用户名: 密码: 验证码:
基于磺化聚苯乙烯模板的各向异性和多孔微球的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物微球作为一种新型的功能材料,因其在纳米技术、生物技术、电子学和清洁能源领域的广泛应用,近年来一直备受科学界和工业界的关注。各种聚合物微球层出不穷,其中一些产品已经商业化。随着研究的深入,传统的各项同性球型微球,已经不能满足实际应用的需求。在理论研究和应用需求的双重推动下,一些具有特殊化学组成与结构形貌的新型聚合物微球不断涌现,其中最引人注目的是Janus(又称各向异性微球)微球和多孔微球。Janus微球因其在化学组成和结构上具有的不对称结构,可用于构筑新型乳化剂、磁性双功能材料、光学材料和催化剂;而多孔微球相对于中空微球,具有更高的比表面积和更低的密度,在表面学科相关的领域中具有广泛的应用前景。虽然Janus和多孔微球的研究已经取得一定的进展,但是目前这两者的研究各行其道,缺乏相互联系与贯通。如何设计全新的制备路线,将Janus形貌与多孔结构相结合,已成为一个亟待解决的科学问题。
     本论文不仅着眼于合成新型多孔或Janus微球,而且将多孔微球的制备方法与Janus形貌相结合,构建同时具有多孔结构的复合Janus微球。全文以具有双亲性的磺化聚苯乙烯(SPS)微球为线索,首先完善辐射种子溶胀聚合法在制备多孔微球方面的研究;随后将此方法扩展至制备具有复杂结构的Janus微球;最后,本论文设计出两种新型聚合方法,即辐射乳液冷冻聚合和辐射种子冷冻聚合,并利用低温条件,合成高分子多孔或Janus微球。全文可分为以下四部分:
     一、以交联磺化聚苯乙烯(CSPS)微球为种子,通过辐射种子聚合法制备多孔材料。本章利用亚微米级CSPS微球(200nm)可被溶胀为凝胶状结构这一特点,首先以甲基丙烯酸甲酯(MMA)/水的体系溶胀CSPS微球,借助辐射在室温引发聚合,一步法制备出海绵型多孔材料。其中,纳米级的PMMA粒子相互连接,构成海绵型结构的主体,而亚微米级的CSPS-PMMA共聚微球分散于主体材料之中。氮气吸附结果表明,此多孔材料具有高比表面积(29m2/g)和均一的孔径(60-120nm)。机理研究发现,原微球中可溶性的CSPS链段,是构成海绵型结构的必要条件。进一步研究发现,海绵型多孔材料的形貌可以通过CSPS微球、单体和交联剂的加入量来进行调节。然后,我们将银离子吸附于CSPS微球的磺酸根上,利用高能射线辐射引发聚合,并同时将银离子还原,一步法制备了银负载的海绵型多孔材料。
     二:通过不对称溶解溶胀法,合成无机/高分子复合Janus微球。在本章中,我们首先利用种子分散聚合和磺化改性,制备出具有偏心结构的SPS/SiO2复合微球。随后以其为种子微球,利用水/乙醇/正庚烷构成的混合溶剂,通过不对称溶胀溶解过程,制备出两种新型SPS/SiO2复合Janus微球,即海葵型和多孔雪人型。当混合溶剂的配比为5:5:0.1时,可以得到海葵型微球,其形貌为“盛开”的SPS基质簇拥着Si02核的花朵;当正庚烷的加入量翻倍后,则可得到多孔雪人型微球。在溶胀溶解过程中,正庚烷能够溶胀溶解SPS/SiO2微球;水可以与微球表面磺酸根基团作用。而乙醇则可以降低水与正庚烷之间的表面张力,促进溶胀溶解过程的进行。研究发现,混合溶剂的配比、原SPS/SiO2微球的尺寸和磺化取代度,均会对最终产物的形貌产生影响。
     三:各向异性多孔复合微球的制备与CdS负载。在第二章的研究基础上,以大直径和低磺化取代度的SPS/SiO2微球为种子,利用水/乙醇/正庚烷构成的混合溶剂,在70度下通过溶胀-渗透过程,成功制备出同时具有各向异性性质和多孔结构的有机/无机复合微球(Anisotropic Porous Composite Microspheres, APC)。电子显微镜和氮气吸附的结果表明,APC微球同时具有大孔和介孔结构,比表面积为11.2m2/g,孔径分布在20-110nm之间。通过对溶胀-渗透过程的跟踪,发现溶胀机理主要包含两个过程:首先SPS很快被正庚烷溶胀溶解,形成介孔结构;随后水和乙醇逐步渗透去微球中,形成大孔结构。在此基础上,我们将制备的APC微球作为载体,通过辐射还原法,将荧光性的CdS纳米粒子锚定于APC微球之上,负载率高达57.6%。
     四:辐射冷冻聚合法制备多孔和各向异性微球。我们发展了两种全新的聚合方法:辐射乳液冷冻聚合和辐射种子冷冻聚合。其基本思路是通过速冻过程,将传统O/W体系中的水相固化为冰,使单体液滴成为具有“硬壁”的微反应容器。随后利用高能射线辐射法,在零度以下的环境中引发聚合反应。首先利用辐射细乳液冷冻聚合,制备出微米级多孔聚合物微球。研究发现,其聚合机理类似界面聚合。多孔聚合物微球形貌可以通过外加引发剂和改变辐照时间来进行控制。随后我们以SPS微球作为种子,通过辐射种子冷冻聚合,使用MMA和St为单体,分别得到了水滴型和核桃型的聚合物微球。进一步研究发现,如果升高种子微球的浓度,可以制备出“竹节型”的自组装体。
In recent years, as a novel functional material, polymer microspheres have attracted much attention from both fields of science and industry, due to their widely applications in nanotechnology, biotechnology, electronics, and clean energy. Therefore, various kinds of polymer microspheres have been synthesized, and some of the products have been commercialized. Furthermore, as the study extends, the traditional isotropic spherical microspheres can no longer meet the requirements of practical applications. Under the impulse of dual factors of theoretical research and application demand, novel polymer microspheres, which have special chemical composition and morphology, are springing up. Among them, Janus (anisotropic) and porous microspheres are the most attractive ones. Janus microspheres, with asymmetric structure and/or composition, can be used as amphiphilic surfactants, magnetic bifunctional materials, optical materials, and catalyst. Meanwhile, porous microspheres, which have a higher specific surface area and lower density to the original hollow microspheres, have been widely applied to the field of surface science. Certain progress has been made in the research of Janus and porous microspheres, but there is still little relation between the two useful morphologies. How to design a new synthetic route, which can combine Janus morphology with porous structure, has become a pressing issue.
     In this thesis, we not only focus on the preparation of novel porous or Janus microspheres, but also combine them together to fabricate Janus microspheres with porous structure. The amphiphilic sulfonated polystyrene (SPS) microspheres are used as the clue. Firstly, radiation seeded polymerization method is employed to fill the scientific gap in the preparation of porous microspheres. Secondly, this method is extended to the synthesis of the Janus microspheres with complex structure. Finally, a novel kind of polymerization method:radiation freezing emulsion polymerization is designed to synthesize porous and Janus polymer microspheres at the temperature of subzero. This thesis can be divided into the following four parts:
     (1) The fabrication of sponge-like porous materials based on swollen crosslinked sulfonated polystyrene (CSPS) microspheres through radiation polymerization. In this chapter, we discovered that submicro-sized CSPS microspheres (200nm) can be swollen into a gel-like structure. Based on this feature, CSPS microspheres are first swollen in methyl methacrylate(MMA)/water system, and then the polymerization of MMA is initiated by y-ray. As a result, a novel kind of sponge-like material, with the porous structure fixed by interlinked PMMA nanoparticles and micron-sized CSPS-PMMA microspheres, is one-step fabricated. The nitrogen adsorption isotherm discloses that the material has a high specific surface area of29m2/g and a narrow pore size distribution of60-120nm. The formation mechanism discloses that the soluble CSPS segments, which contain in the original microspheres, are essential to the sponge-like structure. Subsequently, the final morphology of sponge-like materials can be controlled by the weight ratio of CSPS microspheres, monomer, and crosslinking agent. Finally, the rich sulfonic groups in the CSPS microspheres can be used to adsorb Ag ions. So that after the radiation polymerization and reduction, Ag-loaded sponge-like materials can be one-step fabricated.
     (2) Synthesis of polymer/inorganic Janus microspheres via asymmetric swelling-dissolving process. In this chapter, at first, decentered sulfonated polystyrene/SiO2(SPS/SiO2) microspheres are synthesized by the seeded dispersion polymerization and the sulfonated modification. Then two kinds of new anisotropic SPS/SiO2composite microspheres, i.e., actinia-like and porous snowman-like particles are easily fabricated by taking advantages of the asymmetric swelling-dissolving property of the original SPS/SiO2microspheres in a ternary mixing solvent (water/ethanol/heptane). Actinia-like microspheres, with a silica core embedded in a "blooming" SPS matrix, are obtained when the composition of the mixed solvent is5:5:0.1. If the amount of heptane in the mixed solvent is doubled, porous snowman-like microspheres are produced. Moreover, during this process, heptane can swell and dissolve these particles; water can react with the sulfonic groups existing on the surfaces of the SPS/SiO2microspheres; ethanol can reduce the surface tension between water and heptane, and promote the swelling-dissolving process. Finally, we discover that the composition of the ternary mixing solvent, the size and sulfonated degree of the original SPS/SiO2microspheres, will strongly impact on the final morphology of the product.
     (3) The fabrication of anisotropic porous composite (APC) microspheres and application as scaffolds of CdS nanoparticles. In this chapter, based on the above research, SPS/SiO2microspheres with large diameter and low sulfonated degree are used as the template to fabricate APC microspheres, via a swelling-osmosis process in a ternary mixing solvent (water/ethanol/heptane) at70℃. Electron microscope images and nitrogen adsorption results disclose that the specific surface area and pore size distribution of the APC microspheres are11.2m2/g and20-110nm respectively, which indicates that the microsphere has hierarchically porous structure. In addition, by tracking the swelling-osmosis process, we find that the mechanism consists of two stages:firstly, the SPS part is quickly swollen and dissolved by heptane, and the mesopores structure is formed; secondly, water and ethanol slowly osmosis into these microspheres, and the macropores structure is obtained. Finally, the prepared APC microspheres are utilized as scaffolds to load fluoresce CdS nanoparticles through y-ray reduction, and the loading rate is up to57.6%.
     (4) Synthesis of porous and Janus microspheres via radiation freezing polymerization. In this chapter, we design two new polymerization methods:radiation emulsion freezing polymerization and radiation seeded freezing polymerization. The basic idea is to freeze the aqueous phase of traditional O/W system to the ice, so that the monomer droplets change into micro reactor vessel with "hard wall". Then, y-ray is utilized here to initiate the polymerization at subzero temperature. Micron-sized porous polymer microspheres can be obtained through radiation miniemulsion freezing polymerization. The mechanism is similar to the interfacial polymerization, and the morphology can be controlled by varying the total adsorbed dose and the addition of chemical initiator. Meanwhile, waterdrop-like and walnut-like Janus microspheres can be obtained through radiation seeded freezing polymerization, while the monomer is St and MMA respectively. In addition, if we raise the concentration of SPS microspheres,"bamboo-like" self-assembly can be formed.
引文
[1]Champion J A, Katare Y K, Mitragotri S. Particle shape:A new design parameter for micro-and nanoscale drug delivery carriers [J]. Journal of Controlled Release,2007,121(1-2):3-9.
    [2]Grosse C, Delgado A V. Dielectric dispersion in aqueous colloidal systems [J]. Current Opinion in Colloid & Interface Science,2010,15(3):145-159.
    [3]Wood V, Panzer M J, Caruge J-M, Halpert J E, Bawendi M G, Bulovic V. Air-stable operation of transparent, Colloidal Quantum Dot Based LEDs with a Unipolar Device Architecture [J]. Nano Letters,2010,10(1):24-29.
    [4]Rhodes R, Asghar S, Krakow R, Horie M, Wang Z, Turner M L, Saunders B R. Hybrid polymer solar cells:From the role colloid science could play in bringing deployment closer to a study of factors affecting the stability of non-aqueous ZnO dispersions [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2009,343(1-3):50-56.
    [5]Hu J, Chen M, Fang X, Wu L. Fabrication and application of inorganic hollow spheres [J]. Chemical Society Reviews,2011,40(11):5472-5491.
    [6]Chen M, Wu L M, Zhou S X, You B. A method for the fabrication of monodisperse hollow silica spheres [J]. Advanced Materials,2006,18(6):801-806.
    [7]Wang Z, Wu L, Chen M, Zhou S. Facile synthesis of superparamagnetic fluorescent Fe3O4/ZnS hollow nanospheres [J]. Journal of the American Chemical Society,2009,131(32): 11276-11277.
    [8]Hu L, Chen M, Fang X, Wu L. Oil-water interfacial self-assembly:a novel strategy for nanofilm and nanodevice fabrication [J]. Chemical Society Reviews,2012,41(3):1350-1362.
    [9]Vogel N, de Viguerie L, Jonas U, Weiss C K, Landfester K. Wafer-Scale Fabrication of ordered binary colloidal monolayers with adjustable stoichiometries [J]. Advanced Functional Materials,2011,21(16):3064-3073.
    [10]Jeong U, Teng X, Wang Y, Yang H, Xia Y. Superparamagnetic colloids:controlled synthesis and niche applications [J]. Advanced Materials,2007,19(1):33-60.
    [11]Isa L, Kumar K, Mueller M, Grolig J, Textor M, Reimhult E. Particle lithography from colloidal self-assembly at liquid-liquid interfaces [J]. Acs Nano,2010,4(10):5665-5670.
    [12]Pathmamanoharan C, Wijkens P, Grove D M, Philipse A P. Paramagnetic silica particles: Synthesis and grafting of a silane coupling agent containing nickel ions onto colloidal silica particles [J]. Langmuir,1996,12(18):4372-4377.
    [13]Liu Y F, Wang S P, Lee J W, Kotov N A. A floating self-assembly route to colloidal crystal templates for 3D cell scaffolds [J]. Chemistry of Materials,2005,17(20):4918-4924.
    [14]Cui J, Wang Y, Postma A, Hao J, Hosta-Rigau L, Caruso F. Monodisperse polymer capsules: tailoring size, shell thickness, and hydrophobic cargo loading via emulsion templating [J]. Advanced Functional Materials,2010,20(10):1625-1631.
    [15]Oeggerli M. http://ngmnationalgeographiccom/2009/12/pollen/oeggerli-photography,2009,
    [16]Perro A, Reculusa S, Ravaine S, Bourgeat-Lami E B, Duguet E. Design and synthesis of Janus micro-and nanoparticles [J]. Journal of Materials Chemistry,2005,15(35-36):3745-3760.
    [17]Yang S-M, Kim S-H, Lim J-M, Yi G-R. Synthesis and assembly of structured colloidal particles [J]. Journal of Materials Chemistry,2008,18(19):2177-2190.
    [18]Deng Y H, Cai Y, Sun Z K, Gu D, Wei J, Li W, Guo X H, Yang J P, Zhao D Y. Controlled synthesis and functionalization of ordered large-Pore mesoporous carbons [J]. Advanced Functional Materials,2010,20(21):3658-3665.
    [19]Kim M R,Lee S, Park J-K, Cho K Y. Golf ball-shaped PLGA microparticles with internal pores fabricated by simple O/W emulsion [J]. Chemical Communications,2010,46(39): 7433-7435.
    [20]Hu J, Zhou S X, Sun Y Y, Fang X S, Wu L M. Fabrication, properties and applications of Janus particles [J]. Chemical Society Reviews,2012,41(11):4356-4378.
    [21]Lattuada M, Hatton T A. Synthesis, properties and applications of Janus nanoparticles [J]. Nano Today,2011,6(3):286-308.
    [22]Jabbari E, Khakpour M. Morphology of and release behavior from porous polyurethane microspheres [J]. Biomaterials,2000,21(20):2073-2079.
    [23]Kim I W, Lee J E, Ryu J H, Lee J S, Kim S J, Han S H, Chang I S, Kang H H, Suh K D. Synthesis of metal/polymer colloidal composites by the tailored deposition of silver onto porous polymer microspheres [J]. Journal of Polymer Science Part a-Polymer Chemistry,2004,42(10): 2551-2557.
    [24]Cho Y S, Yi G R, Kim S H, Jeon S J, Elsesser M T.Yu H K, Yang S-M, Pine D J. Particles with coordinated patches or windows from oil-in-water emulsions [J]. Chemistry of Materials, 2007,19(13):3183-3193.
    [25]Jiang H R, Yoshinaga N, Sano M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam [J]. Physical Review Letters,2010,105(26):
    [26]Hong L, Cacciuto A, Luijten E, Granick S. Clusters of amphiphilic colloidal spheres [J]. Langmuir,2008,24(3):621-625.
    [27]Nagao D, Goto K, Ishii H, Konno M. Preparation of asymmetrically nanoparticle-supported, monodisperse composite dumbbells by protruding a smooth polymer bulge from rugged spheres [J]. Langmuir,2011,27(21):13302-13307.
    [28]Park B J, Brugarolas T, Lee D. Janus particles at an oil-water interface [J]. Soft Matter,2011, 7(14):6413-6417.
    [29]Berger S, Synytska A, Ionov L, Eichhorn K J, Stamm M. Stimuli-responsive bicomponent polymer Janus particles by "grafting from"/"grafting to" approaches [J]. Macromolecules,2008, 41(24):9669-9676.
    [30]Glotzer S C, Solomon M J. Anisotropy of building blocks and their assembly into complex structures [J]. Nature Materials,2007,6(8):557-562.
    [31]Smoukov S K, Gangwal S, Marquez M, Velev O D. Reconfigurable responsive structures assembled from magnetic Janus particles [J]. Soft Matter,2009,5(6):1285-1292.
    [32]Paunov V N, Cayre O J. Supraparticles and "Janus" particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique [J]. Advanced Materials, 2004,16(9-10):788-791.
    [33]Okubo M, Fujibayashi T, Yamada M, Minami H. Micron-sized, monodisperse, snowman/confetti-shaped polymer particles by seeded dispersion polymerization [J]. Colloid and Polymer Science,2005,283(9):1041-1045.
    [34]Fujibayashi T, Okubo M. Preparation and thermodynamic stability of micron-sized, monodisperse composite polymer particles of disc-like shapes by seeded dispersion polymerization [J]. Langmuir,2007,23(15):7958-7962.
    [35]Peng B, Vutukuri H R, van Blaaderen A, Imhof A. Synthesis of fluorescent monodisperse non-spherical dumbbell-like model colloids [J]. Journal of Materials Chemistry,2012,22(41): 21893-21900.
    [36]Liu B, Zhang C, Liu J, Qu X, Yang Z. Janus non-spherical colloids by asymmetric wet-etching [J]. Chemical Communications,2009,26):3871-3873.
    [37]Feyen M, Weidenthaler C, Schueth F, Lu A H. Regioselectively controlled synthesis of colloidal mushroom nanostructures and their hollow derivatives [J]. Journal of the American Chemical Society,2010,132(19):6791-6799.
    [38]Howse J R, Jones R A L, Ryan A J, Gough T, Vafabakhsh R, Golestanian R. Self-motile colloidal particles:from directed propulsion to random walk [J]. Physical Review Letters,2007, 99(4):048102-1-4.
    [39]Dendukuri D, Hatton T A, Doyle P S. Synthesis and self-assembly of amphiphilic polymeric microparticles [J]. Langmuir,2007,23(8):4669-4674.
    [40]Dendukuri D, Doyle P S. The synthesis and assembly of polymeric microparticles using microfluidics [J]. Advanced Materials,2009,21(41):4071-4086.
    [41]Roh K H, Martin D C, Lahann J. Biphasic Janus particles with nanoscale anisotropy [J]. Nature Materials,2005,4(10):759-763.
    [42]Herrmann C, Turshatov A, Crespy D. Fabrication of polymer ellipsoids by the electrospinning of swollen nanoparticles [J]. Acs Macro Letters,2012,1(7):907-909.
    [43]Roh K-H, Yoshida M, Lahann J. Water-stable biphasic nanocolloids with potential use as anisotropic imaging probes [J]. Langmuir,2007,23(10):5683-5688.
    [44]Erhardt R, Zhang M F, Boker A, Zettl H, Abetz C, Frederik P, Krausch G, Abetz V, Muller A H E. Amphiphilic Janus micelles with polystyrene and poly(methacrylic acid) hemispheres [J]. Journal of the American Chemical Society,2003,125(11):3260-3267.
    [45]Tanaka T, Okayama M, Minami H, Okubo M. Dual stimuli-responsive "mushroom-like" Janus polymer particles as particulate surfactants [J]. Langmuir,2010,26(14):11732-11736.
    [46]Zhang J, Wang X, Wu D, Liu L, Zhao H. Bioconjugated Janus particles prepared by in situ click chemistry [J]. Chemistry of Materials,2009,21(17):4012-4018.
    [47]Du J Z, O'Reilly R K. Anisotropic particles with patchy, multicompartment and Janus architectures:preparation and application [J]. Chemical Society Reviews,2011,40(5):2402-2416.
    [48]Jiang S, Chen Q, Tripathy M, Luijten E, Schweizer K S, Granick S. Janus Particle Synthesis and Assembly [J]. Advanced Materials,2010,22(10):1060-1071.
    [49]Walther A, Mueller A H E. Janus particles [J]. Soft Matter,2008,4(4):663-668.
    [50]Cho I, Lee K W. Morphology of latex-particles formed by poly(methyl methacrylate)-seeded emulsion polymerization of styrene [J]. Journal of Applied Polymer Science,1985,30(5): 1903-1926.
    [51]Sheu H R, Elaasser M S, Vanderhoff J W. Phase-separation in polystyrene latex interpenetrating polymer networks [J]. Journal of Polymer Science Part a-Polymer Chemistry, 1990,28(3):629-651.
    [52]Hoffmann M, Lu Y, Schrinner M, Ballauff M, Harnau L. Dumbbell-shaped polyelectrolyte brushes studied by depolarized dynamic light scattering [J]. Journal of Physical Chemistry B, 2008,112(47):14843-14850.
    [53]Mock E B, De Bruyn H, Hawkett B S, Gilbert R G, Zukoski C F. Synthesis of anisotropic nanoparticles by seeded emulsion polymerization [J]. Langmuir,2006,22(9):4037-4043.
    [54]Hosein I D, Liddell C M. Convectively assembled nonspherical mushroom cap-based colloidal crystals [J]. Langmuir,2007,23(17):8810-8814.
    [55]Kim J-W, Larsen R J, Weitz D A. Synthesis of nonspherical colloidal particles with anisotropic properties [J]. Journal of the American Chemical Society,2006,128(44): 14374-14377.
    [56]Mock E B, Zukoski C F. Emulsion polymerization routes to chemically anisotropic particles [J]. Langmuir,2010,26(17):13747-13750.
    [57]Meng X H, Guan Y Y, Zhang Z D, Qiu D. Fabrication of a composite colloidal particle with unusual Janus structure as a high-performance solid emulsifier [J]. Langmuir,2012,28(34): 12472-12478.
    [58]Okubo M, Saito N, Fujibayashi T. Preparation of polystyrene/poly(methyl methacrylate) composite particles having a dent [J]. Colloid and Polymer Science,2005,283(6):691-698.
    [59]Saito N, Kagari Y, Okubo M. effect of colloidal stabilizer on the shape of polystyrene/poly(methyl methacrylate) composite particles prepared in aqueous medium by the solvent evaporation method [J]. Langmuir,2006,22(22):9397-9402.
    [60]Ahmad H, Saito N, Kagawa Y, Okubo M. Preparation of micrometer-sized, monodisperse "Janus" composite polymer particles having temperature-sensitive polymer brushes at half of the surface by seeded atom transfer radical polymerization [J]. Langmuir,2008,24(3):688-691.
    [61]Tanaka T, Okayama M, Kitayama Y, Kagawa Y, Okubo M. Preparation of "Mushroom-like" Janus particles by site-selective surface-initiated atom transfer radical polymerization in aqueous dispersed systems [J]. Langmuir,2010,26(11):7843-7847.
    [62]Voets I K, de Keizer A, de Waard P, Frederik P M, Bomans P H H, Schmalz H, Walther A, King S M, Leermakers F A M, Stuart M A C. Double-faced micelles from water-soluble polymers [J]. Angewandte Chemie-International Edition,2006,45(40):6673-6676.
    [63]Erhardt R, Boker A, Zettl H, Kaya H, Pyckhout-Hintzen W, Krausch G, Abetz V, Mueller A H E. Janus micelles [J]. Macromolecules,2001,34(4):1069-1075.
    [64]Walther A, Drechsler M, Rosenfeldt S, Harnau L, Ballauff M, Abetz V, Mueller A H E. Self-assembly of Janus cylinders into hierarchical superstructures [J]. Journal of the American Chemical Society,2009,131(13):4720-4728.
    [65]Walther A, Andre X, Drechsler M, Abetz V, Mueller A H E. Janus discs [J]. Journal of the American Chemical Society,2007,129(19):6187-6198.
    [66]Wolf A, Walther A, Mueller A H E. Janus Triad:Three types of nonspherical, nanoscale Janus particles from one single triblock terpolymer [J]. Macromolecules,2011,44(23):9221-9229.
    [67]Nie L, Liu S, Shen W, Chen D, Jiang M. One-pot synthesis of amphiphilic polymeric Janus particles and their self-assembly into supermicelles with a narrow size distribution [J]. Angewandte Chemie-International Edition,2007,46(33):6321-6324.
    [68]Nakahama K, Kawaguchi H, Fujimoto K. A novel preparation of nonsymmetrical microspheres using the Langmuir-Blodgett technique [J]. Langmuir,2000,16(21):7882-7886.
    [69]Zhang S, Li Z, Samarajeewa S, Sun G, Yang C, Wooley K L. Orthogonally dual-clickable Janus nanoparticles via a cyclic templating strategy [J]. Journal of the American Chemical Society, 2011,133(29):11046-11049.
    [70]Bradley M, Rowe J. Cluster formation of Janus polymer microgels [J]. Soft Matter,2009, 5(16):3114-3119.
    [71]Jiang S, Granick S. Janus balance of amphiphilic colloidal particles [J]. Journal of Chemical Physics,2007,127(16):161102-1-4.
    [72]Park B J, Furst E M. Fabrication of unusual asymmetric colloids at an oil-water interface [J]. Langmuir,2010,26(13):10406-10410.
    [73]Wang Y, Zhang C, Tang C, Li J, Shen K, Liu J, Qu X, Li J, Wang Q, Yang Z. Emulsion interfacial synthesis of asymmetric Janus particles [J]. Macromolecules,2011,44(10):3787-3794.
    [74]Shepherd R F, Conrad J C, Rhodes S K, Link D R, Marquez M, Weitz D A, Lewis J A. Microfluidic assembly of homogeneous and janus colloid-filled hydrogel granules [J]. Langmuir, 2006,22(21):8618-8622.
    [75]Seiffert S. Non-Spherical soft supraparticles from microgel building blocks [J]. Macromolecular Rapid Communications,2012,33(15):1286-1293.
    [76]Marquis M, Renard D, Cathala B. Microfluidic generation and selective degradation of biopolymer-based Janus microbeads [J]. Biomacromolecules,2012,13(4):1197-1203.
    [77]Lone S, Kim S H, Nam S W, Park S, Cheong I W. Microfluidic preparation of dual stimuli-responsive microparticles and light-directed clustering [J]. Langmuir,2010,26(23): 17975-17980.
    [78]Lone S, Kim S H, Nam S W, Park S, Joo J, Cheong I W. Microfluidic synthesis of Janus particles by UV-directed phase separation [J]. Chemical Communications,2011,47(9): 2634-2636.
    [79]Nie Z, Li W, Seo M, Xu S, Kumacheva E. Janus and ternary particles generated by microfluidic synthesis:design, synthesis, and self-assembly [J]. Journal of the American Chemical Society,2006,128(29):9408-9412.
    [80]Reculusa S, Poncet-Legrand C, Perro A, Duguet E, Bourgeat-Lami E, Mingotaud C, Ravaine S. Hybrid dissymmetrical colloidal particles [J]. Chemistry of Materials,2005,17(13):3338-3344.
    [81]Cheng L, Hou G, Miao J, Chen D, Jiang M, Zhu L. Efficient Synthesis of unimolecular polymeric Janus nanoparticles and their unique self-assembly behavior in a common solvent [J]. Macromolecules,2008,41(21):8159-8166.
    [82]Zhang J, Ge X, Wang M, Wu M, Yang J, Wu Q. Facile fabrication of flower-like nanocomposite microparticles via seeded miniemulsion polymerization [J]. Polymer Chemistry, 2012,3(8):2011-2017.
    [83]Nguyen D, Duguet E, Bourgeat-Lami E, Ravaine S. An easy way to control the morphology of colloidal polymer-oxide supraparticles through seeded dispersion polymerization [J]. Langmuir, 2010,26(9):6086-6090.
    [84]Nagao D, Hashimoto M, Hayasaka K, Konno M. Synthesis of anisotropic polymer particles with soap-free emulsion polymerization in the presence of a reactive silane coupling agent [J]. Macromolecular Rapid Communications,2008,29(17):1484-1488.
    [85]Nagao D, van Kats C M, Hayasaka K, Sugimoto M, Konno M, Imhof A, van Blaaderen A. Synthesis of hollow asymmetrical silica dumbbells with a movable inner core [J]. Langmuir,2010, 26(7):5208-5212.
    [86]Xing S, Feng Y, Tay Y Y, Chen T, Xu J, Pan M, He J, Hng H H, Yan Q, Chen H. Reducing the Symmetry of bimetallic Au@Ag nanoparticles by exploiting eccentric polymer shells [J]. Journal of the American Chemical Society,2010,132(28):9537-9539.
    [87]Ge J, Hu Y, Zhang T, Yin Y. Superparamagnetic composite colloids with anisotropic structures [J]. Journal of the American Chemical Society,2007,129(29):8974-8975.
    [88]Kim J-W, Lee D, Shum H C, Weitz D A. Colloid surfactants for emulsion stabilization [J]. Advanced Materials,2008,20(17):3239-3243.
    [89]Tang C, Zhang C, Liu J, Qu X, Li J, Yang Z. Large scale synthesis of Janus submicrometer sized colloids by seeded emulsion polymerization [J]. Macromolecules,2010,43(11):5114-5120.
    [90]Landfester K. Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles [J]. Angewandte Chemie-International Edition,2009,48(25):4488-4507.
    [91]Lu W, Chen M, Wu L. One-step synthesis of organic-inorganic hybrid asymmetric dimer particles via miniemulsion polymerization and functionalization with silver [J]. Journal of Colloid and Interface Science,2008,328(1):98-102.
    [92]Teo B M, Suh S K, Hatton T A, Ashokkumar M, Grieser F. Sonochemical synthesis of magnetic Janus nanoparticles [J]. Langmuir,2011,27(1):30-33.
    [93]Isojima T, Latruada M, Vander Sande J B, Hatton T A. Reversible clustering of pH-and temperature-responsive Janus magnetic nanoparticles [J]. Acs Nano,2008,2(9):1799-1806.
    [94]Ren B, Ruditskiy A, Song J H, Kretzschmar I. Assembly behavior of iron oxide-capped Janus particles in a magnetic field [J]. Langmuir,2012,28(2):1149-1156.
    [95]Lattuada M, Hatton T A. Preparation and controlled self-assembly of Janus magnetic nanoparticles [J]. Journal of the American Chemical Society,2007,129(42):12878-12889.
    [96]Gong J, Zu X, Li Y, Mu W, Deng Y. Janus particles with tunable coverage of zinc oxide nanowires [J]. Journal of Materials Chemistry,2011,21(7):2067-2069.
    [97]Wheat P M, Marine N A, Moran J L, Posner J D. Rapid fabrication of bimetallic spherical motors [J]. Langmuir,2010,26(16):13052-13055.
    [98]Qiang W, Wang Y, He P, Xu H, Gu H, Shi D. Synthesis of asymmetric inorganic/polymer nanocomposite particles via localized substrate surface modification and miniemulsion polymerization [J]. Langmuir,2008,24(3):606-608.
    [99]Ge X, Wang M, Yuan Q, Wang H, Ge X. The morphological control of anisotropic polystyrene/silica hybrid particles prepared by radiation miniemulsion polymerization [J]. Chemical Communications,2009,19):2765-2767.
    [100]Fu Y N, Jin Z G, Liu G Q, Yin Y X. Self-assembly of polystyrene sphere colloidal crystals by in situ solvent evaporation method [J]. Synth Met,2009,159(17-18):1744-1750.
    [101]Suzuki D, Tsuji S, Kawaguchi H. Janus microgels prepared by surfactant-free pickering emulsion-based modification and their self-assembly [J]. Journal of the American Chemical Society,2007,129(26):8088-8089.
    [102]Hong L, Jiang S, Granick S. Simple method to produce Janus colloidal particles in large quantity [J]. Langmuir,2006,22(23):9495-9499.
    [103]Liu B, Wei W, Qu X, Yang Z. Janus colloids formed by biphasic grafting at a pickering emulsion interface [J]. Angewandte Chemie-International Edition,2008,47(21):3973-3975.
    [104]Kim S-H, Lee S Y, Yang S-M. Janus microspheres for a highly flexible and impregnable water-repelling interface [J]. Angewandte Chemie-International Edition,2010,49(14):2535-2538.
    [105]Kim S-H, Abbaspourrad A, Weitz D A. Amphiphilic crescent-moon-shaped microparticles formed by selective adsorption of colloids [J]. Journal of the American Chemical Society,2011,133(14):5516-5524.
    [106]Lan W J, Li S W, Xu J H, Luo G S. A one-step microfluidic approach for controllable preparation of nanoparticle-coated patchy microparticles [J]. Microfluidics and Nanofluidics,2012, 13(3):491-498.
    [107]Yin S N, Wang C F, Yu Z Y, Wang J, Liu S S, Chen S. Versatile bifunctional magnetic-fluorescent responsive Janus supraballs towards the flexible bead display [J]. Advanced Materials,2011,23(26):2915-2919.
    [108]Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity [J]. Pure and Applied Chemistry,1985,57(4):603-619.
    [109]Horak D, Lednicky F, Rehak V, Svec F. Porous polyhema beads prepared by suspension polymerization in aqueous-medium [J]. Journal of Applied Polymer Science,1993,49(11): 2041-2050.
    [110]Rahman A U, Iqbal M, Rahman F U, Fu D Y, Yaseen M, Lv Y Q, Omer M, Garver M, Yang L, Tan T W. Synthesis and characterization of reactive macroporous poly(glycidyl methacrylate-triallyl isocyanurate-ethylene glycol dimethacrylate) microspheres by suspension polymerization:Effect of synthesis variables on surface area and porosity [J]. Journal of Applied Polymer Science,2012,124(2):915-926.
    [111]Wang H, Wang M Z, Ge X W. One-step fabrication of multihollow polystyrene particles from miniemulsion system with nonionic surfactant [J]. Polymer,2008,49(23):4974-4980.
    [112]Yang S, Liu H R, Zhang Z C. Fabrication of novel multihollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via water-in-oil-in-water double emulsions [J]. Langmuir,2008,24(18):10395-10401.
    [113]Croll L M, Stover H D H. Mechanism of self-assembly and rupture of cross-linked microspheres and microgels at the oil-water interface [J]. Langmuir,2003,19(24):10077-10080.
    [114]Croll L M, Stover H D H. Formation of tectocapsules by assembly and cross-linking of poly(divinylbenzene-alt-maleic anhydride) spheres at the oil-water interface [J]. Langmuir,2003, 19(14):5918-5922.
    [115]Okada M, Matoba T, Okubo M. Influence of nonionic emulsifier included inside carboxylated polymer particles on the formation of multihollow structure by the alkali/cooling method [J]. Colloid and Polymer Science,2003,282(2):193-197.
    [116]Okubo M, Ito A, Hashiba A. Production of submicron sized multihollow polymer particles having high transition temperatures by the step wise alkali/acid method [J]. Colloid and Polymer Science,1996,274(5):428-432.
    [117]Okubo M, Mori H, Ito A. Effect of nonionic emulsifier on the production of multihollow polymer particles by the stepwise acid/alkali method-Part CXCV of the series "Studies on suspension and emulsion" [J]. Colloid and Polymer Science,2000,278(4):358-363.
    [118]Hao D X, Gong F L, Wei W, Hu G H, Ma G H, Su Z G. Porogen effects in synthesis of uniform micrometer-sized poly(divinylbenzene) microspheres with high surface areas [J]. Journal of Colloid and Interface Science,2008,323(1):52-59.
    [119]Wu J, Wei W, Wang L Y, Su Z G, Ma G H. Preparation of uniform-sized pH-sensitive quaternized chitosan microsphere by combining membrane emulsification technique and thermal-gelation method [J]. Colloids and Surfaces B-Biointerfaces,2008,63(2):164-175.
    [120]Kamio E, Yonemura S, Ono T, Yoshizawa H. Microcapsules with macroholes prepared by the competitive adsorption of surfactants on emulsion droplet surfaces [J]. Langmuir,2008, 24(23):13287-13298.
    [121]Li W H, Stover H D H. Porous monodisperse poly(divinylbenzene) microspheres by precipitation polymerization [J]. Journal of Polymer Science Part a-Polymer Chemistry,1998, 36(10):1543-1551.
    [122]Okubo M, Takekoh R, Suzuki A. Preparation of micron-sized, monodisperse poly(methyl methacrylate)/polystyrene composite particles having a large number of dents on their surfaces by seeded dispersion polymerization in the presence of decalin [J]. Colloid Polym Sci,2002,280(11):1057-1061.
    [123]Fujibayashi T, Komatsu Y, Konishi N, Yamori H, Okubo M. Effect of polymer polarity on the shape of "golf ball-like" particles prepared by seeded dispersion polymerization [J]. Industrial & Engineering Chemistry Research,2008,47(17):6445-6449.
    [124]Amara D, Grinblat J, Margel S. Synthesis of magnetic iron and iron oxide micrometre-sized composite particles of narrow size distribution by annealing iron salts entrapped within uniform porous poly(divinylbenzene) microspheres [J]. Journal of Materials Chemistry, 2010,20(10):1899-1906.
    [125]Jose A J, Ogawa S, Bradley M. Tuning the pore size and surface area of monodisperse poly(methyl acrylate) beads via parallel seeded polymerisation [J]. Polymer,2005,46(9): 2880-2888.
    [126]Ou J L, Wu M H, Chen H. Swelling of oligomeric polystyrene seed particles to prepare porous microspheres using n-hexane as porogen [J]. Journal of Materials Science Letters,2001, 20(24):2221-2223.
    [127]Unsal E, Camli S T, Teksen T, Tuncel M, Tuncel A. Hydroxyl functionalized uniform-porous beads, synthesis and chromatographic use [J]. Journal of Macromolecular Science-Pure and Applied Chemistry,2005, A42(5):607-621.
    [128]He X D, Ge X W, Liu H R, Wang M Z, Zhang Z C. Synthesis of cagelike polymer microspheres with hollow core/porous shell structures by self-assembly of latex particles at the emulsion droplet interface [J]. Chemistry of Materials,2005,17(24):5891-5892.
    [129]Yuan Q, Yang L B, Wang M Z, Wang H, Ge X P, Ge X W. The mechanism of the formation of multihollow polymer spheres through sulfonated polystyrene particles [J]. Langmuir, 2009,25(5):2729-2735.
    [130]Ge X P, Wang M Z, Wang H, Yuan Q, Ge X W, Liu H R, Tang T. Novel walnut-like multihollow polymer particles:synthesis and morphology control [J]. Langmuir,2010,26(3): 1635-1641.
    [131]Ge X, Ge X, Wang M, Liu H, Fang B, Li Z, Yang C, Li G. A novel approach for preparation of "cage-like" multihollow polymer microspheres through sulfonated polystyrene particles [J]. Colloid Polym Sci,2012,290(17):1749-1757.
    [1]Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1477-1504.
    [2]Kilian K A, Boecking T, Gooding J J. The importance of surface chemistry in mesoporous materials:lessons from porous silicon biosensors [J]. Chemical Communications,2009,6): 630-640.
    [3]Yang Q H, Liu J, Zhang L, Li C. Functionalized periodic mesoporous organosilicas for catalysis [J]. Journal of Materials Chemistry,2009,19(14):1945-1955.
    [4]Wang S B. Ordered mesoporous materials for drug delivery [J]. Microporous and Mesoporous Materials,2009,117(1-2):1-9.
    [5]Sing K S W, Everett D H, Haul RAW, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas solid systems with special referance to the determination of surface-area and porosity [J]. Pure and Applied Chemistry,1985,57(4):603-619.
    [6]Wang Y J, Tang Y, Dong A G, Wang X D, Ren N, Shan W, Gao Z. Self-supporting porous zeolite membranes with sponge-like architecture and zeolitic microtubes [J]. Advanced Materials, 2002,14(13-14):994-997.
    [7]Hocevar M, Berginc M, Topic M, Krasovec U O. Sponge-like TiO2 layers for dye-sensitized solar cells [J]. Journal of Sol-Gel Science and Technology,2010,53(3):647-654.
    [8]Fragala M E, Di Mauro A, Litrico G, Grassia F, Malandrino G, Foti G. Controlled large-scale fabrication of sea sponge-like ZnO nanoarchitectures on textured silicon [J]. Crystengcomm,2009, 11(12):2770-2775.
    [9]Minch R, Es-Souni M. A versatile approach to processing of high active area pillar coral-and sponge-like Pt-nanostructures. Application to electrocatalysis [J]. Journal of Materials Chemistry, 2011,21(12):4182-4188.
    [10]Iannuzzi M A, Reber R, Lentz D M, Zhao J, Ma L, Hedden R C. USANS study of porosity and water content in sponge-like hydrogels [J]. Polymer,2010,51(9):2049-2056.
    [11]Joo W, Park M S, Kim J K. Block copolymer film with sponge-like nanoporous strucutre for antireflection coating [J]. Langmuir,2006,22(19):7960-7963.
    [12]Lazzeri L, Cascone M G, Danti S, Serino L P, Moscato S, Bernardini N. Gelatine/PLLA sponge-like scaffolds:morphological and biological characterization [J]. Journal of Materials Science-Materials in Medicine,2006,17(12):1211-1217.
    [13]Hirokawa Y, Okamoto T, Kimishima K, Jinnai H, Koizumi S, Aizawa K, Hashimoto T. Sponge-like heterogeneous gels:hierarchical structures in poly(N-isopropylacrylamide) chemical gels as observed by combined scattering and confocal microscopy method [J]. Macromolecules, 2008,41(21):8210-8219.
    [14]Maaroof A I, Cortie M B, Smith G B. Optical properties of mesoporous gold films [J]. J Opt A-Pure Appl Opt,2005,7(7):303-309.
    [15]Williford R E, Li X S, Addleman R S, Fryxell G E, Baskaran S, Birnbaum J C, Coyle C, Zemanian T S, Wang C, Courtney A R. Mechanical stability of templated mesoporous silica thin films [J]. Microporous Mesoporous Mat,2005,85(3):260-266.
    [16]Nishikawa T, Nishida J, Ookura R, Nishimura S I, Wada S, Karino T, Shimomura M. Mesoscopic patterning of cell adhesive substrates as novel biofunctional interfaces [J]. Mater Sci Eng C-Biomimetic Supramol Syst,1999,10(1-2):141-146.
    [17]Yabu H, Tanaka M, Ijiro K, Shimomura M. Preparation of honeycomb-patterned polyimide films by self-organization [J]. Langmuir,2003,19(15):6297-6300.
    [18]Sun X D, Jeng L, Bolliet C, Olsen B R, Spector M. Non-viral endostatin plasmid transfection of mesenchymal stem cells via collagen scaffolds [J]. Biomaterials,2009,30(6):1222-1231.
    [19]Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand:Selective sorption and catalysis [J]. J Am Chem Soc,2007,129(9):2607-2614.
    [20]Ahn J H, Jang J E, Oh C G, Ihm S K, Cortez J, Sherrington D C. Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in Davankov-type hyper-cross-linked resins [J]. Macromolecules,2006,39(2):627-632.
    [21]Xu J X, Chen G J, Yan R, Wang D, Zhang M C, Zhang W Q, Sun P C. One-stage synthesis of cagelike porous polymeric microspheres and application as catalyst scaffold of Pd nanoparticles [J]. Macromolecules,2011,44(10):3730-3738.
    [22]Mi F L, Shyu S S, Wu Y B, Lee S T, Shyong J Y, Huang R N. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing [J]. Biomaterials,2001,22(2):165-173.
    [23]Yan D, Cheng S, Zhuo R F, Chen J T, Feng J J, Feng H T, Li H J, Wu Z G, Wang J, Yan P X. Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties [J]. Nanotechnology,2009,20(10):1-10.
    [24]Klingenberg A, Seubert A. Sulfoacylated poly(styrene-divinylbenzene) copolymers as resins for cation chromatography-Comparison with sulfonated, dynamically coated and silica gel cation exchangers [J]. J Chromatogr A,2002,946(1-2):91-97.
    [25]Hart M, Fuller G, Brown D R, Dale J A, Plant S. Sulfonated poly(styrene-co-divinylbenzene) ion-exchange resins:acidities and catalytic activities in aqueous reactions [J]. J Mol Catal A-Chem, 2002,182(1):439-445.
    [26]Yao L, Krause S. Electromechanical responses of strong acid polymer gels in DC electric fields [J]. Macromolecules,2003,36(6):2055-2065.
    [27]Ge X P, Wang M Z, Wang H, Yuan Q, Ge X W, Liu H R, Tang T. Novel walnut-like multihollow polymer particles:synthesis and morphology control [J]. Langmuir,2009,26(3): 1635-1641.
    [28]Yuan Q, Yang L B, Wang M Z, Wang H, Ge X P, Ge X W. The mechanism of the formation of multihollow polymer spheres through sulfonated polystyrene particles [J]. Langmuir,2009, 25(5):2729-2735.
    [29]Ge X, Ge X, Wang M, Liu H, Fang B, Li Z, Yang C, Li G. A novel approach for preparation of "cage-like" multihollow polymer microspheres through sulfonated polystyrene particles [J]. Colloid and Polymer Science,2012,290(17):1749-1757.
    [1]Lattuada M, Hatton T A. Synthesis, properties and applications of Janus nanoparticles [J]. Nano Today,2011,6(3):286-308.
    [2]Hu J, Zhou S X, Sun Y Y, Fang X S, Wu L M. Fabrication, properties and applications of Janus particles [J]. Chem Soc Rev,2012,41(11):4356-4378.
    [3]Tsai H J, Lee Y L. Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces [J]. Langmuir,2007,23(25):12687-12692.
    [4]Vaia R A, Maguire J F. Polymer nanocomposites with prescribed morphology:Going beyond nanoparticle-filled polymers [J]. Chemistry of Materials,2007,19(11):2736-2751.
    [5]Albella P, Garcia-Cueto B, Gonzalez F, Moreno F, Wu P C, Kim T H, Brown A, Yang Y, Everitt H O, Videen G. Shape matters:plasmonic nanoparticle shape enhances interaction with dielectric substrate [J]. Nano Letters,2011,11(9):3531-3537.
    [6]Forster J D, Park J G, Mittal M, Noh H, Schreck C F, O'Hern C S, Cao H, Furst E M, Dufresne E R. Assembly of optical-scale dumbbells into dense photonic crystals [J]. Acs Nano, 2011,5(8):6695-6700.
    [7]Hosein I D, Liddell C M. Convectively assembled asymmetric dimer-based colloidal crystals [J]. Langmuir,2007,23(21):10479-10485.
    [8]Acharya G, Shin C S, McDermott M, Mishra H, Park H, Kwon I C, Park K. The hydrogel template method for fabrication of homogeneous nano/microparticles [J]. Journal of Controlled Release,2010,141(3):314-319.
    [9]Park B J, Brugarolas T, Lee D. Janus particles at an oil-water interface [J]. Soft Matter,2011, 7(14):6413-6417.
    [10]Tang C, Zhang C L, Liu J G, Qu X Z, Li J L, Yang Z Z. Large scale synthesis of Janus submicrometer sized colloids by seeded emulsion polymerization [J]. Macromolecules,2010, 43(11):5114-5120.
    [11]Meng X H, Guan Y Y, Zhang Z D, Qiu D. Fabrication of a composite colloidal particle with unusual Janus structure as a high-performance solid emulsifier [J]. Langmuir,2012,28(34): 12472-12478.
    [12]Rahman M M, Montagne F, Fessi H, Elaissari A. Anisotropic magnetic microparticles from ferrofluid emulsion [J]. Soft Matter,2011,7(4):1483-1490.
    [13]Wang Y L, Xu H, Ma Y S, Guo F F, Wang F, Shi D L. Facile one-pot synthesis and morphological control of asymmetric superparamagnetic composite nanoparticles [J]. Langmuir, 2011,27(11):7207-7212.
    [14]Ziba Roveimiab A R M, Esmaeil Biazar, and K. Saeed Heidari. Preparation of magnetic chitosan nanocomposite particles and their susceptibility for cellular separation applications. [J]. J Colloid Sci Biotechnol,2012,1(1),82-88.
    [15]Rahman M M E, Abdelhamid. Multi-stimuli responsive magnetic core-shell particles: synthesis, characterization and specific RNA recognition [J]. J Colloid Sci Biotechnol,2012,1(1), 3-15.
    [16]Braconnot S, Eissa M, Elaissari A. Morphology control of magnetic latex particles prepared from oil in water ferrofluid emulsion [J]. Colloid & Polymer Science,2013,291(1),193-203.
    [17]Ohnuma A, Cho E C, Camargo P H C, Au L, Ohtani B, Xia Y N. A facile synthesis of asymmetric hybrid colloidal particles [J]. Journal of the American Chemical Society,2009,131(4): 1352-1353.
    [18]Yoon K, Lee D, Kim J W, Kim J, Weitz D A. Asymmetric functionalization of colloidal dimer particles with gold nanoparticles [J]. Chemical Communications,2012,48(72):9056-9058.
    [19]Taylor R N K, Bao H X, Tian C T, Vasylyev S, Peukert W. Facile route to morphologically tailored silver patches on colloidal particles [J]. Langmuir,2010,26(16):13564-13571.
    [20]Ge X P, Wang M Z, Wang H, Yuan Q, Ge X W, Liu H R, Tang T. Novel walnut-like multihollow polymer particles:synthesis and morphology control [J]. Langmuir,2010,26(3): 1635-1641.
    [21]Percy M J, Armes S P. Surfactant-free synthesis of colloidal poly(methyl methacrylate)/silica nanocomposites in the absence of auxiliary comonomers [J]. Langmuir,2002,18(12):4562-4565.
    [22]Chen Y W, Wang W G, Zhou S H. Size effect of Au seeds on structure of Au-Pt bimetallic nanoparticles [J]. Mater Lett,2011,65(17-18):2649-2651.
    [23]Santos H A, Riikonen J, Salonen J, Makila E, Heikkila T, Laaksonen T, Peltonen L, Lehto V P, Hirvonen J. In vitro cytotoxicity of porous silicon microparticles:Effect of the particle concentration, surface chemistry and size [J]. Acta Biomater,2010,6(7):2721-2731.
    [24]Cao S S, Jin X, Yuan X H, Wu W W, Hu J, Sheng W C. A facile method for the preparation of monodisperse hollow silica spheres with controlled shell thickness [J]. Journal of Polymer Science Part a-Polymer Chemistry,2010,48(6):1332-1338.
    [25]Tang F, Li L, Chen D. Mesoporous silica nanoparticles:synthesis, biocompatibility and drug delivery [J]. Advanced Materials,2012,24(12):1504-1534.
    [26]Lu F, Wu S H, Hung Y, Mou C Y. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles [J]. Small,2009,5(12):1408-1413.
    [27]Zhang L, Cha D, Wang P. Remotely controllable liquid marbles [J]. Advanced Materials, 2012,24(35):4756-4760.
    [28]Jiang X, Ishizumi A, Suzuki N, Naito M, Yamauchi Y. Vertically-oriented conjugated polymer arrays in mesoporous alumina via simple drop-casting and appearance of anisotropic photoluminescence [J]. Chemical Communications,2012,48(4):549-551.
    [29]Shan F, Lu X M, Zhang Q, Su B, Lu Q H. Anisotropy property of CdS and PbS quantum dots encapsulated in silica film with uniformly oriented mesochannel [J]. Langmuir,2012,28(1): 812-817.
    [30]Bourgeat-Lami E, Lansalot M. Organic/inorganic composite latexes:The marriage of emulsion polymerization and inorganic chemistry [M]. Hybrid Latex Particles:Preparation With. Berlin; Springer-Verlag Berlin.2010:53-123.
    [31]Zou H, Wu S S, Shen J. Polymer/silica nanocomposites:preparation, characterization, properties, and applications [J]. Chem Rev,2008,108(9):3893-3957.
    [32]Chang B S, Sha X Y, Guo J, Jiao Y F, Wang C C, Yang W L. Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release [J]. Journal of Materials Chemistry,2011,21(25):9239-9247.
    [33]Chen F H, Zhang L M, Chen Q T, Zhang Y, Zhang Z J. Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell [J]. Chemical Communications,2010,46(45):8633-8635.
    [34]Wang W Q, Lu L C, Chen T Y, Rao M. Fabrication and characterization of multilayer Si02/polymethacrylic acid/polypyrrole composites and hollow polypyrrole microspheres [J]. Journal of Applied Polymer Science,2012,126(3):974-979.
    [35]Liu G Y, Ji H F, Yang X L, Wang Y M. Synthesis of a Au/silica/polymer trilayer composite and the corresponding hollow polymer microsphere with a movable Au core [J]. Langmuir,2008, 24(3):1019-1025.
    [36]Yang S, Zhou X F, Yuan P, Yu M H, Xie S G, Zou J, Lu G Q, Yu C Z. Siliceous nanopods from a compromised dual-templating approach [J]. Angewandte Chemie-International Edition, 2007,46(45):8579-8582.
    [37]Grzelczak M, Correa-Duarte M A, Liz-Marzan L M. Carbon nanotubes encapsulated in wormlike hollow silica shells [J]. Small,2006,2(10):1174-1177.
    [38]Reculusa S, Mingotaud C, Bourgeat-Lami E, Duguet E, Ravaine S. Synthesis of daisy-shaped and multipod-like silica/polystyrene nanocomposites [J]. Nano Letters,2004,4(9):1677-1682.
    [39]Ming W, Wu D, van Benthem R, de With G. Superhydrophobic films from raspberry-like particles [J]. Nano Letters,2005,5(11):2298-2301.
    [40]Puretskiy N, Ionov L. Synthesis of robust raspberry-like particles using polymer brushes [J]. Langmuir,2011,27(6):3006-3011.
    [41]Xu D Z, Wang M Z, Ge X W, Lam M H W, Ge X P. Fabrication of raspberry SiO2/polystyrene particles and superhydrophobic particulate film with high adhesive force [J]. Journal of Materials Chemistry,2012,22(12):5784-5791.
    [42]Wang Y L, Xu H, Qiang W L, Gu H C, Shi D L. Asymmetric composite nanoparticles with anisotropic surface functionalities [J]. Journal of Nanomaterials,2009, doi:10.1155/2009/620269.
    [43]Parvole J, Chaduc I, Ako K, Spalla O, Thill A, Ravaine S, Duguet E, Lansalot M, Bourgeat-Lami E. Efficient synthesis of snowman-and dumbbell-like silica/polymer anisotropic heterodimers through emulsion polymerization using a surface-anchored cationic initiator [J]. Macromolecules,2012,45(17):7009-7018.
    [44]Qiang W, Wang Y, He P, Xu H, Gu H, Shi D. Synthesis of asymmetric inorganic/polymer nanocomposite particles via localized substrate surface modification and miniemulsion polymerization [J]. Langmuir,2008,24(3):606-608.
    [45]Liu B, Zhang C L, Liu J G, Qu X Z, Yang Z Z. Janus non-spherical colloids by asymmetric wet-etching [J]. Chemical Communications,2009,26:3871-3873.
    [46]Ge X P, Wang M Z, Yuan Q, Wang H, Ge X W. The morphological control of anisotropic polystyrene/silica hybrid particles prepared by radiation miniemulsion polymerization [J]. Chem Commun,2009,19:2765-2767.
    [47]Zhang J A, Yang J J, Wu Q Y, Wu M Y, Liu N N, Jin Z L, Wang Y F. SiO2/polymer hybrid hollow microspheres via double in situ miniemulsion polymerization [J]. Macromolecules,2010, 43(3):1188-1190.
    [48]Ge J P, Hu Y X, Zhang T R, Yin Y D. Superparamagnetic composite colloids with anisotropic structures [J]. Journal of the American Chemical Society,2007,129(29):8974-8975.
    [49]Nagao D, Hashimoto M, Hayasaka K, Konno M. Synthesis of anisotropic polymer particles with soap-free emulsion polymerization in the presence of a reactive silane coupling agent [J]. Macromol Rapid Commun,2008,29(17):1484-1488.
    [50]Nagao D, van Kats C M, Hayasaka K, Sugimoto M, Konno M, Imhof A, van Blaaderen A. Synthesis of hollow asymmetrical silica dumbbells with a movable inner core [J]. Langmuir,2010, 26(7):5208-5212.
    [51]Nguyen D, Duguet E, Bourgeat-Lami E, Ravaine S. An easy way to control the morphology of colloidal polymer-oxide supraparticles through seeded dispersion polymerization [J]. Langmuir, 2010,26(9):6086-6090.
    [52]Yuan Q, Yang L B, Wang M Z, Wang H, Ge X P, Ge X W. The mechanism of the formation of multihollow polymer spheres through sulfonated polystyrene particles [J]. Langmuir,2009, 25(5):2729-2735.
    [1]Zhao Y, Jiang L. Hollow micro/nanomaterials with multilevel interior structures [J]. Advanced Materials,2009,21(36):3621-3638.
    [2]Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells [J]. Angewandte Chemie-International Edition,2008,47(8):1382-1395.
    [3]Arico A S, Bruce P, Scrosati B, Tarascon J M, Van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature Materials,2005,4(5):366-377.
    [4]Ikeda S, Ishino S, Harada T, Okamoto N, Sakata T, Mori H, Kuwabata S, Torimoto T, Matsumura M. Ligand-free platinum nanoparticles encapsulated in a hollow porous carbon shell as a highly active heterogeneous hydrogenation catalyst [J]. Angewandte Chemie-International Edition,2006,45(42):7063-7066.
    [5]Zhong Z Y, Yin Y D, Gates B, Xia Y N. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads [J]. Advanced Materials,2000, 12(3):206-209.
    [6]Meier W. Polymer nanocapsules [J]. Chemical Society Reviews,2000,29(5):295-303.
    [7]Lou X W, Archer L A, Yang Z. Hollow micro-/nanostructures:synthesis and applications [J]. Advanced Materials,2008,20(21):3987-4019.
    [8]Zhang J, Yang J, Wu Q, Wu M, Liu N, Jin Z, Wang Y. SiO2/polymer hybrid hollow microspheres via double in situ miniemulsion polymerization [J]. Macromolecules,2010,43(3): 1188-1190.
    [9]Li T, Liu H, Zeng L, Yang S, Li Z, Zhang J, Zhou X. Macroporous magnetic poly(styrene-divinylbenzene) nanocomposites prepared via magnetite nanoparticles-stabilized high internal phase emulsions [J]. Journal of Materials Chemistry,2011,21(34):12865-12872.
    [10]Sun Q H, Deng Y L. In situ synthesis of temperature-sensitive hollow microspheres via interfacial polymerization [J]. Journal of the American Chemical Society,2005,127(23): 8274-8275.
    [11]Gao F, Su Z G, Wang P, Ma G H. Double emulsion templated microcapsules with single hollow cavities and thickness-controllable shells [J]. Langmuir,2009,25(6):3832-3838.
    [12]Yang S, Liu H R. A novel approach to hollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via interfacial polymerization [J]. Journal of Materials Chemistry, 2006,16(46):4480-4487.
    [13]Yang M, Ma J, Zhang C L, Yang Z Z, Lu Y F. General synthetic route toward functional hollow spheres with double-shelled structures [J]. Angewandte Chemie-International Edition, 2005,44(41):6727-6730.
    [14]Yang Z Z, Niu Z W, Lu Y F, Hu Z B, Han C C. Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles [JJ. Angewandte Chemie-International Edition,2003,42(17):1943-1945.
    [15]Wang P, Chen D, Tang F Q. Preparation of titania-coated polystyrene particles in mixed solvents by ammonia catalysis [J]. Langmuir,2006,22(10):4832-4835.
    [16]Wu T, Ge Z S, Liu S Y. Fabrication of thermoresponsive cross-Linked poly(N-isopropylacrylamide) nanocapsules and silver nanoparticle-embedded hybrid capsules with controlled shell thickness [J]. Chemistry of Materials,2011,23(9):2370-2380.
    [17]Jabbari E, Khakpour M. Morphology of and release behavior from porous polyurethane microspheres [J]. Biomaterials,2000,21(20):2073-2079.
    [18]Suzuki T M, Yamamoto M, Fukumoto K, Akimoto Y, Yano K. Investigation of pore-size effects on base catalysis using amino-funcrionalized monodispersed mesoporous silica spheres as a model catalyst [J]. Journal of Catalysis,2007,251(2):249-257.
    [19]Mao X P, Guo G J, Huang J F, Du Z Y, Huang Z S, Ma L, Li P, Gu L Q. A novel method to prepare chitosan powder and its application in cellulase immobilization [J]. Journal of Chemical Technology and Biotechnology,2006,81(2):189-195.
    [20]Huang F C, Ke C H, Kao C Y, Lee W C. Preparation and application of partially porous poly(styrene-divinylbenzene) particles for lipase immobilization [J]. Journal of Applied Polymer Science,2001,80(1):39-46.
    [21]Sun L Z, Wang Y Z, Jiang T Y, Zheng X, Zhang J H, Sun J, Sun C S, Wang S L. Novel chitosan-functionalized spherical nanosilica matrix as an oral sustained drug deliverysystem for poorly water-soluble drug carvedilol [J]. Acs Applied Materials & Interfaces,2013,5(1):103-113.
    [22]Germain J, Hradil J, Frechet J M J, Svec F. High surface area nanoporous polymers for reversible hydrogen storage [J]. Chemistry of Materials,2006,18(18):4430-4435.
    [23]Xu F, Cai R J, Zeng Q C, Zou C, Wu D C, Li F, Lu X E, Liang Y R, Fu R W. Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors [J]. Journal of Materials Chemistry,2011,21(6):1970-1976.
    [24]El-Shall M S, Abdelsayed V, Khder A, Hassan H M A, El-Kaderi H M, Reich T E. Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101 [J]. Journal of Materials Chemistry,2009,19(41):7625-7631.
    [25]Gokmen M T, Du Prez F E. Porous polymer particles-A comprehensive guide to synthesis, characterization, functionalization and applications [J]. Progress in Polymer Science,2012,37(3): 365-405.
    [26]Croll L M, Stover H D H. Formation of tectocapsules by assembly and cross-linking of poly(divinylbenzene-alt-maleic anhydride) spheres at the oil-water interface [J]. Langmuir,2003, 19(14):5918-5922.
    [27]Yang S, Liu H R, Zhang Z C. Fabrication of novel multihollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via water-in-oil-in-water double emulsions [J]. Langmuir,2008,24(18):10395-10401.
    [28]Li W H, Stover H D H. Porous monodisperse poly(divinylbenzene) microspheres by precipitation polymerization [J]. Journal of Polymer Science Part a-Polymer Chemistry,1998, 36(10):1543-1551.
    [29]Jose A J, Ogawa S, Bradley M. Tuning the pore size and surface area of monodisperse Poly(Methyl Acrylate) beads via parallel seeded polymerisation [J]. Polymer,2005,46(9): 2880-2888.
    [30]Unsal E, Camli S T, Teksen T, Tuncel M, Tuncel A. Hydroxyl functionalized uniform-porous beads, synthesis and chromatographic use [J]. Journal of Macromolecular Science-Pure and Applied Chemistry,2005,A42(5):607-621.
    [31]Okada M, Matoba T, Okubo M. Influence of nonionic emulsifier included inside carboxylated polymer particles on the formation of multihollow structure by the alkali/cooling method [J]. Colloid and Polymer Science,2003,282(2):193-197.
    [32]Zhang J A, Yang J J, Wu Q Y, Wu M Y, Liu N N, Jin Z L, Wang Y F. SiO2/polymer hybrid hollow microspheres via double in situ miniemulsion polymerization [J]. Macromolecules,2010, 43(3):1188-1190.
    [33]Banerjee S, Paira T K, Kotal A, Mandal T K. Surface-confined atom transfer radical polymerization from sacrificial mesoporous silica nanospheres for preparing mesoporous polymer/carbon nanospheres with faithful shape replication:functional mesoporous materials [J]. Advanced Functional Materials,2012,22(22):4751-4762.
    [34]Kim Y, Cho C Y, Kang J H, Cho Y S, Moon J H. Synthesis of porous carbon balls from spherical colloidal crystal templates [J]. Langmuir,2012,28(28):10543-10550.
    [35]Okubo M, Takekoh R, Suzuki A. Preparation of micron-sized, monodisperse poly(methyl methacrylate)/polystyrene composite particles having a large number of dents on their surfaces by seeded dispersion polymerization in the presence of decalin [J]. Colloid Polym Sci,2002,280(11): 1057-1061.
    [36]Kobayashi H, Suzuki T, Moritaka M, Miyanaga E, Okubo M. Preparation of multihollow polystyrene particles by seeded emulsion polymerization using seed particles with incorporated nonionic emulsifier:effect of temperature [J]. Colloid and Polymer Science,2009,287(3): 251-257. [37] Kobayashi H, Miyanaga E, Okubo M. Preparation of multihollow polymer particles by
    seeded emulsion polymerization using seed particles with incorporated nonionic emulsifier [J]. Langmuir,2007,23(17):8703-8708.
    [38]Fujibayashi T, Komatsu Y, Konishi N, Yamori H, Okubo M. Effect of polymer polarity on the shape of "golf ball-like" particles prepared by seeded dispersion polymerization [J]. Industrial& Engineering Chemistry Research,2008,47(17):6445-6449.
    [39]He X D, Ge X W, Liu H R, Wang M Z, Zhang Z C. Synthesis of cagelike polymer microspheres with hollow core/porous shell structures by self-assembly of latex particles at the emulsion droplet interface [J]. Chemistry of Materials,2005,17(24):5891-5892.
    [40]Yuan Q, Yang L B, Wang M Z, Wang H, Ge X P, Ge X W. The mechanism of the formation of multihollow polymer spheres through sulfonated polystyrene particles [J]. Langmuir,2009, 25(5):2729-2735.
    [41]Ge X, Ge X, Wang M, Liu H, Fang B, Li Z, Yang C, Li G. A novel approach for preparation of "cage-like" multihollow polymer microspheres through sulfonated polystyrene particles [J]. Colloid and Polymer Science,2012,290(17):1749-1757.
    [1]Ugelstad J, Elaasser M S, Vanderho.Jw. Emulsion polymerization-initiation of polymerization in monomer droplets [J]. Journal of Polymer Science Part C-Polymer Letters,1973, 11(8):503-513.
    [2]Landfester K, Bechthold N, Forster S, Antonietti M. Evidence for the preservation of the particle identity in miniemulsion polymerization [J]. Macromolecular Rapid Communications, 1999,20(2):81-84.
    [3]Asua J M. Miniemulsion polymerization [J]. Progress in polymer science,2002,27(7): 1283-1346.
    [4]Landfester K. Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles [J]. Angewandte Chemie-International Edition,2009,48(25):4488-4507.
    [5]Zhang S W, Zhou S X, Weng Y M, Wu L M. Synthesis of SiO2/polystyrene nanocomposite particles via miniemulsion polymerization [J]. Langmuir,2005,21(6):2124-2128.
    [6]Munoz-Espi R, Weiss C K, Landfester K. Inorganic nanoparticles prepared in miniemulsion [J]. Current Opinion in Colloid & Interface Science,2012,17(4):212-224.
    [7]Weiss C K, Landfester K. Miniemulsion polymerization as a means to encapsulate organic and inorganic materials [M]//Vanherk A M, Landfester K. Hybrid Latex Particles:Preparation With.2010:185-236.
    [8]Landfester K, Musyanovych A, Mailander V. From polymeric particles to multifunctional nanocapsules for biomedical applications using the miniemulsion pocess [J]. Journal of Polymer Science Part a-Polymer Chemistry,2010,48(3):493-515.
    [9]Hu J, Chen M, Wu L M. Organic-inorganic nanocomposites synthesized via miniemulsion polymerization [J]. Polymer Chemistry,2011,2(4):760-772.
    [10]Wang H, Ge X W, Song L Y, Liu H R. Miniemulsion polymerization of styrene costabilized with polyurethane via Co-60 gamma-ray radiation initiation [J]. Colloid and Polymer Science, 2007,285(10):1093-1100.
    [11]Wang H, Wang M Z, Ge X W, Liu H R, Zhang Z C. Radiation miniemulsion polymerization system with HTPB or its derivative as the costabilizer [J]. Colloid and Polymer Science,2008, 286(8-9):1039-1047.
    [12]Wang H, Wang M Z, Ge X W. One-step fabrication of multihollow polystyrene particles from miniemulsion system with nonionic surfactant [J]. Polymer,2008,49(23):4974-4980.
    [13]Wang H, Wang M Z, Ge X W. Graft copolymers of polyurethane with various vinyl monomers via radiation-induced miniemulsion polymerization:Influential factors to grafting efficiency and particle morphology [J]. Radiation Physics and Chemistry,2009,78(2):112-118.
    [14]Ge X, Wang M, Yuan Q, Wang H, Ge X. The morphological control of anisotropic polystyrene/silica hybrid particles prepared by radiation miniemulsion polymerization [J]. Chemical Communications,2009,19:2765-2767.
    [15]Xu D, Wang M, Ge X, Hon-Wah Lam M, Ge X. Fabrication of raspberry SiO2/polystyrene particles and superhydrophobic particulate film with high adhesive force [J]. Journal of Materials Chemistry,2012,22(12):5784-5791.
    [16]Wu Q, Wang Z Q, Xue G. Controlling the structure and morphology of monodisperse polystyrene/polyaniline composite particles [J]. Advanced Functional Materials,2007,17(11): 1784-1789.
    [17]Liu G Y, Ji H F, Yang X L, Wang Y M. Synthesis of a Au/silica/polymer trilayer composite and the corresponding hollow polymer microsphere with a movable Au core [J]. Langmuir,2008, 24(3):1019-1025.
    [18]Kobayashi H, Suzuki T, Moritaka M, Miyanaga E, Okubo M. Preparation of multihollow polystyrene particles by seeded emulsion polymerization using seed particles with incorporated nonionic emulsifier:effect of temperature [J]. Colloid and Polymer Science,2009,287(3): 251-257.
    [19]Fujibayashi T, Tanaka T, Minami H, Okubo M. Thermodynamic and kinetic considerations on the morphological stability of "hamburger-like" composite polymer particles prepared by seeded dispersion polymerization [J]. Colloid and Polymer Science,2010,288(8):879-886.
    [20]Tang C, Zhang C, Liu J, Qu X, Li J, Yang Z. Large scale synthesis of Janus submicrometer sized colloids by seeded emulsion polymerization [J]. Macromolecules,2010,43(11):5114-5120.
    [21]Hu J, Zhou S X, Sun Y Y, Fang X S, Wu L M. Fabrication, properties and applications of Janus particles [J]. Chemical Society Reviews,2012,41(11):4356-4378.
    [22]Meng X H, Guan Y Y, Zhang Z D, Qiu D. Fabrication of a composite colloidal particle with unusual Janus structure as a high-performance solid emulsifier [J]. Langmuir,2012,28(34): 12472-12478.
    [23]Kim J W, Larsen R J, Weitz D A. Synthesis of nonspherical colloidal particles with anisotropic properties [J]. Journal of the American Chemical Society,2006,128(44): 14374-14377.
    [24]Kim J-W, Lee D, Shum H C, Weitz D A. Colloid surfactants for emulsion stabilization [J]. Advanced Materials,2008,20(17):3239-3243.
    [25]Fujibayashi T, Okubo M. Preparation and thermodynamic stability of micron-sized, monodisperse composite polymer particles of disc-like shapes by seeded dispersion polymerization [J]. Langmuir,2007,23(15):7958-7962.
    [26]Antonietti M, Landfester K. Polyreactions in miniemulsions [J]. Progress in Polymer Science, 2002,27(4):689-757.
    [27]Anderson C D, Sudol E D, El-Aasser M S.50 nm polystyrene particles via miniemulsion polymerization [J]. Macromolecules,2002,35(2):574-576.
    [28]Kim J-W, Larsen R J, Weitz D A. Uniform nonspherical colloidal particles with tunable shapes [J]. Advanced Materials,2007,19(15):2005-2009.
    [29]Mock E B, De Bruyn H, Hawkett B S, Gilbert R G, Zukoski C F. Synthesis of anisotropic nanoparticles by seeded emulsion polymerization [J]. Langmuir,2006,22(9):4037-4043.
    [30]Spinks J W T, Woods R J. An introduction to radiation chemistry [M]//Spinks J W T, Woods R J. Wiley, New York,1976:267-270.
    [31]Hochanadel C J. Comparative effects of radiation [M]//Burton M, Kirby-Smith J S, Magee J. L. Wiley, New York,1960:Chapter 8.
    [32]Ghormley J A, Stewart A C. Effects of gamma-radiation on ice [J]. Journal of the American Chemical Society,1956,78(13):2934-2939.
    [33]He X D, Ge X W, Liu H R, Wang M Z, Zhang Z C. Synthesis of cagelike polymer microspheres with hollow core/porous shell structures by self-assembly of latex particles at the emulsion droplet interface [J]. Chemistry of Materials,2005,17(24):5891-5892.
    [34]Yuan Q, Yang L B, Wang M Z, Wang H, Ge X P, Ge X W. The mechanism of the formation of multihollow polymer spheres through sulfonated polystyrene particles [J]. Langmuir,2009, 25(5):2729-2735.
    [35]Ge X, Wang M, Wang H, Yuan Q, Ge X, Liu H, Tang T. Novel walnut-like multihollow polymer particles:synthesis and morphology control [J]. Langmuir,2010,26(3):1635-1641

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700