川东中生代陆内递进扩展变形:来自裂变径迹和平衡剖面的证据[J].地球科学-中国地质大学学报,2010,35(2):161-175.
    [257]裴先治,李瑞保,丁仨平等.陕南镇巴地区大巴山与米仓山构造交接关系[J].石油与天然气地质,2009,30(5):576-584.
    [258]庞雄奇,罗晓容,姜振学等.中国西部复杂叠合盆地油气成藏研究进展与问题[J].地球科学进展,2007,22(9):879-888.
    [259]屈红军,马强,董云鹏等.大巴山前陆盆地晚三叠世-侏罗纪沉积中心的迁移及古流向[J].石油与天然气地质,2009,30(5):584-589.
    [260]四川省地质矿产局.四川省区域地质志[M].北京:地质出版社,1991.
    [261]施炜,董树文,胡健民等.大巴山前陆西段叠加构造变形分析及其构造应力场特征[J].地质学报,2007,81(10):1314-1327.
    [262]陕西省地质矿产局.陕西省区域地质志[M].北京:地质出版社,1989.
    [263]沈传波,梅廉夫,徐振平.四川盆地复合盆山体系的结构构造和演化[J].大地构造与成矿学,2007,31(3):288-299.
    [264]沈传波,梅廉夫,徐振平等.大巴山中-新生代隆升的裂变径迹证据[J].岩石学报,2007,23(11):2901-2911.
    [265]孙玮,刘树根,马永生等.四川盆地威远-资阳地区震旦系油裂解气判定及成藏过程定量模拟[J].地质学报,2007,81(8):1153-1159.
    [266]石红才,施小斌,杨小秋等.鄂西渝东方斗山-石柱褶皱带中新生代剥蚀过程及构造意义[J].地球物理学进展,2001,26(6):1993-2002.
    [267]汤良杰,杨克明,金文正等.龙门山冲断带多层次滑脱带与滑脱构造变形[J].中国科学D辑:地球科学,2008,38(增刊I):30-40.
    [268]童崇光.四川盆地构造演化与油气聚集[M].北京:地质出版社,1992.
    [269]田云涛,朱传庆,徐明等.白垩纪以来米仓山-汉南穹窿剥蚀过程及其构造意义:磷灰石裂变径迹的证据[J].地球物理学报,2010,53(4):920-930.
    [270]谭锡斌,徐锡伟,李元希等.贡嘎山快速隆升的磷灰石裂变径迹证据及其隆升机制讨论[J].地球物理学报,2010,53(8):1859-1867.
    [271]唐哲民,郭宪璞,乔秀夫.龙门山中、南段中-新生代隆升史:来自裂变径迹的证据[J].岩石学报,2011,27(11):3471-3478.
    [272]唐俊红,张同伟,鲍征宇等.四川威远气田碳酸盐岩中有机包裹体研究[J].地质论评,2004,50(2):210-214.
    [273]藤吉文,白武明,张中杰等.中国大陆动力学研究导向和思考[J].地球物理学报,2009,24(6):1913-1936.
    [274]秦建中,孟庆强,付小东.川东北地区海相碳酸盐岩三期成烃成藏过程[J].石油勘探与开发,2008,35(5):548-557.
    [275]秦胜飞,陶士振,涂涛等.川西坳陷天然气地球化学及成藏特征[J].石油勘探与开发,2007,34(1):34-39.
    [276]秦胜飞.四川盆地水溶气碳同位素组成特征及地质意义[J].石油勘探与开发,2012,39(3):313-320.
    [277]邱楠生,秦建中, McInnes B I等.川东北地区构造-热演化探讨—来自(U-Th)/He年龄和R0的约束[J].高校地质学报,2008,14(2):223-230.
    [278]王二七,孟庆任,陈智梁等.龙门山断裂带印支期左旋走滑运动及其大地构造成因[J].地学前缘,2001,8(1):375-384.
    [279]王二七,尹纪云.川西南新生代构造作用以及四川原型盆地的破坏[J].西北大学学报(自然科学版),2009,39(3):359-367.
    [280]王金琪.早聚晚藏-川西坳陷天然气基本特征[J].天然气工业,2001,21(1):5-12.
    [281]王金琪.川西坳陷须家河组(T3x)气藏再认识[J].天然气工业,22(2):1-7.
    [282]王庭斌.中国大中型气田分布的地质特征及主控因素[J].石油勘探与开发,2005,32(4):1-8.
    [283]王国芝,刘树根,赵锡奎.龙门山中段川西前陆盆地初始盆山边界及其变迁[J].成都理工大学学报(自然科学版),2008,35(4):431-439.
    [284]王平,刘少锋,郜唐君等.川东弧形带三维构造扩展的AFT记录[J].地球物理学报,2012,55(5):1662-1673.
    [285]王懋基.黑水-泉州地学断面的重磁解释[J].地球物理学报,1994,37(3):321-329.
    [286]王学潮,郭启良,张辉等.青藏高原东北缘水压致裂地应力测量[J].地质力学学报,2000,6(2):64-70.
    [287]汪泽成,赵文智,彭红雨.四川盆地复合含油气系统特征[J].石油勘探与开发,2002,29(2):26-29.
    [288]汪泽成,赵文智,张林等.四川盆地构造层序与天然气勘探[M].北京:地质出版社,2002.
    [289]汪泽成,赵文智,徐安娜等.四川盆地北部大巴山山前带构造样式与变形机制[J].现代地质,2006,20(3):429-435.
    [290]魏显贵,杜思清,刘援朝等.米仓山推覆构造的结构样式及演化特征[J].矿物岩石,1997,17(S):114-122.
    [291]吴德超,魏显贵,杜思清等.米仓山叠加型推覆构造几何结构及演化[J].矿物岩石,1998,18(S):16-20.
    [292]吴根耀,马力.―盆‖―山‖耦合和脱藕:进展,现状和努力方向[J].大地构造与成矿学,2004,28(1):81-97.
    [293]吴世祥,马永生,金之钧等.米仓山前陆盆地东段构造演化模式与油气聚集[J].石油勘探与开发,2006,33(1):14-17.
    [294]吴山,赵兵,胡新伟.再论龙门山飞来峰[J].成都理工学院学报,1999,26(3):221-224.
    [295]吴山.龙门山巨型滑覆型飞来峰体系与龙门山构造活动性[J].成都理工大学学报(自然科学版),2008,35(4):376-382.
    [296]吴满路,张春山,廖椿庭等.青藏高原腹地现今地应力测量与应力状态研究[J].地球物理学报,2005,48(2):327-332.
    [297]谢增业,杨威,高嘉玉等.川中-川南地区须家河组流体包裹体特征及其成藏指示意义[J].矿物岩石地球化学通报,2009,28(1):48-53.
    [298]徐亚军,杨坤光,马昌前.秦岭地区城口-房县断裂带变形特征及及ESR定年[J].现代地质,2005,19(1):127-132.
    [299]徐国盛,刘树根.川西上三叠统高压封存箱与天然气成藏关系研究[J].成都理工学院学报,1999,26(4):411-417.
    [300]徐国盛,刘树根,李仲东等.四川盆地天然气成藏动力学[M].北京:地质出版社,2005.
    [301]徐明,朱传庆,田云涛等.四川盆地钻孔温度测量及现今地热特征[J].地球物理学报,2011,54(4):1052-1060.
    [302]许长海,周祖翼,常远等.大巴山弧形构造带形成与两侧隆起的关系: FT和(U-Th)/He低温热年代约束[J].中国科学:地球科学,2010,40(12):1684-1696.
    [303]许志琴,侯立伟,王宗秀等.中国松潘-甘孜造山带的造山过程[M].北京:地质出版社,1992.
    [304]许志琴,杨经绥,嵇少丞等.中国大陆构造及动力学若干问题的认识[J].地质学报,2010,84(1):1-29.
    [305]杨逢清,殷鸿福,杨恒书等.松潘甘孜地块与秦岭褶皱带、扬子地台的关系及其发展史[J].地质学报,1994,68(3):208-218.
    [306]杨克明,朱彤,何鲤.龙门山逆冲推覆带构造特征及勘探潜力分析[J].石油实验地质,2003,25(6):685-694.
    [307]杨克明,叶军,吕正祥.川西坳陷上三叠统须家河组天然气分布及成藏特征[J].石油与天然气地质,2004,25(5):501-556.
    [308]姚根顺,李大成,卢文忠等.四川叠合盆地盆山耦合特征分析[J].大地构造与成矿学,2006,30(4):435-444.
    [309]余琪祥,吴爱军,李善良等.地应力剖面在储层开发中的应用-以川西XL气田沙溪庙组储层为例[J].石油与天然气地质,2001,22(1):42-48.
    [310]乐光禹,杜思清.应力叠加和联合构造[J].中国科学(B辑),1986,867-877.
    [311]乐光禹,杜思清.构造复合联合原理:川黔构造组合叠加分析[M].成都:成都科技大学出版社,1996.
    [312]张水昌,朱光有.四川盆地海相天然气富集成藏特征与勘探潜力[J].石油学报,2006,27(5):1-8.
    [313]张岳桥,施炜,李建华等.大巴山前陆弧形构造带形成机理分析[J].地质学报,2010,84(9):1301-1315.
    [314]张克信,王国灿,陈奋宁等.青藏高原古近纪-新近纪隆升与沉积盆地分布耦合[J].地球科学,2007,32(5):583-597.
    [315]张忠义,董树文.大巴山西北缘叠加褶皱研究[J].地质学报,2009,83(7):923-936.
    [316]张忠义,董树文,张岳桥等.大巴山前陆北西向褶皱的厘定及其意义[J].地质论评,2009,55(1):10-24.
    [317]张辉,谈晓冬,韩玉林.白垩纪同褶皱重磁化组分揭示中扬子褶皱带构造旋转过程[J].科学通报,2007,52(17):2049-2056.
    [318]张国伟,张本仁,袁学诚等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001.
    [319]张国伟,董云鹏,赖绍聪等.秦岭-大别造山带南缘勉略构造带与勉略缝合带[J].中国科学(D辑),2003,33(12):1121-1135.
    [320]张国伟,郭安林,姚平安.中国大陆构造中的西秦岭-松潘大陆构造结[J].地学前缘,2004,11(3):23-32.
    [321]张国伟,郭安林,董云鹏等.大陆地质与大陆构造和大陆动力学[J].地学前缘(中国地质大学(北京);北京大学),2011,18(3):1-12.
    [322]赵文智,王红军,徐春春等.川中地区须家河组天然气藏大范围成藏机理与富集条件[J].石油勘探与开发,2010,37(2):146-148.
    [323]赵文智,卞从胜,徐春春等.四川盆地须家河组须一、三和五段天然气源内成藏潜力与有利区评价[J].石油勘探与开发,2011,38(4):385-394.
    [324]曾联波,李跃纲,张贵斌等.川西南部上三叠统须二段低渗透砂岩储层裂缝分布的控制因素[J].中国地质,2007,34(4):622-628.
    [325]郑荣才,朱如凯,翟文亮等.川西前陆盆地晚三叠世须家河期构造演化及层序充填样式[J].中国地质,2008,35(2):246-255.
    [326]钟锴,徐鸣洁,王良书等.川西两期前陆盆地南北两段构造演化的地球物理特征[J].石油学报,2004,25(6):29-37.
    [327]邹才能,陶士振,张响响等.中国低孔渗大气区地质特征、控制因素和成藏机制[J].中国科学D辑:地球科学,2009,39(11):1607-1624.
    [328]朱志澄.构造地质学[M].武汉:中国地质大学出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700