用户名: 密码: 验证码:
土库曼斯坦阿姆河右岸盐下致密碳酸盐岩裂缝地震预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿姆河右岸区块位于土库曼斯坦阿姆河盆地查尔朱台阶的中西部,勘探开发目的层为上侏罗统卡洛夫-牛津阶碳酸盐岩储层,研究区中部储层的主要为起伏状斜坡上发育的礁滩体,勘探开发难度不大;研究区东部山前带储层比较致密,以裂缝型储层为主,勘探开发难度较大。
     本文利用东部山前阿盖雷构造的三维地震数据、测井、测试及岩心资料,在对碳酸盐岩的沉积背景和岩层特征分析的基础上,总结出准确解释碳酸盐岩层的顶界界面是裂缝研究的关键所在,为此,进行了地震层位的精确标定,再通过模型正演分析指导解释碳酸盐岩层,搞清构造细节,为应力场分析、VSP及叠前P波各向异性裂缝检测提供可靠的地震界面。
     在构造搞清的情况下,利用Aga-23井的多方位非零偏VSP资料开展了裂缝检测研究。主要提取并分析了大量可用于检测裂缝的地震属性,包括:纵横波层速度、泊松比、纵横透过波能量、吸收衰减参数、Q值、频率、横波极化方向与旅行时差等,利用这些资料预测了Aga-23井井周裂缝发育方位为北北西方向,其次是北北东方向,与成像测井解释结果一致。
     为了进一步从平面上预测裂缝的发育程度,在阿盖雷构造开展了叠前P波裂缝检测技术的应用研究。与一般的叠前P波裂缝检测不一样的地方在于,首先是关注地震CMP道集的质量,首先对道集资料开展叠前保幅宽频高分辨率处理,获得较好的道集资料。在利用道集资料开展分方位叠加处理,优选了方位频率属性进行裂缝密度、方位研究。
     通过对VSP裂缝成果、叠前P波裂缝检测结果与成像测井资料进行对比,本次的研究成果是比较可靠的。结合三者的成果总结出研究区的裂缝发育规律,大部分为高角度裂缝,纵向上主要发育于XVa1层,平面上则分布于北部和西南部。应力场模拟结果表明在断裂发育带及构造高部位均有明显的异常,说明研究区主体构造应力集中,具备裂缝发育的良好条件;叠后相干技术预测表明阿盖雷构造主体相干异常带,主要为较大尺度裂缝的反映,分布在局限的断层附近;叠前裂缝检测异常带为较小尺度的高角度裂缝,在构造主体发育程度较高,且分布较广,预示该区具有较大的勘探潜力。
     本论文对多方位非零偏VSP资料进行裂缝预测的方法进入了深入研究,首次将VSP与地面地震裂缝预测结合起来,使三维地震裂缝检测更为可靠,进一步扩展了地球物理裂缝预测与评价的新思路,为裂缝性储层勘探开发提供了更为可靠的技术手段,具有广阔的应用前景和推广应用价值。
The right block is located on the middle-west part of Chaerju tectonic zone ofArmu basin, Turkimanistan.The carbonate og Carluofu-Oxford formation is the majorexploration target, the reservoir at middle of the study area is mainly reef flatdevelopment of the ups and downs slopes which is not difficult for exploration; thereservoir at eastern mountain front part of the study area is relatively densification andis mainly fracture type which is difficult of exploration.
     This article has developed studying on3D seismic data, well logging, testing andcore data of eastern mountain front part. Based on sedimentary environment and rockformation analysis of carbonate rock, we summarize that interpretation of the topboundary of carbonate rock formations exactly is the key point. Therefore, we didaccurate calibration of the seismic horizon and then through forward modelinganalysis to guide the interpretation of carbonate rock formations. It can makeconstruction details clear and provide reliable interface to stress field analysis, VSPand prestack P-wave anisotropic crack detection.
     On the basis of clear construction details, we study of fracture detection throughmulti-azimuth nonzero partial VSP data of well Aga-23. We mainly extract andanalysis plenty of seismic attributes of crack detection, including: P-wave&S-waveinterval velocity, poisson ratio,the capacity of transmissiveP-wave&S-wave,absorption attenuation coefficient, Q value, frequency, direction ofpolarization of S-wave and travel-time difference etc.Base on these data,we forecastthe fracture development of CBIL of well Aga-23is mainly north-north-west secondlyare north-north-east,it is agreed with the imaging logging interpretation.
     In order to forecast the degree of development of fracture we conducted aprestack P-wave crack detection technology application research in agaileistructure.What is different with normal prestack P-wave crack detection is that wefocus on CMP gather first.We first did prestack cover picture broadband HR processing gathers information to achieve a better gathers data then did azimuthoverlay treatment,optimizing the azimuth frequency attribute for the study of fracturedensity and azimuth.
     Through the compare of the VSP cracks results, the crack detection based onprestack P-wave and the logging data, we have got a more reliable research results.Combined with the results of the three studies above, we can summarized that themajority of fracture were high angle fracture in this zone, and they were mainlylongitudinal developed in XVa1layer, and they were horizontal distributed in thenorth and southwest. Stress field modeling shows that in fracture development zoneand structural high position they all have obvious abnormal that means the main partof study area is stress concentration, this is a good conditions of fracture development;the post-stack coherent shows that agailei structural main portion coherent anomalyzone is mainly large scale fracture and distribute near a small amount of fault;anomaly belt of prestack fracture detection are small scale high angle fracture, it hashigh development degree and wide spread in constructor body,that indicated that thisarea has great exploration potential.
     This article thorough studied of fracture detection through multi-azimuth nonzeropartial VSP data Combining VSP data and surface seismic fracture for the first time,it makes3D seismic fracture detection much more reliable, expands a new thinkingof fracture prediction and valuation, provides a more reliable technological mean forfractured reservoir exploration. It has extensive application prospect and valuation.
引文
[1]熊翥.21世纪新中形油气地球物理技术展望[M].北京:石油工业出版社,2006.
    [2][美]渥.伊尔马兹.地震资料分析-地震资料处理、反演和解释[M].北京:石油工业出版社,2006
    [3]陆基孟.地震勘探原理.中国石油大学出版社,2006.
    [4]罗金梅.裂隙储层地震反演方法研究[D],吉林大学,2010.
    [5]金泉.缝洞型储层地震响应及散射成像方法研究[D],吉林大学,2012.
    [6]王炳章.勘探地球物理方法技术的最新进展──第68届SEG年会暨’98国际展览会综述[J],石油地球物理勘探,1999(04)
    [7]戴勇.致密碎屑岩储层裂缝地震预测与评价方法研究[D],成都理工大学,2007
    [8] Crampin S.Seismic wave propagation through a cracked solid: Polarization as apossible diagnostic (J].Geophysical Joumal of the Royal Astronomical Society.1978,53(3),467-496.
    [9] Crampin S. A review of wave motion in anisotropic and cracked elastic media[J]. WaveMotion,1981,3(4),343–391.
    [10] Hudson J A. Overall properties of a cracked solid [J]. Math Proc Camb philSoc,1980,88(2),371-384.
    [11] Hudson J A. Wave speeds and attenuation of elastic waves in materialconta ining cracks [J]. Geophys JR Astr Soc,1981,64(1),133-150.
    [12] Hudson J A,Enru Li u. Effective elastic properties of heavily faultedstruclures[J].Geophysics,1999,64(2),479-485.
    [13] Crampin S, McGonigle R,Ando M. Extensive-dilatancy anisotropy beneath Mount Hood,Oregon, and the effect of aspect ratio on seismic velocities through aligned cracks [J]. Geophys.Res.,1986,91(B12),12703-12710.
    [14] Cheng C H. Crack models for a transversely anisotropic medium [J].Geohys.Res.,1993,98.675-684
    [15] Thomsen L. Weak elastic anisotropy [J].Geophysics,1986,51(10),1954-1966
    [16]宁忠华.垂直定向裂缝介质的地震波特性与流体预测研究[D].成都理工大学,2006.
    [17]何樵登.地震勘探原理和方法[M].北京地质出版社,1986.
    [18]何樵登,陶春晖.用遗传算法反演裂隙各向异性介质[J]石油物探,1995,34(3),46-50.
    [19]张文生,何樵登等.用遗传算法反演各向异性介质弹性参数[J]物探化探计算技术,1998,20(4),293-299.
    [20]周辉,何樵登.横向各向同性介质走时反演[J].石油物探,1995,34(3),63-68.
    [21]何樵登,张中杰.横向各向同性介质中地震波及其数值模拟[M].长春:吉林大学出版社,1996.
    [22]董敏煌,汪和杰.EDA介质中弹性波VSP模拟和横被双折射分析[C].1992年中国地球物理学会第八届学术年会论文集.
    [23]牡启振,杨慧珠.裂缝性地层粘弹性地震多波波动方程[J].物理学报,2004,53(8),62801-280.
    [24]郝奇.三维TTI介质地震波场正演模拟[D].长春:吉林大学,2007.
    [25]轩义华.倾斜横向各向同性介质(TTI)参数反演方法研究[D].长春:吉林大学,2007.
    [26]王晓欢.TTI介质中地震波传播特性研究[D].长春:吉林大学,2006.
    [27]王德利,何樵登.裂隙型单斜介质中弹性系数的计算及波的传播特性研究[J].吉林大学学报(地球科学版),2002,32(2),91-96.
    [28]王德利,何樵登,韩立国.裂隙型单斜介质中多方位地面三分量记录模拟[J].地球物理学报,2005,48(2),386-393
    [29]李亚林,贺振华,黄德济等.露头砂岩纵横波衰减的各向异性实验研究[J].石油地球物型勘探,1999,34(6),658-664
    [30]杜正聪,贺振华,黄德济.缝洞储层地民波场数值拟拟[J].勘探地球物理进展,2003,26(2),103-108
    [31]桂志先,贺振华.裂隙参数对P波的影响及裂隙检测可行性数值研究[J],物探化探计算技术,2003,25(1),35-38
    [32]何建军.致密碳酸盐岩缝洞储层地震检测方法研究[D].成都成都理工大学,2008.
    [33]张中杰.地震各向异性研究进展[J].地球物理学进展,2002,17(2),281-293.
    [34]张中杰,藤吉文,贺振华.EDA介质中地民波速度、衰减与品质因子方位异性研究[J].中国科学,1999,29(6),569-574.
    [35]孙武亮,李正文.纵波AVOA垂直裂缝参数反演与运用[J].物探化探计算技术,2007,29(4),295-299.
    [36]朱兆林,王永刚,曹丹平.裂缝性储层检测方法综述[J].勘探地球物理进展,2004,27(2).87-92.
    [37]杨勤勇.纵波方位各向异性及其在裂缝检测中的应用[J].石油物探,2006,45(2),177-181
    [38]贺振华,黄德济,文晓涛.裂缝油气藏地球物理预测[M].成都:四川科学技术出版社,2007
    [39] Liu, E., Queen, J.H., Li, X.Y., Chapman, M., Lynn, H.B.,and Chesnokov, E.M..Analysis offrequency dependent seismic anisotropy from a multicomponent VSP[J].2002,72ndInternat.Mtg.:SEG Expanded Abstracts.
    [40] Neves, F.A., Al-Marzoug, A.A., Kim, J.J., and Nebrija, E.L.Fracture characterization of deeptight gas sands using azimuthal velocity and AVO seismic data in Saudi Arabia[J]. The LeadingEdge,2003.22(5):469-475.
    [41]Edgardo L. Nebrija. Fracture Characterization using Transmitted Shear Waves in a3CAzimuthal Offset VSP[J]. SEG Int'l Exposition and74th Annual Meeting,2004,10-15.
    [42] Qinglin Liu. Fracture detection by P and C wave anisotropy from multi-azimuth VSP[J].SEG/New Orleans2006Annual Meeting,2006,3422-3426.
    [43] Ramin Nawab. Fracture characterization using the multi-azimuth VSP technique, a pilot casestudy[J].SEG/San Antonio2007Annual Meeting,3085-3089.
    [44] Roman Pevzner. Seismic anisotropy estimation from VSP data: CO2CRC Otway project casestudy[J]. SEG Denver2010Annual Meeting,353-357.
    [45] John C.Owusu,Saeed M.Mubarak. High-fidelity walkaround VSP anisotropy analysis[J]. TheLeading Edge,2009,966-972.
    [46]罗省贤,李录明.基于横波分裂的地层裂隙预测方法与应用[J].成都理工大学学报,2003,30(1):52~59.
    [47]俞寿朋.综合应用由VSP、井间地震和实验室获得的速度数据检测裂缝带[J].《美国勘探地球物理学家学会第67届年会论文集》1997年.
    [48]唐文祥.利用VSP纵、横波资料研究碳酸盐岩地层的裂缝、孔隙[J].《石油地球物理勘探》,1989,6.
    [49]何惺华.利用零偏VSP资料提高地面地震资料分辨率的方法及其应用研究石油物探[J].2011,50(5),487-492.
    [50]张山等.基于多方位非零偏三分量VSP的储层裂缝检测[J]石油物探,2011,50(6),612-619.
    [51]冯太林.用转换波探测直立裂隙系[J].石油地球物理勘探,1996, S1.
    [52]吴育林.模型正演技术在阿姆河右岸综合解释中的应用[J]。钻采工艺,2010,s1:91-94.
    [53]李占海.州13区块裂缝形成机理与分布特征模拟及在油藏开采中的应用[D].大庆石油学院,2009.
    [54]李开建.裂缝综合预测技术在WD地区的应用[D].成都理工大学,2009.
    [55]甘其刚.川西坳陷深层致密非均质裂缝性气藏地震识别技术研究[D].成都理工大学,2005.
    [56]杨勤勇.裂缝型储层预测的纵波地震方法技术研究[D].吉林大学,2006.
    [57]刘振宽.松辽盆地和海拉尔盆地裂缝储层地震预测研究[D].中国地质大学(北京),2006.
    [58]谭成轩,王连捷.三维构造应力场数值模拟在含油气盆地构造裂缝分析中应用初探[J].地球学报,1999,20(4):392-394.
    [59]王金成.全球构造应力场理论与应用[M].长春:长春出版社,1994.
    [60]徐明华.阿姆河右岸区块盐下地震资料叠前保幅高分辨率处理[J].天然气工业,2010,30(5),976-979.
    [61]易中富.地震资料的保幅宽频高分辨率处理[J].油气地球物理,2006,4(3),13-18.
    [62]程冰洁,李小凡,徐天吉.含流体裂缝介质中地震波场数值模拟[J].地球物理学进展,2007,22(5),1370-1374.
    [63]朱培民,王家映等.用纵波AVO数据反演储层裂隙密度参数[J].石油物探,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700