用户名: 密码: 验证码:
非均质油藏水驱流体动力地质作用及四维地质模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对胡状集油田胡12块严重非均质油藏,采用实验和生产现场分析相结合的方法,重点针对优势渗流通道研究了注水开发过程中的流体动力地质作用,建立了油藏四维地质模型。
     储层结构是储层非均质性研究的重要内容,对剩余油的形成与分布的控制作用明显。依据目的层的地质演化过程,可将储层结构划分为九级,并在此基础上对厚油层开展研究。对胡12块沙三段而言,纵向上厚油层砂体发育,主要是由多期水下分流河道叠置形成,层内非均质性严重,通过河道底部的冲刷面和泥质、钙质等六级结构面可以将单期河道划分开;横向上砂体具片状展布的特征,是多期河道纵向切叠、横向拼合的结果。
     由于长期注水开发使储层微观结构发生变化并持续性改善其渗流能力,在油藏内形成流体优势渗流通道,进而影响油田的后期开发以及剩余油的形成与分布。本文建立了定量识别严重非均质条件下油藏内部优势渗流通道发育区的综合判别参数法。研究结果表明,综合判别参数越大则优势渗流通道越发育,而不同的注、采井被优势渗流通道沟通后呈现的特征也有所差别,注水井具低注水压力和高注水量的特点,而采油井表现为高采液量和特高含水。
     针对注水开发过程中的流体动力地质作用的研究结果表明,酸性介质条件的化学动力作用加速了碎屑组分中的长石类矿物,尤其是斜长石的溶蚀,同时生成了新的高岭石晶体并分布于细小孔喉,但对碳酸盐类矿物的影响较小。注水冲刷等物理动力地质作用造成了储集层泥质矿物总量的降低和粉砂-极细砂级石英颗粒的缺失,且主要发生在物性较好且优势渗流通道较发育的层段,而物性较差层段的细粒沉积物含量不仅没降低,反而小幅增加。在储集层孔喉变化方面,注水开发一方面造成了相对较大孔喉的增加,改善了储集层的渗滤条件,另一方面,也造成了孔喉分选程度的降低,加剧了储集层微观非均质性。从储集层孔隙度、渗透率等宏观参数变化来看,注水开发致使储集层总体的平均有效孔隙度降低4.63%,而总体平均有效渗透率上升幅度为8.93%,原始储集层物性好和较差等不同类型储集层间的物性变化呈现出了明显的“马太效应”。
     以油藏宏观物性参数动态模型为依据,计算了油藏内部不同类型储层在不同开发阶段的储层物性参数,以此为基础,采用确定性建模和随机建模相结合的方法,建立了油藏在不同开发阶段的三维地质模型。该模型在三维立体空间较好地再现了不同时期、不同类型储层的物性变化特征。
     采用油藏动态分析的方法对胡12块剩余油分布进行了研究,通过将研究成果与生产实践相结合,在胡12块取得了较好的应用效果。
Hu12Block of Huzhuangji oilfield is a typical serious heterogeneity reservoir.The hydrodynamic geology effect was studied by using the combined method of theexperimental research and production analysis. A4-D geological model wasestablished.
     A nine-order classification scheme was proposed to analyze the architectureelements of Es3reservoir of Huzhuangji oilfield, and this scheme is suitable to thescheme of stratigraphic division. Research results indicate that all thick sandbodieshave actually been superimposed by multiphase subaqueous distributary channels,which can be divided by erosional surface, argillaceous or calcic constructionalsurfaces. Thick sandbodies and the channel sandbodies thought to be flakydistribution are vertically superimposed and laterally connected by single sandbodies.
     Many chanelling paths had formed during long term production. Based on thestatic parameters, production performances and test data, a kind of quantitativemethod by the integrated discrimination exponent was put forward to identify thechanneling paths developed area of reservoirs by using commingled injection andproduction. Studies show that channeling paths would have been formed if theintegrated discrimination exponent is bigger. Among the wells, which are connectedby channeling paths, injectors have the characters of low injection pressure and highwater injection rate and the producers have the characters of high liquid producingcapacity and extra water cut.
     The chemical power of the acidic medium accelerated the dissolution ofplagioclase, and at the same time new kaolin crystals generated and distributed in the small pore throat. The chemical power has less impact on the carbonate minerals. Thephysical power of the injected water caused the reducing of the total content ofargillaceous minerals and the loss of quartz grains including the size from silt to veryfine, further analysis indicated this occured in layers of better physical and channelingpaths developed, and the content of fine-grained sediments in worse physical layersincreased slightly. Waterflood development has resulted in the increase of the largepore-throat, and the improvement of the penetration condition of reservoir. At thesame time, its effect also caused the reduction of the pore throat sorting and theaggravation of micro-heterogeneity of reservoir. From the macroscopic parameterschange of the reservoir, waterflood development caused the average effective porosityreduce by4.63%, while the overall average effective permeability increased by8.93%.As a whole, the physical changes of the different types reservoirs were showing the“Matthew Effect”. The research about hydrodynamic geology effect duringwaterflooding on serious heterogeneity character reservoir can provide a solidfoundation for reservoir management and enhancing oil recovery.
     Reservoir macroscopic parameters about different reservoir in the variousdevelopment stages have been caculated according the dynamic predicting model.Based on these parameters, a4-D geological model was established by combination ofdeterministic modeling and stochastic modeling approach. These three-dimensionmodels reproduced the physical changes characteristic of the different reservoirs indifferent periods.
     The remaining oil distribution of H12block was researched by productionperformance analysis. The practice of research result has achieved a better effect.
引文
[1] Miall A.D.Architectural element analysis:A new method of facies analysisapplied to fluvial deposits[J]. Earth Science Review,1985,22(2):261-308.
    [2] Miall A.D. Architectural Elements and Bounding Surfaces in Fluvial Deposits:Anatomy of the Kayenta Formation (LowerJurassic),Southwest Colorado[J].Sedimentary Geology,1988,155:233-262.
    [3] Miall A.D.Reconstructing the architecture and sequence stratigraphy of thepreserved fluvial record as a tool for reservoir development:a reality check[J].AAPG Bulletin,2006,90(7):989-1002.
    [4] Ainsworth R.B.Sequence stratigraphic-based analysis of reservoir connectivity:influence of depositional architecture:a case study from a marginal marinedepositional setting[J]. Petroleum Geoscience,2005,11(6):257–276.
    [5] Chatize I.,Morrow N. R.,Lim H. T. Magnitude and detailed structure of residualoil saturation[J]. sol, pet,Eng. J,1983,(4):311-326.
    [6] Clark J.D.,Kevin T. Pickering Architectural elements and growth patterns ofsubmarine channels:application to hydrocarbon exploration[J].AAPGBulletin,1996,80(2):194-221.
    [7] JiaoYangquan,Yan Jiaxin,Li Sitian,et al.Architectural units and heterogeneityof channel reservoirs in the Karamay Formation, outcrop area of Karamay oil field,Junggar basin, northwest China[J]. AAPG Bulletin,2005,89(4):529-545.
    [8] Kjemperud A.V.,Schomacker E.R.,Cross T.A.Architecture and stratigraphy ofalluvial deposits, Morrison Formation (Upper Jurassic),Utah[J]. AAPG Bulletin,2008,92(8):1055–1076.
    [9] Neton M.J.,Joachim D.,Christopher D.O.,et al.Young Architecture and directionalscales of heterogeneity in alluvial-fan aquifers[J]. Journal of SedimentaryResearch,1994,64(5):245-257.
    [10] Strebelle S.Conditional simulation of complex geological structures usingmultiple-point statistics[J]. Mathematical Geology,2002,34(1):1-21.
    [11] Willis B.J.,Behrensmeyer A.K.Architecture of Miocene overbank deposits inorthern Pakistan[J]. Journal of Sedimentary Research,1994,64(2):60-67.
    [12]陈程.厚油层内部相结构模式及其剩余油分布特征[J].石油学报,2000,21(5):99-102.
    [13]贾爱林,何东博,何文祥等.应用露头知识库进行油田井间储层预测[J].石油学报,2003,24(6):51-53,58.
    [14]何文祥,吴胜和,唐义疆等.河口坝砂体构型精细解剖[J].石油勘探与开发,2005,32(5):42-45.
    [15]刘建民.沉积结构单元在油藏研究中的应用[M].北京:石油工业出版社,2003:14-20.
    [16]吴胜和,岳大力,刘建民等.地下古河道储层构型的层次建模研究[J].中国科学(D辑).2008,38(增刊I):111-121.
    [17]尹太举,张昌民,樊中海等.地下储层建筑结构预测模型的建立[J].西安石油学院学报(自然科学版),2002,17(3):7-14.
    [18]于兴河,马兴祥,穆龙新等.辫状河储层地质模式及层次界面分析[M].北京:石油工业出版社,2004:60-106.
    [19]张昌民,林克湘,徐龙等.储层砂体建筑结构分析[J].江汉石油学院学报,1994,16(2):1-7.
    [20]张昌民.储层研究中的层次分析法[J].石油与天然气地质,1992,13(3):344-350.
    [21] Davis R A. Depositional system—sa genetic approach to sedimentary geology.Englewood Cliffs:Prentice—hall inc,1983.33-42.
    [22] Allen R.Studies in fluviatile sedimentation:bars,bar complexes and sandstonesheets (lower-sinuosity braided streams) in the Brownstones(L. Devonian),Welsh Borders[J]. Sediment Geol.1983,33:237-293.
    [23] Dickinson W R, Suczek C A. Plate tectonics and sandstone compositions. Americanassociation of petroleum geologists bulletin[J].1979.63(12):2164-2182.
    [24] Dickinson W R. Provenance and sediment dispersal inrelation to paleotectonicsand paleogeography of sedimentary basins[A]. In: Kleinspehn K L and Paola C(eds). New perspectives in basin analysis[C].1988.Speringer-verlag.3-26.
    [25] JiaoYangquan,Yan Jiaxin,Li Sitian,et al.Architectural units and heterogeneityof channel reservoirs in the Karamay Formation, outcrop area of Karamay oilfield, Junggar basin, northwest China[J]. AAPG Bulletin,2005,89(4):529-545.
    [26] Vail P R.Sequence stratigraphy workbook, fundamentals of sequencestratigraphy.AAPG Annual Conventio n Short Course:Sequence StratigraphyInterpretation of Seismic Well and Outcrop Data[J].AAPG,1998:217-223.
    [27]陈洪德,覃建雄,田景春等.右江盆地层序充填动力学初探[J].沉积学报,2000,18(2):165-171.
    [28]陈洪德,徐胜林.川西地区晚侏罗世蓬莱镇期构造隆升的沉积响应[J].成都理工大学学报.2010.37(4):353-358.
    [29]陈洪德等.中国南方古生界层序格架中的生储盖组合类型及特征[J].石油与天然气地质,2004,25(1):62-69.
    [30]陈洪德,侯明才,林良彪等.不同尺度构造—层序岩相古地理研究思路与实践[J].沉积学报,2010,28(5):894-905.
    [31]陈洪德,郭彤楼等.中上扬子叠合盆地沉积充填过程与物质分布规律[M].北京:科学技术出版社.2012.
    [32]程岳宏,于兴河,韩宝清等.东濮凹陷北部古近系沙三段地球化学特征及地质意义[J].中国地质,2010.32(2):357-366.
    [33]王延章,林承焰,董春梅等.夹层及物性遮挡带的成因及其对油藏的控制作用--以准噶尔盆地莫西庄地区三工河组为例[J].石油勘探与开发,2006,33(3):319-321.
    [34]葛云龙,逯径铁,廖保方等.辫状河相储集层地质模型—泛连通体[J].石油勘探与开发,1998,25(5):77-79.
    [35]王端平.复杂断块油田油藏精细描述[J].石油学报,2000,21(6):111-116.
    [36]王桂成.东濮凹陷勘探开发中新技术的应用[J].石油实验地质,2001,23(3):324-326.
    [37]吴胜和,李文克.多点地质统计学—理论、应用与展望[J].古地理学报,2005,7(1):137-143.
    [38]赵翰卿,付志国,吕晓光等.大型河流—三角洲沉积储层精细描述方法.石油学报,2000,21(4):109-113.
    [39]赵俊兴,陈洪德,时志强.古地貌恢复技术方法及其研究意义——以鄂尔多斯盆地侏罗纪沉积前古地貌研究为例[J].成都理工学院学报.2001.28(3):260-266.
    [40]赵俊兴,吕强,李凤杰,等.鄂尔多斯盆地南部延长组长6时期物源状况分析[J].沉积学报,2008,26(4):610-616.
    [41]郑荣才,李国晖,戴朝成等.四川类前陆盆地盆—山耦合系统和沉积学响应[J].地质学报.2012,86(1):170-180.
    [42]朱志军,陈洪德,林良彪等.川东南—湘西地区志留系小河坝组砂岩微量元素地球化学特征及意义[J].地质科技情报,2010.29(2):24-30.
    [43]朱志军,陈洪德,胡晓强,林良彪,徐胜林.川西前陆盆地侏罗纪层序地层格架、沉积体系配置及演化[J].沉积学报,2010.28(3):451-461.
    [44]曾流芳.疏松砂岩大孔道形成机理及渗流规律[M].山东东营:石油大学出版社,2000:19-32.
    [45]房士然.夹层对优势通道形成与演化的影响[J].油气地质与采收率.2010,17(1):90-95.
    [46]刘佳文,陈学元,李武胜.同位素示踪剂井间监测技术在狮子沟油田N1油藏的应用[J].同位素,2008,21(1):54-57.
    [47]史有刚,曾庆辉,周晓俊.大孔道试井理论解释模型[J].石油钻采工艺,2003,25(3):48-50.
    [48]余成林,林承焰,尹艳树.合注合采油藏窜流通道发育区定量判识方法[J].中国石油大学学报(自然科学版),2009,33(2):23-28.
    [49]窦之林,曾流芳,张志海等.大孔道诊断和描述技术研究[J].石油勘探与开发,2001,28(1):75-77.
    [50]钟大康,朱筱敏,吴胜和等.注水开发油藏高含水期大孔道发育特征及控制因素—以胡状集油田胡12断块油藏为例[J].石油勘探与开发,2007,34(2):207-211.
    [51]刘淑芬,梁继德.试井技术识别无效注采水循环通道方法探讨[J].油气井测试,2004,13(1):27-30.
    [52]刘月田,孙保利,于永生.大孔道模糊识别与定量计算方法[J].石油钻采工艺,2003,25(5):54-59.
    [53]孟凡顺,孙铁军,朱炎等.利用常规测井资料识别砂岩储层大孔道方法研究[J].中国海洋大学学报,2007,37(3):463-468.
    [54]彭仕宓,史彦尧,韩涛等.油田高含水期窜流通道定量描述方法[J].石油学报,2007,18(5):79-84.
    [55] Tokunaga T., Mogi K., Matsubara O., et al. Buoyancy and interfacial forceeffects on two-phase displacement patterns: an experimental study[J]. AAPGBulletin,2000,84(1):65-74.
    [56] Wang D,Han P,Shao Z,et al.Sweep improvement options for the Daqing Oil Field[J].SPE99441,2006.
    [57]蔡忠.储集层孔隙结构与驱油效率关系研究[J].石油勘探与开发,2000,27(6):45-46.
    [58]黄书先,张超谟.孔隙结构非均质性对剩余油分布的影响[J].江汉石油学院学报,2003,26(3):124-125.
    [59]焦玮玮,孙威.核磁共振全直径岩心分析仪磁体的研制[J].南京大学学报(自然科学版),2005,41(4):382-387.
    [60]裘怿楠,许仕策,肖敬修.沉积方式与碎屑岩储层的层内非均质性[J].石油学报,1985,6(1):41-49.
    [61]盛强,施晓乐,刘维甫等.岩心CT三维成像与多相驱替分析系统[J].CT理论与应用研究,2005,14(3):8-12.
    [62]孙卫,史成恩,赵惊蛰等.X-CT扫描成像技术在特低渗透储层微观孔隙结构及渗流机理研究中的应用—以西峰油田庄19井区长82储层为例[J].地质学报,2006,80(5):775-778.
    [63]赵振华.关于岩石微量元素构造环境判别图解使用的有关问题[J].大地构造与成矿学.2007,31(1):92-103.
    [64]严启团,郭和坤,刘素民.应用环境扫描电镜研究储集层砂岩样品润湿性的变化特征[J].石油勘探与开发,2001,28(6):92-93.
    [65]尤启东,陆先亮,栾志安.疏松砂岩中微粒迁移问题的研究[J].石油勘探与开发,2004,31(6):104-107.
    [66]李阳.河道砂储层非均质模型[M].北京:科学出版社,2001:14-25.
    [67]刘泽容,杜庆龙.应用变差函数定量研究储层非均质性[J].地质论评,1993,39(4):297-301.
    [68]冯伟光.河流相储层中夹层类型的定量识别[J].油气地质与采收率.2009,16(5):40-43.
    [69] Hamilton D.S.,Tyler N.,Tyler R.,et al.Reactivation of mature oil fields throughadvanced reservoir characterization:A case history of the Budare field,Venezuela[J]. AAPG Bulletin,2002,86(7):1237–1262.
    [70] Lynds R.,Hajek E.Conceptual model for predicting mudstone dimensions in sandybraided-river reservoirs[J].AAPG Bulletin,2006,90(8):1273-1288.
    [71]黄志洁,张一伟,熊琦华.油藏相控剩余油分布四维模型的建立方法[J].石油学报.2008,29(4):562-566.
    [72]计秉玉,赵国忠,王曙光.沉积相控制油藏地质建模技术[J].石油学报,2006,27(增刊):111-114.
    [73]彭仕宓,尹志军,李海燕.建立储层四维地质模型的新尝试[J].地质论评.2004,50(6):662-666.
    [74]孙国.利用人工神经网络系统建立储层四维地质模型[J].油气地质与采收率.2004,11(3):4-6.
    [75]张伟,林承焰,董春梅.多点地质统计学在秘鲁D油田地质建模中的应用[J].中国石油大学学报(自然科学版),2008,32(4):24-28.
    [76]周延军,吕新华,林明华等.储层四维随机建模[J].江汉石油学院学报.2004,26(6):27.
    [77]孙焕泉,孙国,程会明.胜坨油田特高含水期剩余油分布仿真模型[J].石油勘探与开发,2002,29(3):66-68.
    [78]张继春,彭仕宓,穆立华.流动单元四维动态演化仿真模型研究[J].石油学报.2005,26(1):69-73.
    [79]朱广美.用四维观念探索全球构造等问题[J].中国科学技术大学学报.1986,16(4):439-445.
    [80] Alaberf F. G.,Corre B.,Aquitaine E.Heterogeneity in a complex turbicliticreservoir: impact on field development[C]. SPE22902.
    [81] Awan A. R.,Teigland R., Kleppe J. EOR survey in the North Sea[C]. SPE99546,2006.
    [82] Santosh.A control volume scheme for flexible grid in reservoir simulation[R].SPE37999,1997.
    [83]巢华庆,许运新.大庆油田持续稳产的开发技术[J].石油勘探与开发,1995,22(5):34-38.
    [84]窦之林,董春梅,林承焰.孤东油田七区中馆4—馆6砂层组储层非均质性及其对剩余油分布的控制作用[J].石油大学学报(自然科学版),2002,26(1):8-15.
    [85]冯国庆,陈军,李允等.利用相控参数场方法模拟储层参数场分布[J].石油学报,2002,23(4):61-64.
    [86]陈元千,李璗.现代油藏工程[M].北京:石油工业出版社,2001:240-284.
    [87]计秉玉.对大庆油田油藏研究工作的几点认识[J].大庆石油地质与开发,2006,25(1):9-13.
    [88]裘怿楠,陈子琪,许仕策.河道砂岩储油层的注水开发[A].见:国际石油工程会议论文(第一集)[C].北京:石油工业出版社,1982:26-43.
    [89]俞启泰.注水油藏大尺度未波及剩余油的三大富集区[J].石油学报,2000,21(2):45-50.
    [90]郭平,冉新权,徐艳梅等.剩余油分布研究方法[M].北京:石油工业出版社,2004:1-2.
    [91]韩大匡.深度开发高含水油田提高采收率问题的探讨[J].石油勘探与开发,1995,22(5):47-55.
    [92]韩大匡.准确预测剩余油相对富集区提高油田注水采收率研究[J].石油学报,2007,28(2):73-78.
    [93]胡文瑞.论老油田实施二次开发工程的必要性与可行性[J].石油勘探与开发,2008,35(1):1-4.
    [94]林承焰,候连华,董春梅等.应用地质统计学方法识别隔夹层[J].石油实验地质,1997,19(3):245-251.
    [95]林承焰,余成林,王友净等.河流相储层非均质性与剩余油研究[M].2007年中国油藏地质专题学术研讨会交流材料汇编,2007.
    [96]林承焰.剩余油形成与分布[M].山东东营:石油大学出版社,2000:39-44,57-76.
    [97]孙焕泉.油藏动态模型和剩余油分布模式[M].北京:石油工业出版社,2002:59-61.
    [98]尹太举,张昌民,赵红静等.复杂断块区高含水期剩余油分布预测[J].石油实验地质,2004,26(3):267–272.
    [99]尹志军,鲁国永,邹翔等.陆相储层非均质性及其对油藏采收率的影响[J].石油与天然气地质,2006,27(1):106-110.
    [100]俞启泰,赵明,林志芳.水驱砂岩油田含水率变化规律与采收率多因素分析[J].石油勘探与开发,1992,19(3):63-68.
    [101]俞启泰.论侧钻水平井是开采大尺度未波及剩余油最重要的技术[J].石油学报,2001,22(4):44-48.
    [102]郑浩,马春华,姜振海.高含水后期低效、无效循环形成条件的数值模拟研究[J].石油钻探技术,2007,35(4):80-83.
    [103]俞启泰.地质导向钻井技术概况及其在我国的研究进展[J].石油勘探与开发,2005,32(1):91-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700