用户名: 密码: 验证码:
桂西南地区上泥盆统锰矿沉积特征与成矿机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桂西南地区属于右江盆地,晚泥盆世受北东向和北西向断裂的共同作用,形成了两个成锰沉积盆地,即靖西—大新成锰盆地(下雷—龙邦成锰盆地)和广南—富宁成锰盆地。靖西—大新成锰盆地(下雷—龙邦成锰盆地)为本文研究的重点,是由北西向的广南—大新断裂与北东向的下雷—灵马断裂共同作用形成的断陷拉张盆地。
     晚泥盆世是桂西南地区最重要的成锰时期,其地层可划分为非含锰岩系和含锰岩系。非含锰岩系为融县组,以大套的碳酸盐岩沉积为特征;含锰岩系包括榴江组和五指山组,以硅质岩、硅质灰岩及泥质岩沉积为主。榴江组与五指山组含锰性不同,榴江组含锰性低,未形成原生的工业性矿床,后期通过氧化淋滤作用形成了土湖次生氧化锰矿床。五指山组为原生碳酸锰-硅酸锰矿床,含锰性好。
     桂西南地区晚泥盆世发育半局限台地、斜坡和台盆三种沉积相类型。半局限台地相包含了泻湖、台凹及台地边缘浅滩三个亚相,泻湖亚相属静水低能环境,水体较浅,以泥微晶灰岩、白云质灰岩、灰质白云岩沉积为主,生物较少;台凹水体相对较深,发育了泥质条带灰岩、扁豆状灰岩及少量硅质岩;台地边缘水体能量较高,发育了鲕粒滩、粒屑滩及生屑滩等沉积,生物类型以底栖生物为主,包括珊瑚、腕足、海百合、层孔虫、双壳类等。斜坡相包括上斜坡和下斜坡两个亚相,沉积物以泥质条带灰岩、扁豆状灰岩和微晶灰岩为主,生物稀少。台盆相水体深,能量低,沉积物以硅质、泥质沉积为主,发育含锰层。研究区发育了东西两个半局限台地,台地之间为台沟,台沟呈狭长形,形成了典型的台盆相间格局,台盆相是锰矿沉积的理想场所。
     桂西南地区上泥盆统锰矿可以划分为几个锰矿区,不同的锰矿区的锰矿沉积具有相似特征。其五指山组一般发育了2~3个锰矿层,锰矿层厚度不一。锰矿石普遍具有块状、条带状、条纹状、结核状、气孔状、杏仁状等构造。以大类来分,可主要划分为鲕豆状锰矿石和条带状锰矿石两大类。锰矿石颜色较丰富,有紫红色、玫瑰色、粉红色、红黄色、灰白色、灰绿色、黄绿色、蓝灰色、灰黑色等。
     对靖西—大新成锰盆地五指山组含锰岩系磁化率进行了详细的分析,表明锰矿层与围岩磁化率存在明显的区别。围岩磁化率值普遍偏低,以1~20(10~(-6)SI)占绝对优势;锰矿层的磁化率值则普遍达到数百(10~(-6)SI),甚至达到数万(10~(-6)SI)。相对来说,二三矿段的磁化率值比一矿段普遍偏高,表明二三矿段的含矿性更好。含锰岩系磁化率特征表明磁化率可以作为识别含锰岩系和非含锰岩系的判别标志,在进行深部锰矿勘探时可以将磁化率测量作为一个快捷的定性的指标。
     鲕豆状结构是桂西南地区上泥盆统锰矿的重要结构特征。鲕豆粒类型多样。经显微结构、矿物及地球化学分析后认为,研究区锰矿石主要发育两种鲕豆粒类型:一种是鲕豆粒呈杂乱分布,鲕粒与基质之间呈渐变过渡关系,鲕粒之间无相连现象,基质为块状构造,无层理,这种鲕豆粒为热水成因。在海底热水活动区,由于热水喷流,沉积速率高,形成大量气孔,气孔被矿物沉淀充填而形成类似于鲕豆粒结构的特征,这种鲕豆粒通常都没有同心圈层结构;另一种鲕豆粒发育类似于同心圈层的结构,鲕豆粒可呈拉长状,发育拖尾,或鲕豆粒之间相连接成串珠状,串珠状鲕豆粒平行于层面分布,锰矿石的基质发育层理构造或无层理构造,这种鲕豆粒为胶体成因,发育的同心圈层结构式由不同的矿物胶体先后凝聚形成的,这种鲕豆状锰矿石为热水沉积和正常沉积混合成因。研究区锰矿锰质有热水和陆源两个来源,以热水来源为主。
     研究区含锰岩系中普遍发育硅质岩、硅质灰岩及硅质泥岩,这些含硅岩类与锰矿的形成存在密切的关系。经显微结构、地球化学分析后认为,锰矿床中的硅质岩形成于大陆边缘环境,硅质有热水和陆源两个来源,生物对硅质岩的形成也起了一定的作用。硅质岩与锰矿的物质来源具有一致性。
     研究区锰矿的沉积受沉积相、古地理及热水活动的共同控制。台盆相间的古地理格局是研究区碳酸锰矿沉积的古地理基础,在相对封闭的台沟相深水环境中形成碱性还原条件,为锰矿沉积提供良好的介质条件和沉积环境。而海底热水活动带来大量的锰质是锰矿沉积的物质基础。
The Southwestern Guangxi area is belonge to Youjiang Basin. There were twomanganese deposit basins formed because of the active of NE trending and NWtrending strike slip faulting in the Late Devonian. They are the Jingxi-DaxinManganese Deposit Basin (Xialei-Longbang Manganese Deposit Basin) and theGuangnan-Funing manganese deposit basin. This paper focuses on the Jingxi-DaxinManganese Deposit Basin (Xialei-Longbang Manganese Deposit Basin) which is a riftbasin formed because of combining effect of the NW trending Guangnan-Daxin riftand the NE trending Xialei-Lingma rift.
     The Late Devonian is the most important period in manganese deposition to theSouthwestern Guangxi area. The upper Devonian can be devided into non-Manganese-bearing Sequences and Manganese-bearing Sequences. Thenon-Manganese-bearing Sequences named Rongxian Formation is characterized bythe massive carbonatite. The Manganese-bearing Sequences include the LiujiangFormation and Wuzhishan Formation, which are characterized by siliceous rocks,cherty limestone and argillaceous rock. The manganese contents are different to theLiujiang Formation and Wuzhishan Formation. The Liujiang Formation is low inmanganese without primary manganese deposit with industrial value, and the Tuhusupergene Manganese Ore Deposits formed during the process of oxidation andinfiltration. And the Wuzhishan Formation is rich in primary Carbonate-SilicateManganese Ore Deposit.
     The sedimentary facies type of the Late Devonian in Southwestern Guangxi areaconsists of semi-restricted platform, slope and platforms basin facies. Thesemi-restricted platform consist subfacies of lagoon, depressional platform andplatform-margin shoal. The lagoon have standing water circumstances and shallowwater body, developed rocks main in muddy limestone and dolomicrite, lime dolostone.The water body of depressional platform wae deep relatively, and developed rocks ofargillaceous limestone, nodular limestones and siliceous rocks. The water body inplatform-margin shoal is high in energy relatiively. Ooid shoal and bioclastic shoaldeveloped on the platform-margin shoal. The sediments are rich in benthos of corals, brachiopods, crinoids, stromatoporoids and shells. The slope consist subfacies of theupper slope and the lower slope. Its sediments are argillaceous limestone, nodularlimestones and micrite with few fossils. The platforms basin facie was beep in seawater, and low in water energy. Its sediments are mainly in siliceous and argillaceous,and primary Mn ore layer developed. There wer two semi-restricted platform developin study area on the left and right. Between the semi-restricted platforms was the trenchelongated. And stage of alternate platform-basin developed in the study area. Theplatforms basin facie was an ideal location to deposition of manganese.
     The upper Devonian Manganese Ore Deposit in Southwestern Guangxi area canbe devided into some Manganese Ore zones. Different Manganese Ore zones havesimilar characteristics. The Wuzhishan Formation developed2~3manganese ore bedsof different hickness. The Manganese Ore is fairly common in massive, banded, cored,fumarolic, amygdaloidal structures. The Manganese Ore fall into two categories:pisolitic or oolitic structure and banded Manganese Ore. The colour of the ManganeseOre is rich which contains amaranth, rosiness, rose hermosa, off-white, sage green,yellowgreen, blue grey, gray black and so on.
     Study on the Manganese-bearing Sequences of Wuzhishan Formation inJingxi-Daxin manganese deposit basin show that the susceptibility of manganese orebeds are different to the surrounding rocks. The susceptibility of the surrounding rocksis low in common, absolute superiority in1~20(10~(-6)SI). But the susceptibility of themanganese ore beds is very high to several hundreds1~20(10~(-6)SI), even high tohundreds of thousands (10~(-6)SI). And in respectively, the susceptibility of the secondand third manganese ore beds is clearly higher than the first manganese ore bed, whichshows that the second and third manganese ore beds are higher in manganese than thefirst manganese ore bed. The susceptibilities of the Manganese-bearing Sequencesindicate that susceptibility can be as an effective index in discriminate non-Manganese-bearing Sequences and Manganese-bearing Sequences, and can be used indeep exploration.
     Pisolitic-oolitic structure is the important structural feature to the manganese orein Southwestern Guangxi area. There many types of pisolite and oolite. ThePisolitic-oolitic manganese ore can be devided in two types after the microstructure,mineralogical and geochemistry analysis. The first type is the manganese ore in whichpisolite and oolite incoherent; the boundary between the pisolite, oolite and thesubstrate show gradual transition; and the oolites do not connected with each other; thesubstrate is massive structure and lack of bedding structure. This type of manganeseore may be of hydrothermal origin. The second type is the manganese ore in which thepisolite and oolite show concentric laminar; and the oolites often connected with eachother; the substrate developed bedding structure. This kind of manganese ore may beformed from colloidal coagulation. There are two origin of manganese in study area:hydrothermal origin and terrestrial sources.
     There are siliceous rocks, cherty limestone and siliceous mudstones. thesesiliceous rocks have close relationship with the manganese ore. After microstructuraland geochemistry analysis, the siliceous rocks formed in continental margin. Theorigin of siliceous rocks contains hydrothermal origin and terrestrial sources. And thereare also biological forces. Results show that the origins of siliceous rocks andmanganese are in common.
     The deposition of manganese in study area was controled jointly by sedimentaryfacies, palaeogeography and hydrothermal system. Palaeogeographical stage ofalternate platform-basin was the base to the deposition of manganese carbonate. Therelatively closed and alkaline environment in trench was a good medium condition forthe enrichment of manganese. And the abundant of manganese from the hydrothermalsystem on the sea floor was the material basis to the manganese ore deposition.
引文
[1] B.C.Cавенко,魏建国.关于海洋铁锰结核形成的物理—化学机制[J].海洋地质译丛.1983(2):79-80.
    [2] Baltuck M. Provenance and distribution of Tethyan pelagic and hemipelagic siliceous sediments, PindosMountains, Greece[J]. Sedimentary Geology,1982(31):63-88.
    [3] Bosrrom, K. Genesis of ferromanganese deposits diagenostic criteria for recent and old deposits[M]. Inl,ydrothermal processes at seafloor spreading center: Ed. By rona, p.A. et al Plenum press, New York.1983.
    [4] Bostrom K, Kraaemer T, Gartner S. Provoenance and accumulation rates of opaline silica, Ti, Fe, Mn,Cu, Ni, and Co in Pacific pelagic sediments[J]. Chemical Geology.1973(11):132-148.
    [5] Corliss J B.1979. Submarine thermal springs on the Galapaagos rift[J]. Science,203:1073-1083.
    [6] Crerar D A, Namson J, Michael S, et al. Manganiferous chert of Franciscan assemblage:1. Generalgeology ancient and modern analogues and implications for hydrothermal convertion at oceanicspreading centers[J]. Econ. Geol.1982,77(3):519-540.
    [7] Dill H. Metallogenesis of Early Palaeozoic graptolite shales from the Graefenthal Horst (northernBavaria, Federal Republic of Germany[J]. Econ. Geol.1986(81):889-903.
    [8] Graham J W, Cooper S C. Biological origin of manganese-rich deposits of the sea floor[J]. Nature,1959,183(4667):1050-1051.
    [9] Jewell P W, Stallard R F. Geochemistry and paleoceanographic setting of central Nevadabedded barites[J]. Journal of Geology.1991(99):151~170.
    [10] Muray R W,Buchhohz ten Brink M R,Gerlach D C, Price Russ111G and Jones D L. Rare earth,major,and trace elements inchert from the Franciscan complex and Monterey group, Californian:Assessing REE sources to fine-grained marine sediments[J]. Geochim et Cosmochim Acta.1991,55(7):1875-1895.
    [11] Murray R W. Chemical criteria to identify the depositional environment of chert:General principlesand applications[J]. Sedimentary Geology.1994,90(3-4):213-232.
    [12] N. Takematsu,业渝光.控制海洋锰结核和结壳化学组成的因素—回顾与综述[J].地质地球化学.1991(4):54-58.
    [13] Raiswell R. A. Non-steady state microbial diagenesis and the origin of carbonateconcretions and nodular limestones[M]. In: Marshall J D, ed. Diagenesis of SedimentarySequences. London:Geol Soc Spec Pub.1987.
    [14] Raiswell R.A. chemical model for the origin of minor limestone-shale cycles by anaerobicmethane oxidation[J]. Geology.1988,16:641-644.
    [15] Rona P A. Hydrothermalmineralization ofocean ridges[J]. Canadian Mineralogy,1988,26(3):447-465.
    [16] Roy S. s.In K.H.Wolfed. Handbook of strata-bound and stratiform ore deposits[J]. Ancientmanganese deposit.1976(7):395-470.
    [17] Roy S.古锰矿床(吴积琴译)[M].地质出版社.1981.
    [18] Shimizu H,Masuda A. Cerium in chert as an indication of marine environment of itsformation[J]. Nature.1977,266(5600):346-348.
    [19]Г.Н.Батурин,朱佛宏.日本海海底铁锰形成物的地球化学[J].地质地球化学.1992(6):48-52.
    [20]鲍根德.太平洋北部铁锰结核中重金属元素的分布、来源及其与沉积环境[J].海洋与湖沼.1990,21(4):364-373.
    [21]别杰赫金.苏联的锰矿[M].北京:地质出版社.1954.
    [22]陈福.二氧化硅的表生地球化学问题[J].地质地球化学.1978(11):13-18.
    [23]陈翰,陈忠,颜文等.海洋沉积物的磁化率——天然气水合物的新指标[J].海洋科学.2011,35(6):90-95.
    [24]陈洪德,曾允孚..右江沉积盆地的性质及演化讨论[J].岩相古地理.1990(1):28-37.
    [25]陈仁义,柏琴.中国锰矿资源现状及锰矿勘查设想[J].中国锰业.2004,22(2):1-4.
    [26]成广乡.广西泥盆系主要沉积和层控矿产赋存特点及其与沉积相的关系[J].地质与勘探.1984(9):1-10.
    [27]邓希光,李献华,陈志刚.广西钦州板城晚泥盆世硅质岩地球化学[J].地质科学.2003,38(4):460-469.
    [28]邓宇涛,方维萱,郭茂华.磁化率参数在东川铁铜矿勘查中的方法试验与研究[J].地质找矿论丛.2010,25(2):157-162.
    [29]地质矿产部区域地质矿产地质司.中国锰矿地质文集[M].北京:地质出版社.1985.
    [30]董进,张世红, Ganqing Jiang,等.华南宜昌陡山沱组四段碳酸盐结核形成环境研究及其烃源岩评价意义[J].中国科学D辑:地球科学.2009,39(3):317-326.
    [31]杜秋定,伊海生,惠博等.滇东南中三叠统法郎组锰矿床成因的新认识[J].地质论评.2010,56(5):473-482.
    [32]杜秋定.滇东南法郎组含锰地层沉积相及其锰矿成因研究[D].成都理工大学硕士学位论文.2009.
    [33]杜远生,朱杰,顾松竹.北祁连永登石灰沟奥陶纪硅质岩地球化学特征及大地构造意义[J].地质论评.2006,52(2):184-189.
    [34]杜远生,龚一鸣,吴诒等..黔桂地区泥盆纪层序地层和台内裂陷槽的形成演化[J].沉积学报.1997,15(4):11-17.
    [35]杜远生,黄宏伟,黄志强.右江盆地晚古生代—三叠纪盆地转换及其构造意义[J].地质科技情报.2009,28(6):10-15.
    [36]杜远生,朱杰,顾松竹.北祁连肃南一带奥陶纪硅质岩沉积地球化学特征及其多岛洋构造意义[J].地球科学—中国地质大学学报.2006,31(1):101-109.
    [37]冯增昭.沉积岩石学[M].北京:石油工业出版社.1993.
    [38]葛璐,蒋少涌,杨涛等.南海北部神狐海区冷泉碳酸盐岩的地球化学特征[J].矿物学报. S1,2009:370
    [39]郝瑞霞,关广岳.广西下雷—湖润锰矿带原生碳酸锰矿床的沉积机制[J].地质地球化学.1994(2):57-61.
    [40]侯宗林,薛友智,黄金水等.扬子地台周边锰矿[M].北京:冶金工业出版社.1997.
    [41]侯宗林,薛友智.中国南方锰矿地质[M].成都:四川科学技术出版社.1996.
    [42]胡超.矿产资源GIS评价方法研究与应用.中南大学硕士论文.2011.
    [43]胡文宣,周怀阳,顾连兴等.深海(铁)锰结核微生物成因新证据[J].中国科学(D辑).1999,29(4):362-366.
    [44]黄华,王国芝.浙黔桂地区寒武纪硅质岩的地球化学特征及其形成背景[J].沉积与特提斯地质.2011,31(1):100-106.
    [45]黄华.江南造山带内古生代硅质岩的地球化学特征及其地质意义[D].成都理工大学硕士学位论文.2011.
    [46]黄金水,朱凯军,王双彬等.中国南部海相锰矿地质概论(中国南方锰矿地质文集,侯宗林主编)[M].四川科学技术出版社.1996.
    [47]黄维,刘志飞,陈晓良等.寻求深海碳酸盐沉积含量的物理标志[J].地球科学——中国地质大学学报.2003,28(2):157-162.
    [48]吉云平,夏正楷.不同类型沉积物磁化率的比较研究和初步解释[J].地球学报.2007,28(6):541-549.
    [49]雷卞军,阙洪培,胡宁.鄂西古生代硅质岩的地球化学特征及沉积环境[J].沉积与特提斯地质.2002,22(2):70-79.
    [50]李俊.碳酸盐地层中磁化率特征及成因探讨[J].科技风.2008(20):2.
    [51]李容森,陆刚,潘艺文等.桂西土湖锰矿区泥盆系中的陡崖式假不整合构造[J].桂林工学院学报.2008,28(4):449-457.
    [52]李升福,王泽华,李朗田等.桂西南优质锰矿成矿机理分析[J].资源环境与工程.2009,23(4):363-370.
    [53]林承毅,边立曾,张富生等.深海锰结核中微生物的分类及串珠状超微生物化石的研究[J].科学通报.1996,41(9):821-824.
    [54]林友焕.中国南方成锰沉积盆地(中国南方锰矿地质文集,侯宗林主编)[M].四川科学技术出版社.1996:73-94.
    [55]刘宝珺,许效松主编.中国南方岩相古地理图集震旦纪—三叠纪[M].北京:科学出版社.1994.
    [56]刘宝珺.岩相古地理基础与研究方法[M].北京:地质出版社.1980.
    [57]路远发,陈开旭,战明国.羊拉地区含矿矽卡岩成因的地球化学证据[J].地球科学——中国地质大学学报.1999,24(3):298-303.
    [58]骆华宝.我国优质锰矿的勘查方向[J].地质与勘探.2002,38(4):8-11.
    [59]梅冥相,高金汉,李东海等.黔桂地区泥盆系层序地层格架及相对海平面变化[J].沉积学报.2003,21(2):297-306.
    [60]梅冥相,高金汉,孟庆芬等.南盘江盆地早-中三叠世层序地层格架及相对海平面变化研究[J].现代地质.2006,16(2):138-145.
    [61]梅冥相,李仲远.滇黔桂地区晚古生代至三叠纪层序地层序列及沉积盆地演化[J].现代地质.2004,18(4):555-563.
    [62]梅冥相,马永生,邓军等.滇黔桂盆地及其邻区石炭纪至二叠纪层序地层格架及三级海平面变化的全球对比[J].中国地质.2005,32(1):13-24.
    [63]梅冥相,马永生,邓军等.南盘江盆地及邻区早中三叠世层序地层格架及古地理演化[J].高校地质学报.2003,9(3):247-239.
    [64]梅冥相,马永生,邓军等.郑宽兵加里东运动构造古地理及滇黔桂盆地的形成—兼论滇黔桂盆地深层油气勘探潜力[J].地学前缘.2005,12(3):227-236.
    [65]梅冥相,马永生,邓军等.滇黔桂盆地及邻区二叠系乐平统层序地层格架及其古地理背景[J],中国科学(D辑).2007,37(5):605-617.
    [66]梅冥相,孟庆芬,易定红等.黔桂地区石炭系层序地层格架及海平面变化[J].地球学报.2004,25(1):39-46.
    [67]梅冥相,李忠远.滇黔桂地区晚古生代至三叠纪层序地层序列及沉积盆地演化[J].现代地质.2004,18(4):555-563.
    [68]梅冥相,曾萍,初汉明等.滇黔桂盆地及邻区泥盆纪层序地层格架及其古地理背景[J].吉林大学学报(地球科学版).2004,34(4):546-554.
    [69]梅冥相,郑宽兵,初汉民等.滇黔桂盆地及邻区二叠纪层序地层格架及古地理演化[J].古地理学报.2004,6(4):401-418.
    [70]梅冥相.从凝块石概念的演变论微生物碳酸盐岩的研究进展[J].地质科技情报.2007,26(6):1-9.
    [71]梅冥相.微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J].地学前缘.2007,14(5):222-234.
    [72]莫斯霖.广西晚泥盆世沉积锰矿的矿质来源及成矿作用[J].地质与勘探.1985,21(11):1-6.
    [73]莫斯霖.木圭锰矿Co/Ni、Bsa/sr比值特征及其指示意义[J].地球化学.1987(2):184-190.
    [74]欧莉华,伊海生,林金辉等.桂西地区乐平统合山组底部海绵骨针硅质岩的发现及古环境意义[J].中国地质.2012,39(5):1281-1289.
    [75]庞清媛,冯松青,蒙永励.广西靖西县岜爱山矿区优质锰矿地质特征及找矿方向[J].化工矿产地质.2009,31(4):213-221.
    [76]彭张翔. CO/Ni比值与锰矿的成因关系[J].地质与勘探.1991(12):16-17.
    [77]秦建华,吴应林,颜仰基.南盘江盆地海西一印支期沉积构造演化[J].地质学报.1996,70(2):99-107.
    [78]秦元奎,张华成,姚敬劬.广西大新县下雷锰矿床的地球化学特征及其意义[J].地质论评.2010,56(5):664-672.
    [79]秦元奎,徐柏安,姚敬劬.桂西南上泥盆统含锰岩系形成古海水深度条件分析[J].地质与勘探.2010,46(2):277-284.
    [80]丘荣蕃.锰矿地球物理特征及勘探方法(中国南方锰矿地质,侯宗林等主编)[M].1996.
    [81]茹廷锵,韦灵敦,树皋.广西锰矿地质[M].地质出版社.1992.
    [82]史君贤,陈忠元.西北太平洋沉积物和锰结核中微生物的丰度和锰细菌[J].海洋学报.1989,11(3):385-391.
    [83]史晓颖,侯宇安,帅开业.桂西南晚古生代深水相地层序列及沉积演化[J].地学前缘.2006,13(6):153-170.
    [84]舒小辛,刘志伟,王慧中等.东营凹陷第三纪湖相沉积物磁性特征及其与环境变化的关系[J].沉积学报.1995,13:96-101.
    [85]水涛.中国东南大陆基底构造格局[J].中国科学, B辑.1987(4):414-422.
    [86]苏相叙.广西锰矿资源特点及地质工作若干问题探讨[J].中国锰业.1985(2):21-25.
    [87]孙家富.中国锰矿的现状与展望[J].地质与勘探.1997,33(3):8-11.
    [88]汪金榜.下雷碳酸锰矿床地质特征及成因探讨[J].地质与勘探.1987,23(8):1-5.
    [89]王成善,胡修棉,李祥辉.古海洋溶解氧与缺氧和富氧问题研究[J].海洋地质与第四纪地质.1999,19(3):9-47.
    [90]王焕夫.论海洋底铁锰结核(壳)核心物质的起源[J].海洋地质与第四纪地质.1995,15(1):57-71.
    [91]王尚启,树皋,张晓彬.广西下雷含锰地层地质时代及沉积环境初探[J].地层学杂志.1982,6(4):302-306.
    [92]王贤觉,陈毓蔚,吴明清.铁锰结核的稀土和微量元素地球化学及其成因[J].海洋与湖沼.1984,15(6):502-514.
    [93]王中刚,于学元,赵振华等.稀土元素地球化学[M].学出版社.1989.
    [94]王忠诚,吴浩若,邝国敦.广西晚古生代硅岩的地球化学及其形成的大地构造环境[J].岩石学报.1995,1(3):449-455.
    [95]吴浩若,邝国敦,王忠诚.广西晚古生代构造沉积背景的初步研究[J].地质科学.1997,32(1):1-18.
    [96]吴浩若,邝国敦,王忠诚.桂西晚古生代基性岩的再认识及其大地构造意义[J].地质科学.1993,28(3):288-289.
    [97]吴浩若.晚古生代—三叠纪南盘江海的构造古地理问题[J].古地理学报.2003,5(1):63-76.
    [98]徐丽华,朱恺军,陈永刚.基于K-L变换和灰度共生矩阵下的桂西—滇东南地质构造遥感信息提取方法研究[J].中国地质.2009,36(5):1179-1186.
    [99]许东禹,姚德,陈宗团.锰结核生长的古海洋环境与事件[J].海洋地质与第四纪地质.1993,13(2):1-11.
    [100]许靖华.中国南方大地构造的几个问题[J].地质科技情报.1987,6(2):13-27.
    [101]许卫.安徽下扬子地区二要纪锰矿的成岩成矿地质地球化学[D].合肥工业大学博士学位论文.2004.
    [102]闫芳.基于GIS的桂西—滇东南锰矿资源预测与靶区圈定[D].中南大学硕士学位论文.2011.
    [103]杨恩林,陈恨水,陈焕等.黔东留茶坡组硅质岩元素地球化学特征与形成环境[J].矿物学报.2011,31(3):406-411.
    [104]杨瑞东,程玛莉,魏怀瑞.贵州水城二叠系茅口组含锰岩系地质地球化学特征与锰矿成因分析[J].大地构造与成矿学.2009,32(4):613-619.
    [105]杨伟,伊海生,杜秋定等.滇东南中三叠统法郎组含锰岩系稀土元素和铀、钍元素的特征及意义[J].沉积与特提斯地质.2011,31(4):104-110.
    [106]姚敬劬,王六明,苏长国等.扬子地台南缘及其临区锰矿研究[M].北京:冶金工业出版社.1995.
    [107]姚培慧,林镇泰,杜春林等.中国锰矿志[M].北京:冶金工业出版社.1995.
    [108]姚培慧.中国锰矿志[M].北京:冶金工业出版社.1995.
    [109]叶连俊.中国锰矿的沉积条件[J].科学通报.1955(11):93-96.
    [110]伊海生,彭军,夏文杰.扬子东南大陆边缘晚前寒武纪古海洋演化的稀土元素记录[J].沉积学报.1995,13(4):131-137.
    [111]殷鸿福,吴顺宝,杜远生.华南是特提斯多岛洋体系的一部分[J].地球科学——中国地质大学学报.1999,24(1):1-12.
    [112]原田宪一,白桦.锰结核的形成与生物所起的作用[J].地质科技情报.1983(4):46-48.
    [113]曾友寅.广西下雷晚泥盆世锰矿床沉积学研究[J].沉积学报.1991,9(1):73-79.
    [114]曾友寅.桂西南晚泥盆世锰矿床锰质豆鲕粒类型及其成因探讨[J].广西地质.1989,2(3):63-70.
    [115]曾允孚,刘文均,陈洪德等.1995.华南右江盆地的沉积构造演化[J].地质学报.69(2):113-124.
    [116]张桂芬,鲍根德.太平洋北部铁锰结核与细菌关系的初步研究[J].热带海洋.1989,8(1):27-33.
    [117]张九龄.国内外生锰矿主要类型地质特征及找矿方向[J].地质与勘探.1982(2):26-40.
    [118]张世红,王训练,朱鸿.碳酸盐岩磁化率与相对海平面变化的关系——黔南泥盆-石炭系例析[J].中国科学(D辑).1999,29(6):558-566.
    [119]章正军,丁俊,赵珉.南盘江盆地三叠纪沉积构造演化[J].云南地质.2000,19(2):171-178.
    [120]赵广涛,何雨旸,陈淳等.太平洋铁锰结核与富Co结壳的矿物地球化学比较研究[J].中国海洋大学学报.2011,41(5):85~90.
    [121]赵家骧,刘佑馨.中国外生锰矿地质的初步探讨[J].地质学报.1956,36(4):535-543.
    [122]赵全基,张壮域.北太平洋锰结核及其伴生沉积物[J].海洋通报.1989,8(1):44-49.
    [123]钟大赉,吴根耀,季建清等.滇东南发现蛇绿岩[J].科学通报.1998,43(13):1365-1370.
    [124]周琦,陈建华,张命桥等.冷泉碳酸盐岩研究进展及成矿意义[J].贵州科学.2007,25(1):103-110.
    [125]周琦,杜远生,王家生等.黔东北地区南华系大塘坡组冷泉碳酸盐岩及其意义[J].地球科学—中国地质大学学报.2007,32(3):339-346.
    [126]周琦,杜远生,颜佳新等.贵州松桃大塘坡地区南华纪早期冷泉碳酸盐岩地质地球化学特征[J].地球科学—中国地质大学学报.2007,32(6):843-852.
    [127]周琦.黔东新元古代南华纪早期冷泉碳酸盐岩质地球化学特征及其对锰矿的控矿意义[D].中国地质大学博士学位论文.2008.
    [128]周新平,何幼斌,杜红权等.四川宣汉地区二叠系硅岩地球化学特征及成因研究[J].古地理学报.2009,11(6):670-680.
    [129]朱杰,杜远生,刘早学等.西藏雅鲁藏布江缝合带中段中生代放射虫硅质岩成因及其大地构造意义[J].中国科学D辑:地球科学.2005,35(12):1131-1139.
    [130]祝寿泉.广西下雷碳酸锰矿床风暴成因探讨[J].地质找矿论丛.1991,6(4):63-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700