用户名: 密码: 验证码:
湘中、湘东南及湘东北地区泥页岩层系地质特征与页岩气勘探潜力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
页岩气是在富含有机质的页岩中形成的天然气的富集,以游离相存在于天然裂缝与粒间孔隙中,吸附在干酪根或粘土颗粒表面,溶解于干酪根和沥青里。以热成熟作用或连续的生物作用为主以及两者相互作用生成的聚集在烃源岩中的天然气,已逐渐成为重要的非常规天然气资源。
     页岩气资源的开发利用展示出了诱人的前景,它不仅符合国家产业政策和发展循环经济的要求,而且也将为企业带来良好的经济效益、环保效益和社会效益。页岩气一旦勘探突破形成产能,必将对缓解中国油气资源接替的压力产生至关重要的作用。
     沉积盆地中,各地质时期的沉积物中泥页岩沉积约占80%,页岩储层包括暗色富有机质页岩及以薄的夹层状态存在的粉砂质泥岩、泥质粉砂岩等地层。页岩储层组合形式多样,不同类型页岩储层组合有明显不同的地质、地球化学特征。深水海相缺氧沉积环境页岩发育较好,有机质丰度高的炭质页岩附近常有煤层出现。通常与常规油气藏有着密切的成因关系,页岩气储集层具渗透率低,开采难度较大,开发潜力巨大,开采寿命长的优点。
     中国南方海相页岩在各个地质历史时期都十分发育,层系多且分布范围广,是页岩气的主要富集地区,大量分布在向斜区、隆起区的低部位。研究区是以下古生界浅变质岩系为基底发展起来的晚古生代沉积坳陷区,发育有机质丰度高的页岩层系,有机质热演化进入高成熟生气阶段,具有形成页岩气藏的基本地质条件。
     中国页岩气勘探开发还处在起步阶段,泥页岩储层的地质特征、成藏的主控因素与富集条件及页岩气资源潜力评价等还处在探索中。本论文旨在以现代沉积学和层序地层学理论为指导,结合区域构造背景,以湘中、湘东南、湘东北地区页岩层系为例,分析页岩层系沉积环境,恢复页岩层系的岩相古地理,确定富有机质页岩层系发育层段。探索海相页岩气资源潜力评价方法体系,从厚度、地化指标、脆性矿物含量、物性等方面确定页岩储层评价标准。阐述了非常规页岩气资源潜力体积法评价所涉及的参数选取确定原则,研究获得页岩气资源潜力,预测页岩气富集区带。为研究区页岩气的资源评价及勘探区块优选提供科学依据。
     研究区中泥盆世-中三叠世总体沉积环境为台地相-陆地边缘相。有利于泥页岩发育的主要沉积相带是台地海盆相、滨海沼泽相、潮坪相和台坪相,分布在海侵体系域上部和高水位体系域下部,平面上多与凹槽台地相的发育和分布有关。台地海盆相主要发育于本区的中、晚泥盆世棋梓桥期、佘田桥期,其沉积物以泥页岩、泥灰岩为主,滨海沼泽相主要发育于本区的早石炭世大塘期测水时,晚二叠世龙潭期两个成煤时期。
     研究区泥盆系中上统除个别地区外都已到达高成熟-过成熟阶段,石炭系下统的大塘阶测水段基本处于高成熟-过成熟阶段,二叠系上统的龙潭组和大隆组相对来说演化程度较低,但也达到高成熟阶段。总体表现为演化成熟度高-很高的特征。
     研究区泥页岩矿物成分复杂,均含有粘土矿物、石英、斜长石、钾长石、方解石、白云石等矿物,大部分泥页岩含有黄铁矿,少数含有石膏。其泥页岩沉积于缺氧的强还原环境,脆性矿物含量是影响页岩基质孔隙和微裂缝发育程度、含气性及压裂改造方式等的重要因素。页岩中粘土矿物含量越低,石英、长石、方解石等脆性矿物含量越高,岩石脆性越强,在外力作用下越易形成天然裂缝和诱导裂缝,形成树状或网状结构缝,而粘土矿物含量高的页岩塑性强,吸收能量强,以形成平面裂缝为主,不利于页岩的后期改造。研究区脆性矿物石英平均含量偏低,但全部脆性矿物平均含量已达51.57%,有利于页岩气储层后期的压裂改造。
     研究区页岩储层为低孔渗储集层,发育有多种类型微孔隙,主要有:格架孔、溶蚀孔、有机质孔、生物体腔孔和微裂缝等,为页岩气吸附和赋存的主要空间,具有结构复杂、比表面积较大等特点,丰富的内表面积可以通过吸附方式储存大量气体,是含气性的主要影响因素。
     在测试实验的基础上,结合不同类型干酪根在不同的有机质热演化阶段的产气特征,系统分析了TOC、Ro及比表面(孔体积、孔径、孔喉分选性)等地化物性参数对含气量的影响,揭示了储集物性、矿物含量、地球化学特征与储层含气性之间的内在联系。确定了主要泥页岩层段的含气量,为研究区页岩气的资源潜力评价奠定了基础。
     首次利用体积法计算了湘中、湘东南、湘东北地区的泥页岩层系的资源潜力,优选与评价了页岩气有利的勘探区块。研究区内湘页1井页岩气钻获成功获得自然产能,现场解析含气量最高值为0.7334cm3/g,证实了研究区广阔的页岩气勘探前景。
     此研究成果对中扬子区乃至我国南方地区页岩气勘探与研究具有重要的指导意义。
The gas in the organic-rich shale formation is named the shale gas. The shale gas is mainlyfilled in the natural fractures and intergranular pore, or adsorb on the surface of kerogen or clayparticle, or even dissolve in kerogen and bitumen. The gas, from thermal maturation or thecontinuous biogenicagency or both, has gradually become an important unconventional gasresources.
     The exploration and utilization of the shale gas indicates that it will become an attractiveprospect resources. Foe one thing, the shale gas will not only conform to the requirements ofthe national industrial policy and the development of recycling economy, for another thing, itwill also bring considerable economic, environmental and social benefits for the industries. Ifthe shale gas become a productive resource, it will play an important role in solving theproblem of the substitution of oil and gas in China.
     In sedimentary basins, about80%sediments of various geological periods are shale. Theshale reservoir consists of dark. organic-rich shale interbedded with silty mudstone, muddysiltstone. The shale reservoirs combination varies from basin to basin, because there aredifferent significantly geological and geochemical characteristics for different shale reservoirs indifferent petroliferous basins.The origin of the shale gas is closely connected with theconventional oil and gas accumulation, which indicates that the shale gas has a considerablepotential of exploration. As the coin has two sides,the shale gas also has it's positive factors andnegative factors. For the positive factors, the continuous enrichment of the shale gasaccumulation charactered by a thick source rock and a wide distribution in the basin, and arelative long production lead time. For the negative factors, the exploitation of the shale gas isdifficult, for the porosity of the shale gas reservoirs is low.
     The shale gas is mainly enriched in marine shale in southern China.The marine shale occur in various strata of different geological history and they are well developed. Most of the marineshale is abundant in the syncline area or the lower portion of the uplift area.The study area islocated in the deposition depression area of the late paleozoic, which is developed from theepimetamorphic rocks basement of the lower part of the paleozoic. In the study area,theabundance of organic matter of the shale is high, which is matched with the basic geologicalconditions of the generation of shale gas.
     The exploration shale gas in China has reached an early stage. the shale gas resourcepotential evaluation. It is difficult to estimate the potential shale gas accurately throughconventional oil and gas evaluation system,due to the evaluation of the shale gas resourcepotential is not accurate.This paper is guided by modern sedimentology and sequencestratigraphy theory, and is combined with the background of regional tectonic setting. The aimsof this paper are as the fellows: first of all, we will try to analysis the depositional environmentof the shale formation from the southeastern and northeastern Hunan Province; secondly, we willrecover the litho-facies palaeogeography of the study area; finally, we will locate the organic-richshale intervals of the study area. In this paper, the potential resource evaluation system of marineshale gas will be conducted. The thickness of shale reservoirs, geochemical indicators shalereservoirs, brittle mineral content shale reservoirs, physical properties shale reservoirs are usedin the forming of the evaluation criterion for shale reservoirs. This paper describes thevolumetric method in potential resource evaluation of the unconventional shale gas and thegeneral rule of selecting the parameters which is involved in. In this paper, the potentialresources of the shale gas is evaluated, and the prediction of the enrichment zone of the shale gashas been conducted. This paper provides scientific basis for the resource evaluation of the shalegas and for the selection of the preferred target of the shale gas exploration in the study area.
     The sedimentary facies of the study area in the devonian-middle triassic was the platformfacies-the peripheral continental facies. There exists four types of sedimentary facies whichbenefits the deposition of the shales,namely, platform basin facies, coastal marsh facies, tidalflat facies and table facies. These sedimentary facies distribute in the lower part of thetransgressive system tract and the upper part of the highstand system tracts,which are connectedwith the development and distribution of groove platform.The development of the platformbasin facies,in the study area, is mainly occurred in the Qiziqiao stage and the Shetianqiao stagein the late devonian. Lithologically consists of argillutite and marlstone. The development of theseamarsh facies is mainly occurred in the coal-forming period of Ceshui time, Datang stage inthe early Carboniferous and the Longtan stage in the late Permian.
     In the study area, most of the sediments of Devonian have reached the high maturity stage-over mature stage. The Ceshui formation, Datang stage of the lower Carboniferous havebasically reached the high mature-over mature stage. The degree of evolution of Longtan Formation and Dalong Formation in upper Permian is relatively low, but it has reached highmaturity stage. The evolution of the study area shows a character of reaching the high maturitystage-over mature stage.
     The mineral composition of argillutite in the study area is very complicated, which consistsof clay minerals, quartz, plagioclase, potassic feldspar, calcite, dolomite and other minerals, andalso gypsum is observed in some samples. Most of the argillutite contains pyrite, which shows aneffect of the anoxic strong reducing environment during the deposition of the argillutite. Theaverage content of the brittle mineral quartz is low, which shows a greater effect on thecrack-forming ability of the shale gas reservoirs.
     The matrix porosity of shale and micro-fracture development, gas-bearing properties andfracturing treatment methods are dominated by brittle mineral content in the shale. The lowcontent of clay mineral and high content of brittle mineral, like quartz, feldspar, calcite, in theshales, will turn the shale into brittle shale. If external force is applied, there will be more naturalfractures and induced cracks, such as the tree-shaped cracks or net-shaped cracks in the brittleshale, which benefits the exploitation of the shale gas. In contrast, the high content of clayminerals in the shales, will turn the shale into plastic shale,which can absorb the majorityexternal force applied on the shale. If external force is applied, there will be more planar cracks,which has negative effect on the post-transformation of the shale.Although in the study area thethe average content of quartz is low, but the content of all fragile mineral reached51.57%,it’s infavor of shale gas reservoirs in the late fracturing treatment, which is conducive to the fracturingtransformation of shale gas reservoirs.
     The shale reservoir is characterized by the development of many types of micro-pore and ithas extreme low porosity and extreme low permeability. These micro-pore can be divided intothe following types: grid holes, corrosion holes, holes of organic matter, organisms bore andmicro-cracks, etc. The shale gas is mainly found in micro-pore, for high surface to volume ratio,the complex structure of micro-pore and the large internal surface area enable micro-pore to holdlarge amounts of adsorbed gas.
     On the basis of the test experiment, combined with the gas production characteristics ofdifferent types of kerogen in different stage of organic matter evolution, systematic analysis theTOC, Ro geochemical parameters and specific (pore volume, pore size, pore throat sorting, etc.)impact factors on the gas content, determine the correspondence between the reservoir property,mineral content, geochemical characteristics and the gas containing of the shale reservoir.Determined the gas content of the key mud shale bed, provided information on the basis of shalegas resource potential assessment in the study area.
     First calculated the resource potential of the mud shale system in central Hunan,southeastern Hunan, Hunan northeastern region by volume method, preferred favorable shale gas exploration and development blocks. In the study area, XiangYe1well is successful with naturaldeliverability of shale gas, on-site desorption with the highest gas0.7334cm3/g, confirmed thebroad shale gas exploration prospects in the study area.
     The findings and the methodology adopted in the study can provide important guidancereferences for the exploration of the shale gas in the central of Yangtze region or even insouthern China.
引文
[1]徐国盛、刘树根等,四川盆地天然气成藏动力学[M],地质出版社,2005.
    [2]刘池祥,后期改造强烈——中国沉积盆地重要特点之一,石油与天然气地质,1996年4期.
    [3]潘仁芳,黄晓松页岩气及国内勘探前景展望[J],中国石油勘探,2009.
    [4]李世臻等,世界页岩气勘探开发现状及对中国的启示[J],地质通报,2010.
    [5]石文斌,李启桂,李健;,湘东南坳陷构造演化及油气成藏研究[J],国土资源导刊,2006.
    [6]敬乐等,湘中拗陷海相页岩层系岩相古地理特征[J],成都理工大学学报(自然科学版),2012.
    [7]杨镱婷,张金川等,陆相页岩气的泥页岩评价—以延长下寺湾区上三叠统延长组长7段为例,东北石油大学学报,2012.
    [8]蒋裕强,董大忠,漆麟,等.页岩气储层的基本特征及其评价[J].天然气工业.2010(10):7-12.
    [9]金之钧,张金川.深盆气藏及其勘探对策[J].石油勘探与开发.1999,26(1):4-5.
    [10]金之钧,张金川.深盆气成藏机理[J].地学前缘.2002,9(3):208.
    [11]李桂范,赵鹏大.地质异常找矿理论在页岩气勘探中的应用[J].天然气工业.2009,29(12):119-124.
    [12]李军,侯读杰,李敬含,等.辽河坳陷东部凹陷天然气特征及成因类型[J].天然气工业.2011,31(2):43-47.
    [13]李晓光,张金川,陈振岩,等.辽河坳陷西部凹陷油气成藏体系及天然气分布[J].天然气工业.2007,27(5):39-43.
    [14]李艳霞,李净红.中扬子区上震旦统—志留系页岩气勘探远景[J].新疆石油地质.2010,31(6):659-663.
    [15]李艳霞,林娟华,龙幼康,等.中扬子地区下古生界海相泥-页岩含气勘探远景[J].地质通报.2011,30(2):349-356.
    [16]李玉喜,乔德武,姜文利,等.页岩气含气量和页岩气地质评价综述[J].地质通报.2011,31(2):308-317.
    [17]廖永胜.高-过成熟气源岩评价的若干问题[J].石油勘探与开发.2005,32(4):147-152.
    [18]刘丽芳,张金川,卞昌蓉.根缘气"甜点"资源结构预测方法[J].天然气工业.2006,26(2):49-51.
    [19]刘全有,刘文汇,王晓锋,等.不同烃源岩实验评价方法的对比[J].石油实验地质.2007,29(1):88-94.
    [93]刘文斌,胡凯,蒋小琼,等.海相烃源岩有机显微组分的样品前处理方法[J].煤田地质与勘探.2008,36(2):6-10.
    [20]刘弋生,谢军,武浩宇.页岩气储层评价技术的方法一实验分析技术[J].内江科技.2012(3):101-102.
    [21]龙鹏宇,张金川,唐玄,等.泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J].天然气地球科学.2011,22(3):525-532.
    [22]倪春华,周小进,王果寿,等.海相烃源岩有机质丰度的影响因素[J].海相油气地质.2009,14(2):20-23.
    [23]聂海宽,张金川,薛会,等.杭锦旗探区储层致密化与天然气成藏的关系[J].西安石油大学学报(自然科学版).2009,24(1):1-7.
    [24]宁宁,陈孟晋,孙粉锦,等.鄂尔多斯盆地奥陶系风化壳古油藏的确定及其意义[J].石油与天然气地质.2007,28(2):280-286.
    [25]蒲军,张金川,王志欣,等.川西坳陷深盆气研究进展与问题讨论[J].地球科学与环境学报.2004,26(2):34-37.
    [26]钱伯章,朱建芳.页岩气开发的现状与前景[J].天然气技术.2010,4(2):11-13.
    [27]秦建中,刘宝泉,郑伦举,等.海相碳酸盐岩排烃下限值研究[J].石油实验地质.2007,29(4):391-396.
    [28]秦建中,刘宝泉,郑伦举,等.海相碳酸盐岩烃源岩生排烃能力研究[J].石油与天然气地质.2006,27(3):348-355.
    [93]苏惠,曲丽萍,张金川,等.裂陷盆地构造演化及盆地伸展模式--以东濮凹陷为例[J].石油与天然气地质.2006,27(1):70-77.
    [29]苏惠,曲丽萍,张金川,等.裂陷盆地构造演化及盆地伸展模式--以东濮凹陷为例[J].石油与天然气地质.2006,27(1):70-77.
    [30]孙红军,刘立群,吴世祥,等.从深水油气勘探到页岩油气开发——2009年AAPG年会技术热点透视[J].石油与天然气地质.2009,30(5).
    [31]陶树,汤达祯,王东营,等.低成熟油页岩的生排烃作用实验模拟[J].地学前缘.2009,16(3):356-363.
    [32]腾格尔,高长林,胡凯,等.上扬子北缘下组合优质烃源岩分布及生烃潜力评价[J].天然气地球科学.2007,18(2):254-259.
    [33]李艳霞、李净红,中扬子区上震旦统—志留系页岩气勘探远景,新疆石油地质,2010.
    [34]邵龙义等,湘中下石炭统测水组沉积层序及幕式聚煤作用[J],地质论评,1992.
    [35]牟传龙,湖南泥盆纪沉积盆地的演化与层序地层沉积模式[J],特提斯地质,1997.
    [36]郭景会等,济源盆地谭庄组富有机质页岩地球化学特征及其意义,河南理工大学学报,2007.
    [37]陈园园,江汉平原区海相碳酸盐岩油气保存条件研究,成都理工大学硕士论文,2010.
    [38]张金川,唐玄,姜生玲,等.碎屑岩盆地天然气成藏及分布序列.天然气工业,2008d,28(12):11-17.
    [39]刘旭华,湖南邓家铺矿区测水组煤系和煤层特征及资源远景分析[J],煤炭技术,2007.
    [40]楼章华等,中国南方海相地层油气保存条件评价,天然气工业,2006.
    [41]吉丛伟等,湖南省晚二叠世层序古地理及聚煤特征[J],中国矿业大学学报,2011.
    [42]毛治超等,广西桂中地区泥盆系沉积环境及沉积有机质特征[J],中国科学(D辑:地球科学),2008.
    [43]翟光明主编,中国石油地质志卷十一:滇黔桂油气田,石油工业出版社,1991.
    [44]关士聪等,中国海域变迁、海域沉积与油气(晚元古代~三叠纪),科学出版社,1984.
    [45]杨巍然等,华南加里东阶段古构造特征,武汉地质学院出版社,1986.
    [46]吕建伟,沁水盆地及左权区块烃源岩评价[J],中国地质大学(北京),2012.
    [47]刘池祥,改造型盆地研究和油气勘探的思路,石油与天然气地质,2000年1期.
    [48]赵宗举,中国南方构造形变对油气藏的控制作用,石油与天然气地质,2002年1期.
    [49]蔡勋益,南方海相烃源岩特征分析,天然气工业,2005年3期.
    [50]潘国恩,中国南方海相碳酸盐岩保存条件,石油与天然气地质,1992年3期.
    [51]李新景,吕宗刚,董大忠,等.北美页岩气资源形成的地质条件[J].天然气工业.2009(5):27-32.
    [52]李志明,余晓露,徐二社,等.渤海湾盆地东营凹陷有效烃源岩矿物组成特征及其意义[J].石油实验地质.2010,32(3):270-275.
    [53]林峰,张金川,蔡峰.盆地热历史研究的正反演模型[J].海洋地质动态.1995(6):6-8.
    [54]刘旭华.湖南邓家铺矿区测水组煤系和煤层特征及资源远景分析[J].煤炭技术.2007,26(6):121-122.
    [54]聂海宽,张金川,张培先,等.福特沃斯盆地Barnett页岩气藏特征及启示[J].地质科技情报.2009,28(2):87-93.
    [55]乔德武,任收麦,邱海峻,等.中国油气资源勘探现状与战略选区[J].地质通报.2011,31(2):187-196.
    [56]苏惠,曲丽萍,张金川,等.渤海湾盆地东濮凹陷天然气成藏条件与富集规律[J].石油实验地质.2006,28(2):123-128.
    [57]陶树,汤达祯,周传祎,等.川东南-黔中及其周边地区下组合烃源岩稀土元素地球化学特征及沉积环境[J].油气地质与采收率.2009,16(3):41-43,47.
    [58]田乃林,杨竞,李爱红,等. X盆地塔中隆起粘土矿物分析及理化性能[J].承德石油高等专科学校学报.2008,10(1):6-9.
    [59]汪新伟,沃玉进,周雁,等.构造作用对油气保存影响的研究进展——以上扬子地区为例[J].石油实验地质.2011,33(1):34-42.
    [60]吴月先,钟水清.川渝地区页岩气藏勘探新选向研讨[J].青海石油.2008,26(3):7-12.
    [61]熊斌辉,米立军,王存武.构造生烃理论及其在页岩气上的应用[J].海洋石油.2010,30(4):1-6.
    [62]徐士林,包书景.鄂尔多斯盆地三叠系延长组页岩气形成条件及有利发育区预测[J].天然气地球科学.2009,20(3):460-465.
    [63]薛会,张金川,徐波,等.鄂尔多斯北部杭锦旗探区上古生界烃源岩评价[J].成都理工大学学报(自然科学版).2010,37(1):21-28.
    [64]杨长清,岳全玲,曹波.黔中隆起及其周缘地区下古生界油气勘探前景与方向[J].现代地质.2008,22(4):558-566.
    [65]姚斌,王旸,姜福庆.布局页岩气[J].中国石化.2010(7):4-12.
    [66]叶军,曾华盛.川西须家河组泥页岩气成藏条件与勘探潜力[J].天然气工业.2008,28(12):18-25.
    [67]叶玥豪,刘树根,孙玮,等.上扬子地区上震旦统—下志留统黑色页岩微孔隙特征[J].成都理工大学学报(自然科学版).2012,39(6):575-582.
    [68]张金川,汪宗余,聂海宽,等.页岩气及其勘探研究意义[J].现代地质.2008,22(4):640-646.
    [69]张林晔,李政,朱日房,等.济阳坳陷古近系存在页岩气资源的可能性[J].天然气工业.2008,28(12):26-29.
    [70]张远弟,喻高明,赵辉,等.油藏数值模拟技术在页岩气藏开发中的应用[J].新疆石油地质.2012,33(6):736-740.
    [71]郑伦举,秦建中,何生,等.地层孔隙热压生排烃模拟实验初步研究[J].石油实验地质.2009,31(3):296-302,306.
    [72]郑言.我国页岩气资源开发前景可期[J].中国石化.2009(2):25-26.
    [73]邹才能,陶士振,袁选俊,等."连续型"油气藏及其在全球的重要性:成藏、分布与评价[J].石油勘探与开发.2009,36(6):669-682.
    [74] Rowe D.,高莉玲.浅层页岩中烃气的低温热生成[J].海洋地质动态.1999(7):18-20.
    [75]陈波,兰正凯.上扬子地区下寒武统页岩气资源潜力[J].中国石油勘探.2009,14(3):10-14.
    [76]陈践发,张水昌,鲍志东,等.海相优质烃源岩发育的主要影响因素及沉积环境[J].海相油气地质.2006,11(3):49-54.
    [77]陈军海,陈勉,金衍,等.确定泥页岩粘土矿物组分的新方法及对钻井液性能的优化[J].中国石油大学学报(自然科学版).2008,32(5):58-62.
    [78]陈胜红,贺振华,何家雄,等.南海东北部边缘台西南盆地泥火山特征及其与油气运聚关系[J].天然气地球科学.2009,20(6):872-878.
    [79]程克明,王世谦,董大忠,等.上扬子区下寒武统筇竹寺组页岩气成藏条件[J].天然气工业.2009(5):40-44.
    [80]崔青.美国页岩气压裂增产技术[J].石油化工应用.2010,29(10):1-3.
    [81]丁文龙,何登发,张金川,等.构造物理模拟实验技术与实验室建设[J].实验技术与管理.2010,27(8):177-180.
    [82]冯利娟,朱卫平,刘川庆.煤层气藏与页岩气藏[J].国外油田工程.2010,26(5):24-27.
    [83]傅强,张金川,温珍河.美国的油气资源评价史及其对中国的借鉴[J].海洋地质动态.1995(7):7-9.
    [84]傅强,张金川.辽河盆地桃园构造东营组地震沉积相研究[J].成都理工学院学报.1995,22(2):84-88.
    [85]傅强,周航辉,张金川.广北地区沙四段滨浅湖微相的垂向演化及其地震相解释[J].沉积与特提斯地质.2000,20(3):14-19.
    [86]高慧丽.唤醒沉睡的页岩气[J].山东国土资源.2010,26(4):60-61.
    [87]国建英,苏雪峰,王东良,等.两种模拟方法(或加温方式)实验结果对比[J].沉积学报.2004,22(z1):110-117.
    [88]黄玉珍,黄金亮,葛春梅,等.技术进步是推动美国页岩气快速发展的关键[J].天然气工业.2009(5):7-10,44.
    [89]姜文利,赵素平,张金川,等.煤层气与页岩气聚集主控因素对比[J].天然气地球科学.2010,21(6):1057-1060.
    [90]王庭斌,中国天然气地质理论进展与勘探战略,石油与天然气地质,2002年1期.
    [91]蒋裕强等,岩气储层的基本特征及其评价[J],天然气工业,2010.
    [92]刘宝珺等,1985,岩相古地理基础和工作方法,地质出版社.
    [93] R.C.塞利,沉积学导论[M],煤炭工业出版社,1985.
    [94]何镜宇、孟祥化,沉积岩何沉积相模式及建造[M],地质出版社,1987.
    [95]金之钧,陈章明等,油气藏保存与破坏研究[M],石油工业出版社,2003.
    [96]王安发、徐国盛、叶斌,石油及天然气地质学[M],成都理工大学教材.
    [97]徐国盛、杨斌等,川东沙罐坪气田石炭系气藏精细描述(内部报告),2006.
    [98]徐国盛,川东五百梯气田石炭系气藏精细描述(内部报告),2006.
    [99]陈烨菲、彭仕宓,沉积微相定量研究方法[J],石油勘探与开发,2003,30(4),51~53.
    [100]马永生、陈洪德、王国力,中国南方构造-层序岩相古地理图集[M],科学出版社,2009.
    [101]华夏,张勤勤,岩相古地理研究现状及展望,科技信息[J],2009,33:436.
    [102]田景春,陈洪德,覃建雄.层序岩相古地理图及其编制[J].地球科学与环境学报,2004,26(1):6-12.
    [103]王鸿祯.中国古地理图集[M].北京:地图出版社,1985:41-130.
    [104]朱筱敏,杨俊生,张喜林.岩相古地理研究与油气勘探[J].古地理学报,2004,6(1):102-108.
    [105]侯中健,陈洪德,田景春等.层序岩相古地理编图在岩相古地理分析中的应用[J].成都理工学院学报,2001,28(4):6-7.
    [106]冯增昭.下扬子地区中下三叠统青龙群岩相古地理研究[M].昆明:云南科技出版社,1988.
    [107]刘宝珺.中国南方岩相古地理图集[M].北京:科学出版社,1994.
    [108]李慈君,杨立中,等.深层卤水资源量评价的研究[M].北京:地质出版社,1992.
    [109]张继铭等,中国石油地质志[M].卷十,四川油气区,1989.
    [110] Vano.,CR,周惠生译,对泥盆系页岩气藏的评价,四川石油普查-1990年1期,
    [111] Walter L M, Budai J M, Abriola L M, et al. Hydrogeochemistry of the Antrim Shale,northernMichigan basin: Annual Report, Gas Research Institute,1996, GRI-95/0251,173.
    [112]陈更生,董大忠,王世谦等.页岩气藏形成机理与富集规律初探.天然气工业,2009,29(5):17-21
    [113]陈兰.湘黔地区早寒武世黑色岩系沉积学及地球化学研究:[博士学位论文].北京:中国科学院.2005:23-29.
    [114]董大忠,程克明,王世谦,等.页岩气资源评价方法及其在四川盆地的应用.天然气工业,2009(05):33-39
    [115]郝石生,高岗,王飞宇,等.高过成熟海相烃源岩.北京:石油工业出版社,1996:126-127.
    [116]黄第藩,李晋超,张大江.干酪根的类型及其分类参数的有效性、局限性和相关性.沉积学报,1984,2(3):18-33.
    [117]李登华,李建忠,王社教等.页岩气藏形成条件分析.天然气工业,2009,29(5):22-26.
    [118]李建忠,董大忠,等.中国页岩气资源前景与战略地位.天然气工业,2009,29(5):11-16.
    [119]梁狄刚,郭彤楼,陈建平,等.中国南方海相生烃成藏研究的若干新进展(二):南方四套区域性海相烃源岩的地球化学特征.海相油气地质,2009a,14(1):1-15.
    [120]刘魁元,吴恒志,康仁华,等.沾化、车镇凹陷泥岩油气藏储集特征分析.油气地质与采收率,2001,8(6):9-12.
    [121]刘丽芳,徐波,张金川,等.中国海相页岩及其成藏意义.中国科协2005学术年会论文集,以科学发展观促进科技创新(上).科学技术出版社,2005,457-463.
    [122]龙鹏宇,张金川,李玉喜,等.重庆及其周缘地区下古生界页岩气资源勘探潜力.天然气工业,2009,29(12):125-129.
    [123]聂海宽,唐玄,边瑞康.页岩气成藏控制因素及中国南方页岩气发育有利区预测.石油学报,2009,30(4):484-491.
    [124]王兰生,邹春艳,郑平,等.四川盆地下古生界存在页岩气的地球化学依据.天然气工业,2009,29(5):59-62.
    [125]王社教,王兰生,黄金亮,等.上扬子区志留系页岩气成藏条件.天然气工业,2009,29(5):45-50.
    [126]王世谦,陈更生,董大忠,等.四川盆地下古生界页岩气藏形成条件与勘探前景.天然气工业,2009,29(5):51-58.
    [127]文玲,胡书毅,田海芹.扬子地区寒武系烃源岩研究.西北地质,2001,34(2):67-74.
    [128]张爱云,伍大茂,郭丽娜,等.海相黑色页岩建造地球化学与成矿意义.北京:科学出版社,1987:1-50.
    [129]张杰.非常规天然气成藏机理及资源评价方法研究.博士学位论文,北京:石油大学,2002.
    [130]张金川,姜生玲,唐玄,等.我国页岩气富集类型及资源特点.天然气工业,2009,29(12):1-6.
    [131]张金川,金之钧,袁明生.页岩气成藏机理和分布.天然气工业,2004,24(7):15-18
    [132]张金川,聂海宽,徐波,等.四川盆地页岩气成藏地质条件.天然气工业,2008,28(2):151-156
    [133]张金川,唐玄,等.碎屑岩盆地天然气成藏及分布序列.天然气工业,2008d,28(12):11-17.
    [134]张金川,汪宗余,聂海宽,等.页岩气及其勘探研究意义.现代地质,,2008,22(4):640-646,
    [135]张金川,徐波,聂海宽,等.中国页岩气资源量勘探潜力.天然气工业,2008,28(6):136-140.
    [136]张金川,薛会,卞昌蓉,等.中国非常规天然气勘探雏议.天然气工业,2006,26(12):53-56.
    [137]张金川,薛会,张德明,等.页岩气及其成藏机理.现代地质,2003,17(4):466.
    [138]张金川.深盆气成藏机理及其应用研究.博士学位论文,北京:石油大学,1999.
    [139]高瑞祺、赵政璋主编,中国南方海相油气地质及勘探前景,石油工业出版社,2001.
    [140]王新洲,烃源岩热演化过程中碳氢含量的变化,石油与天然气地质,1993年3期.
    [141]孙肇才等,板内变形与晚期次生成藏—杨子区海相油气总体形成规律的探讨,石油实验地质,1991年2期.
    [142]郭彤楼,南方中~古生界油气勘探的若干地质问题及对策,石油与天然气地质,2002年3期.
    [143]戴少武等,中国南方中、古生界油气勘探的思路,石油与天然气地质,2001年3期.
    [144]刘光鼎,试论残留盆地.勘探家,1997,(2).
    [145]王良忱等,湘桂地区晚泥盆世早期构造古地理及台间海槽的演化模式.1986.
    [146]邵龙义,湘中早石炭世沉积学及层序地层学.中国矿业大学出版社.1997.
    [147]罗璋等,中扬子区海相地层典型油藏解剖.海相油气地质,1996.1⑴.
    [148]张永昌等,关于古生界烃源岩有机质评价标准.石油勘探与开发,2002.2(2).
    [149]徐国盛,孟昱璋,赵异华,等.川中磨溪-龙女寺构造带嘉陵江组天然气成藏机理研究[J].石油实验地质,2009,31(6):576-582.
    [150] Anna M. Martini, Lynn M. Walter, Tim C. W. Ku,Joyce M. Budai, Jennifer C. McIntosh, and MartinSchoell,Microbial production and modification of gases in sedimentary basins:A geochemical case study froma Devonian shale gas play, AAPG Bulletin, v.87, no.8(August2003), pp.1355–1375.
    [151] C.K.威尔格斯等(美国)编,徐怀大、魏魁生、洪卫东等译,1993,层序地层学原理(海平面变化综合分析),北京石油工业出版社.
    [152] Daniel J.K. Ross, D. J. K. and Bustin, R. M., The importance of shale composition and porestructure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology,2009,26:916–927.
    [153] Daniel M. Jarvie, Ronald J. Hill, Tim E. Ruble, and Richard M. Pollastro,Unconventional shale-gassystems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gasassessment,AAPG Bulletin, v.91, no.4(April2007), pp.475–499.
    [154] David F. Martineau,History of the Newark East field and the Barnett Shale as a gas reservoir,AAPGBulletin, v.91, no.4(April2007), pp.399–403.
    [155] Dewhurst, D.N., Aplin, A.C., Sarda, J.P. Influence of clay fraction on pore-scale propertiesand hydraulic conductivity of experimentally compacted mudstones. J. Geophys. Res.,1999a,104,29261–29274.
    [156] George W. Shurr and Jennie L. Ridgley,Unconventional shallow biogenic gas systems,AAPGBulletin, v.86, no.11(November2002), pp.1939–1969.
    [157] Hank Zhao, Natalie B. Givens, and Brad Curtis,Thermal maturity of the Barnett Shale determinedfrom well-log analysis,AAPG Bulletin, v.91, no.4(April2007), pp.535–549.
    [158] James J. Hickey and Bo Henk,Lithofacies summary of the Mississippian Barnett Shale,Mitchell2T.P. Sims well,Wise County, Texas,AAPG Bulletin, v.91, no.4(April2007), pp.437–443.
    [159] ohn B. Curtis,Fractured shale-gas systems,AAPG Bulletin, v.86, no.11(November2002), pp.1921–1938.
    [160] ulia F. W. Gale, Robert M. Reed, and Jon Holder,Natural fractures in the Barnett Shale and theirimportance for hydraulic fracture treatments,AAPG Bulletin, v.91, no.4(April2007), pp.603–622.
    [161] ent A. Bowker,Barnett Shale gas production,Fort Worth Basin:Issues and discussion,AAPG Bulletin,v.91, no.4(April2007), pp.523–533.
    [162] R.C.塞利,沉积学导论[M],煤炭工业出版社,1985.
    [163] Richard M. Pollastro,Total petroleum system assessment of undiscovered resources in the giantBarnett Shale continuous(unconventional) gas accumulation, Fort Worth Basin, Texas,AAPG Bulletin, v.91,no.4(April2007), pp.551–578.
    [164] Robert G. Loucks and Stephen C. Ruppel,Mississippian Barnett Shale:Lithofacies and depositionalsetting of a deep-water shale-gas succession in the Fort Worth Basin, Texas,AAPG Bulletin, v.91, no.4(April2007), pp.579–601.
    [165] Ronald J. Hill, Daniel M. Jarvie, John Zumberge,Mitchell Henry, and Richard M. Pollastro,Oil andgas geochemistry and petroleum systems of the Fort Worth Basin,AAPG Bulletin, v.91, no.4(April2007), pp.445–473.
    [166] onald J. Hill, Etuan Zhang, Barry Jay Katz, and Yongchun Tang.Modeling of gas generation from theBarnett Shale,Fort Worth Basin, Texas,AAPG Bulletin, v.91, no.4(April2007), pp.501–521.
    [167] Ross D J K and Bustin R M. Shale gas potential of the Lower Jurassic Gordondale Member,northeastern British Columbia, Canada. Bulletin of Canadian Petroleum Geology,2007,55(3):51-75.
    [168] S. Luning, Y. M. Shahin, D. Loydell, H. T. Al-Rabi,A. Masri, B. Tarawneh, and S. Kolonic,Anatomyof a world-class source rock: Distribution and depositional model of Silurian organic-rich shales in Jordan andimplications for hydrocarbon potential,AAPG Bulletin, v.89, no.10(October2005), pp.1397–1427.
    [169] Scott L. Montgomery,Daniel M. Jarvie,Kent A. Bowker,and Richard M. Pollastro,MississippianBarnett Shale, Fort Worth basin,north-central Texas:Gas-shale play with multi–trillion cubic foot potential:Reply,AAPG Bulletin, v.90, no.6(June2006), pp.967–969.
    [170] Thomas E. Ewing,Mississippian Barnett Shale, Fort Worth basin,north-central Texas:Gas-shale playwith multi–trillion cubic foot potential: Discussion,AAPG Bulletin, v.90, no.6(June2006), pp.963–966.
    [171] Travis J. Kinley, Lance W. Cook, John A. Breyer,Daniel M. Jarvie, and Arthur B.Busbey,Hydrocarbon potential of the Barnett Shale (Mississippian),Delaware Basin, west Texasandsoutheastern New Mexico,AAPG Bulletin, v.92, no.8(August2008), pp.967–991
    [172] Vano.,CR,周惠生译,对泥盆系页岩气藏的评价,四川石油普查-1990年1期,
    [173] Walter L M, Budai J M, Abriola L M, et al. Hydrogeochemistry of the Antrim Shale,northernMichigan basin: Annual Report, Gas Research Institute,1996, GRI-95/0251,173.
    [174]陈尚斌,朱炎铭,王红岩,等.四川盆地南缘下志留统龙马溪组页岩气储层矿物成分特征及意义[J].石油学报.2011,32(5):775-782.
    [175]邓模,吕俊祥,潘文蕾,等.鄂西渝东区油气保存条件分析[J].石油实验地质.2009,31(2):202-206.
    [176]郭为,熊伟,高树生,等.页岩纳米级孔隙气体流动特征[J].石油钻采工艺.2012,34(6):57-60.
    [177]郝孝荣.页岩气层测井响应特征及其含气量评价[J].科技资讯.2012(28):84-85.
    [178]何金先,段毅,张晓丽,等.鄂尔多斯盆地林镇地区延安组延9油层组地层对比与沉积微相展布[J].天然气地球科学.2012,23(2):291-298.
    [179]胡文瑞.非常规天然气的非常策[J].中国石油石化.2010(7):28.
    [180]吉丛伟,邵龙义,彭正奇,等.湖南省晚二叠世层序古地理及聚煤特征[J].中国矿业大学学报.2011,40(1):103-110.
    [181]姜正龙,罗霞,李剑,等.不同地质条件下各种类型气源岩气态烃产率的求取[J].沉积学报.2004,22(z1):84-90.
    [182]李世臻,乔德武,冯志刚,等.世界页岩气勘探开发现状及对中国的启示[J].地质通报.2010,29(6):918-924.
    [183]李新景,胡素云,程克明.北美裂缝性页岩气勘探开发的启示[J].石油勘探与开发.2007,34(4):392-400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700