用户名: 密码: 验证码:
新型钛系催化剂的合成及催化烯烃(共)聚合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚烯烃是目前合成树脂领域中产量最大、用途最广的高分子材料,而催化剂技术则是聚烯烃工业发展的关键核心所在。近年来,传统Ziegler-Natta催化剂得到飞速发展,其国产化率已达到90%,同时茂金属催化剂及后过渡金属催化剂所取得的重大突破,更加扩展了烯烃聚合的研究领域。进入到二十一世纪后,我国经济总量持续快速发展,在聚烯烃树脂领域早已变成了进口大国,并且国内的产品还多以中低档产品为主。针对国内聚烯烃的研发现状而言,无论是在技术还是产业化能力方面都远不及西方发达国家,特别是在专用、高性能商品牌号上,缺少拥有自主知识产权的生产技术工艺,这应该是我们下一步亟需解决的关键问题所在。
     对于我国烯烃聚合催化剂领域而言,目前急需由最初的低活性,低立构选择性发展到能应用于现代聚烯烃工业上的高活性,高立构选择性的催化剂,以解决聚烯烃催化剂技术和高性能聚烯烃产品的需求与现状之间的突出矛盾。
     综上所述,本论文首先合成相关新型钛系催化剂,之后将所合成的新型钛系催化剂用于烯烃(共)聚合,在聚合行为方面展开了研究工作,并得出相应结论。主要内容有如下几个方面:
     1.通过在传统的Ziegler-Natta催化剂上引入具有吸电子性质的苯磺酸配体,成功制备出具有类阳离子金属活性中心的新型改性Ziegler-Natta负载催化剂,并将该催化剂应用于乙烯均聚合及乙烯与降冰片烯共聚合,通过元素分析、XPS、DSC、1H-NMR、FTIR、GPC、热失重分析等手段深入研究了改性后新型催化剂组成、催化活性及其相关所得聚合物的结构、相对分子质量、热稳定性等方面内容。实验结果表明,与传统的Ziegler-Natta负载催化剂相比,引入苯磺酸配体的新型催化剂在乙烯均聚合及乙烯与降冰片烯共聚合的催化活性上都有大幅度的提高;但改性后的新型钛系催化剂较之原始催化剂,在乙烯与降冰片烯的催化共聚能力方面未见有明显提高。
     2.将含有双酚A、苯磺酸配体的茂钛系列催化剂用于乙烯均聚合及乙烯与降冰片烯共聚合反应,考察了不同比例双酚A、苯磺酸配体以及不同聚合条件对聚合行为的影响。通过DSC、~(13)C-NMR、GPC、热失重分析等手段深入研究了催化活性及其相关所得聚合物的结构、相对分子质量、热稳定性等方面内容。实验结果表明:含有不同比例的双酚A苯磺酸茂钛都可成功用于催化乙烯均聚合及乙烯与降冰片烯共聚合反应的发生,且催化活性都高于原始五甲基环戊二烯基三氯化钛催化剂,所得乙烯-降冰片烯共聚物的相对分子质量呈单峰分布,共聚物热稳定性高于聚乙烯;不过在乙烯与降冰片烯的催化共聚方面,即降冰片烯的插入率上仍未见有明显提升。
     3.成功制备出新型苯膦基苯磺酸氯化钛催化剂,通过元素分析、~1H-NMR、~(31)P-NMR以及SEM等手段对其结构及微观形态进行印证表征,结果证明所得化合物结构与我们所要设计合成的催化剂相符合。随后,我们分别以MAO和TEA为助催化剂,将其应用于乙烯均聚合及乙烯与降冰片烯共聚合反应,所得乙烯-降冰片烯共聚物结构符合加成聚合反应机理,无需进行后期加氢处理;之后我们通过~(13)C-NMR、DSC以及GPC等对所得聚合物进行了测试与表征,考察了不同反应参数对聚合行为的影响。实验结果表明:相比TEA为助催化剂,以MAO为助催化剂时,苯膦基苯磺酸氯化钛无论是在均聚合还是共聚合方面都体现了更加优异的催化活性,且催化活性随着Al/Ti比的增加而大幅提高。同时,我们发现:改变反应温度、反应压力和降冰片烯单体加入量都会对所得共聚物的性能产生规律性变化,比如在聚合物的熔点、相对分子质量及其分布方面都随着聚合条件的改变而变化,所以我们可以通过改变反应条件从而定制得到不同性能的聚合物。
     虽然苯膦基苯磺酸氯化钛催化剂可以成功实现乙烯-降冰片烯共聚合反应的发生,而且具有较高的催化活性,降冰片烯单元插入率也较前章催化剂有一定提高,但提高幅度有限,仍然需要进一步提高相关钛系催化剂的共聚能力。
     4.成功制备出8-苯胺-1-萘磺酸氯化钛烯烃催化剂,并通过元素分析、~1H-NMR、~(13)C-NMR、H-H COSY、SEM以及MALDI-TOF MS等表征手段对催化剂结构及微观形态进行印证,结果证明所得化合物结构与我们所要设计合成的催化剂结构相符合。随后我们将所合成的催化剂应用于乙烯均聚合及乙烯与降冰片烯共聚合反应,通过13C-NMR、DSC和GPC等手段对所制备的聚合物进行了测试与表征,从而考察不同反应参数对聚合行为的影响。实验结果表明:所合成的8-苯胺-1-萘磺酸氯化钛/MAO体系表现出均匀的活性位点,有良好的热稳定性(90℃);无论是针对均聚合还是共聚合来说,相比TEA为助催化剂,在以MAO为助催化剂条件下能更高活性的催化乙烯均聚合及乙烯与降冰片烯共聚合反应,并且催化活性随着Al/Ti比的增加而大幅提高。另外,8-苯胺-1-萘磺酸氯化钛催化共聚能力较好,在以MAO为助催化剂时降冰片烯单元插入率较之前有了明显提高(6.8mol-%)。另外,以MAO活化后的催化剂具有单活性中心性质,所制备的聚合物具有较窄的分子量分布和较低的相对分子质量;当用TEA作为助催化剂时,所得聚合物的MWD和Mw都较高。
     同时我们发现,改变反应温度、反应压力、助催化剂种类和降冰片烯单体加入量都会对所得共聚物的性能产生规律性变化,无论是对聚合物熔点、相对分子质量还是聚合物中降冰片烯单元的摩尔含量方面都随着聚合条件的变化而变化,呈现一定的聚合可控性。由8-苯胺-1-萘磺酸氯化钛催化所得乙烯-降冰片烯共聚物结构符合加成聚合反应机理,无需进行后期加氢处理。
In our world today, polyolefin is the largest product of syntheticresin and the most widely used polymer materials, while the catalyst isthe key and heart of the polyolefin industrial development. In recent years,traditional Ziegler-Natta catalyst gets flying development and thehomemade-percentage reached90%. In the same time, the breakthroughin metallocene catalysts and late transition metal catalysts extended theresearch field of olefin polymerization. As the sustainable development ofthe national economy, the demand for polyolefin resin grows rapidly andthe domestic production (Most of products are low-added-value) can onlymeet about half of the domestic demand. In addition, R&D andindustrialization of Chinese polyolefin field started very late, about10years after the USA, Europe and Japan. And our technical basis stillappears very fragile, then, the development of high-performance productis fairly weak. The core polyolefin technologies with self-ownedintellectual property are a serious short, therefore, urgently need toconduct an in-depth research and development.
     Currently, in order to overcome the shortage of low-add-value ofcatalyst and the short supply of high-performance product, our country’s polyolefin catalyst research concentrated on produce higher catalystactivity and higher stereoselective catalyst.
     After consult a lot of references, this paper synthesized a noveltitanium-based catalyst, and the olefin (co-)polymerization behaviors ofthe obtained catalyst were studied in detail. This thesis sections asfollowing:
     1. A novel Ziegler-Natta catalyst has been prepared throughintroducing electron withdrawing ligand to traditional Ziegler-Nattacatalyst. Polymerization behaviors of the novel catalyst have beeninvestigated for ethylene polymerization ethylene and ethylene-norborenecopolymerization. The catalyst and polymer composition, polymermolecular weight and thermal properties were investigated by elementanalysis, XPS, DSC,~1H-NMR, FTIR, GPC, TGA and so on. It has beenfound that the catalytic activity of novel catalyst is much higher than thatof the corresponding traditional Ziegler-Natta catalyst toward ethylenepolymerization and ethylene-norborene copolymerization. Regarding toethylene-norborene copolymerization, the incorporation ability of novelcatalyst is similar to traditional Ziegler-Natta catalyst.
     2. The ethylene polymerization and ethylene-norborenecopolymerization was carried out by using bisphenol-A or PhSO-3ligandmodified Cp*TiCl3catalyst. The effect of ligand feed ratio,polymerization conditions on polymerization behaviors were studied. Thepolymer composition, polymer molecular weight and thermal propertieswere investigated by DSC,~(13)C-NMR, GPC, TGA and so on. It was foundthat the catalytic activity of bisphenol-A or PhSO-3ligand modifiedCpTiCl3catalyst is higher than that of the Cp*TiCl3catalyst towardethylene polymerization and ethylene-norborene copolymerization. TheGPC curve of obtained ethylene-norborene copolymer is unimodal andthe thermal properties of the copolymer is higher than polyethylene. However, with regard to the ethylene-norborene copolymerization, theincorporation ability of novel catalyst was less changed.
     3. A novel TiCl4complex ligated by diphenylphosphinobenzenesulfonic acid was synthesized and the structure was confirmed by elementanalysis,~~1H-NMR,31P-NMR and SEM. After that, the ethylenepolymerization and ethylene-norborene copolymerization was carried outby using the obtained catalyst in conjunction with MAO or TEA ascocatalyst. The ethylene-norborene copolymerization is additionpolymerization. The effect of polymerization conditions onpolymerization behaviors and polymer properties were characterized by~(13)C-NMR, DSC, GPC. It was found that the catalyst with MAO ascocatalyst performed with a higher activity toward ethylene(co)polymerization than that with TEA as cocatalyst. The catalyticactivity increased with increasing Al/Ti ratio. In the same time, thepolymer properties (e.g. melting temperature, molecular weight and itsdistribution) was influenced by polymerization temperature, pressure andcomonomer feed ratio. Therefore, the polymer properties could becontrolled through changing polymerization parameters.
     Although the catalyst activity, norborene incorporation rate wasimproved, compared with the before mentioned catalyst, but, the catalystperformance are still fairly low and the incorporation ability need futuredevelopment.
     4. A novel titanium complex bearing8-anilino-1-naphthalenesulfonic acid was synthesized and the structurewas confirmed by element analysis,~~1H-NMR,~(13)C-NMR, H-H COSY,SEM and MALDI-TOF MS. The ethylene polymerization andethylene-norborene copolymerization was carried out by using theobtained catalyst in conjunction with MAO or TEA as cocatalyst. Theeffect of reaction parameters on polymerization behaviors and polymer properties was studied by~(13)C-NMR, DSC and GPC. It was found that thesynthesized titanium complex/MAO catalyst system showed a uniformactive site and was very stable at high polymerization temperature. Thetitanium complex with MAO as cocatalyst performed with a highercatalyst activity toward ethylene polymerization and ethylene-norborenecopolymerization than that with TEA as cocatalyst and the catalyticactivity increased gradually with the Al/Ti ratio increased. Additionally,the novel catalyst shows very good copolymerization ability, theincorporation rate significantly improved compared with the catalyst usedin before. Narrow MWD and low Mw were observed with MAO ascocatalyst, but broad MWD and high Mw were observed with TEA ascocatalyst.
     In the same time, the polymer properties (e.g. melting temperature,molecular weight and norborene content) was influenced bypolymerization temperature, pressure, cocatalyst type and comonomerfeed ratio. Therefore, the polymer properties could be controlled throughchanging polymerization parameters. The ethylene-norborenecopolymerization is addition polymerization.
引文
[1] Galli P, Vecellio G. Polyolefins: The most promising large-volume materials for the21stcentury[J]. J. Polym. Sci. Part A:Polym. Chem.,2004,42:396-415
    [2]韩志超.聚烯烃技术发展与中国的机遇[C].第289次香山科学会议,北京,2006
    [3]孙文华.聚烯烃技术发展与中国的机遇[C].第289次香山科学会议,北京,2006
    [4]钱伯章.世界乙烯工业及其进展[J].石化技术与应用,2003,21:37-45
    [5]钱伯章.中国化工和石化业近期发展现状与进展[J].石油化工技术经济,2003,19:4-11
    [6]周韦慧.世界聚乙烯发展态势的分析和展望[J].中国石化,2004,8:52-54
    [7]洪定一.中国高分子工业技术进展[C].2005年全国高分子学术论文报告会,北京,2005
    [8] Ziegler K, Holzkamp E, Breil H, et al. Das MülheimerNormaldruck-Poly thylen-Verfahren[J]. Angew. Chem.,1955,67:541-547
    [9] Ziegler K. Folgen und Werdegang einer Erfindung Nobel-Vortrag am12Dezember1963[J].Angew. Chem.,1964,76:545-553
    [10] Ziegler K, Holzkamp E, Breil H, et al. Das MülheimerNormaldruck-Poly thylen-Verfahren[J]. Angew. Chem. Int. Ed.,1955,67:541-547
    [11] Natta G. Rundschau[J]. Angew. Chem.,1955,67:430.-431
    [12] Natta G. Stereospezifische Katalysen und isotaktische Polymere[J]. Angew. Chem.,1956,68:393-403
    [13] Natta G. Von der stereospezifischen Polymerisation zur asymmetrischen autokatalytischenSynthese von Makromolekülen Nobel-Vortrag am12Dezember1963[J]. Angew. Chem.,1964,76:553-556
    [14] Natta G. Une nouvelle classe de polymeres d'α-olefines ayant une régularité de structureexceptionnelle[J] J. Polym. Sci.,1955,16:143-154
    [15]朱博超,黄强,焦宁宁.聚烯烃催化剂的发展及我们的对策[J].高分子通报,2002,4:67-76
    [16]黄增芳,张玲,伍青.新型烯烃聚合催化剂研究进展[J].高分子通报,2006,5:58-64
    [17]黄葆同,陈伟.茂金属催化剂及其烯烃聚合物[M].北京:化学工业出版社,2000.1-4
    [18] Albizzati E, Giannini U, Collina G, et al. Polypropylene Handbook[M]. New York: MuniehVienna,1996
    [19] Albizzati E, Giannlni U, Collina G, et al. PolyProPylene Handbook[M]. New York:HanserPublishers,1996
    [20]肖士镜,余赋生.烯烃配位聚合催化剂及聚烯烃[M].北京:北京工业大学出版社,2002
    [21] Hennans J, Henrioulle P. PROCESS FOR THE PREPARATION OF A ZIEGLER-NATTATYPE CATALYST[P]. US3769233,1973
    [22] Longi P, Giannini U, Mazzocchi R, et al. Catalysts for the polymerization of olefins[P]. US4613655,1986
    [23]杨茹欣,赵燕,李炜,等.聚烯烃催化剂研究进展及需求预测[J].乙烯工业,2006,18:13-15
    [24] Galli P, Vecellio G. Technology:driving force behind innovation and growth ofpolyolefins[J].Prog. Polym. Sci.,2001,26:1287-1336
    [25] Allizzati E, Giaunini U, Morini G, et al. Recent advances in propylene polymerization withMgCl2supported catalysts[J]. Macromol. Symp.,1995,89:73-89
    [26] Natta G, Pino P, Mazzanti G, et al. Bis(cyclopentadienyl) titanium dichloridesalkylaluminum complexes as catalysts for the polymerization of ethylene[J]. J. Am. Chem.Soc.,1957,79:5072-5073
    [27] Breslow DS, Newburg NR. Bis(cyclopentadienyl) titanium dichlorides alkylaluminumcomplexes as soluble catalysts for the polymerization of ethylene[J]. J. Am. Chem. Soc.,1959,81:81-86
    [28] Reichert K H, Meyer K R. Kinetics of Low Pressure Polymerization of Ethylene by SolubleZiegler Catalysts[J]. Makromol. Chem.,1973,169:163-176
    [29] Sinn H, Kaminsky W, Vollmer H J, et al.“Living Polymers” on Polymerization withExtremely Productive Ziegler Catalysts[J]. Angew. Chem. Int. Ed.,1980,19:390-392
    [30] Kaminsky W, Arndt M, Metallocenes for polymer catalysis. Polymer Synthesis/PolymerCatalysis[M]. Berlin: Springer-Verlag,1997
    [31] Coates G W, Waymouth RM. Oscillating Stereocontrol in the Polymerization of Propylene:A New Strategy for the Synthesis of Thermoplastic Elastomeric Polypropylene[J]. Science,1995,267:217-218
    [32] Kaminsky W, Hinrichs B, Rehder D. Diolefin polymerization by half-sandwich complexesand MAO as cocatalyst[J]. Polymer,2002,43:7225-7229
    [33] Kaminsky W, Spiehl R. Copolymerization of cycloalkenes with ethylene in presence ofchiral zirconocene catalysts[J]. Makromol. Chem.,1989,190:515-526
    [34] Kaminsky W, Bark A, Arndt M. New polymers by homogenous zirconocene/aluminoxanecatalysts[J]. Makromol. Chem. Macromol. Symp.,1991,47:83-93
    [35] Srinivasa R S, Sivaram S. Homogeneous metallocenemethylaluminoxane catalyst systemsfor ethylene polymerization[J]. Prog. Polym. Sci.,1995,20:309-367
    [36] Pedeutour J N, Radhakrishnan K, Cramail H, et al. Reactivity of Metallocene Catalysts forOlefin Polymerization: Influence of Activator Nature and Structure[J]. Macromol. RapidCommun.,2001,22:1095-1123
    [37] Smith G M, Palmaka S W, Roger J S, et al. Polyalkylaluminoxane Compositions Formed byNon-Hydrolytic Means[P]. WO9723288, Akzo-Nobel,1997
    [38] Kaminsky W. Highly active metallocene catalysts for olefin polymerization[J]. Dalton.Trans,1998,1413-1418
    [39] Kaminsky W, Renner F. High Melting Polypropenes by Silica-Supported ZirconoceneCatalysts[J]. Makromol. Chem. Rapid Commun.,1993,14:239-243
    [40] Mulhaupt R, Duschek T, Fischer D, et al. Novel polypropene materials derived fromvinylidene-terminated oligopropenes[J]. Polym. Adv. Technol.,1993,4:439-449
    [41] Sinn H, Kaminsky W, Vollmer HJ, et al. Living polymers on polymerization withextremely productive Ziegler catalysts[J]. Angew. Chem., Int. Ed. Engl.,1980,19:390-392
    [42]黄葆同,沈之荃.烯烃、双烯烃配位聚合进展[M].北京:科学出版社,1998
    [43] Kaminsky W. Highly active metallocene catalysts for olefin polymerization[J]. DaltonTrans,1998,1413-1418
    [44] SRI International Metallocenes: Catalysts for New Polyolefin generation[C].1993
    [45]杨茹欣,徐光华,何颖.聚烯烃催化剂的研究进展及其应用[J].上海塑料,2009,3:6-8
    [46] Kakugo M. Catalyst for olefin polymerization and polymeriz ation Process Producing highyield polymers and producing amorphous olefin polymers easily[P]. PCT Int. WO2370,1987
    [47] Ishihara N, Schaverien T, Karamoto M. Crystalline syndiotactic polystyrene[J].Macromolecules,1986,19:2464-2481
    [48] Ueki, Satosahi, Furuhashi. Olefin polymerization catalyst[P]. US Patent5223465,1993
    [49]许学翔,谢光华. β-二酮钛配合物/甲基铝氧烷催化体系用于苯乙烯的间规聚合[J].高分子学报,1997,2:253-259
    [50]谢光华,许学翔.一种合成间规聚苯乙烯催化剂体系及其制法[P]. CN114376.2,1996
    [51] Scollard J D, McConville D H, Payne N C, et al. Polymerization of α-Olefins byChelating Diamide Complexes of Titanium[J]. Macromolecules,1996,29:5241-5243
    [52] Scollard J D, McConville D H. Living polymerization of α-olefins by chelating diamidecomplexes of titanium[J]. J. Am. Chem. Soc.,1996,118:10008-10009
    [53] Yoshida Y, Matsui S, Fujita T. Post-metallocenes: New bis(pyrrolyl-2-aldiminato) titaniumcomplexes for ethylene polymerization[J]. Chem. Lett.,2000,1270-1271
    [54] Matsuo Y, Mashima K, Tani K. Synthesis and charactrization ofbis-(iminopyrrolyl)zirconium complexes[J]. Chem. Lett.,2000,1114-1115
    [55] Dawson D M, Walker D A, Bochmann M. Synthesis and reactivity of sterically hinderediminopyrrolato complexes of zirconium, iron, cobalt and nickel[J]. J. Chem. Soc. DaltonTrans.,2000,459-466
    [56] Huang J H., Chi L S, Peng S M. Zirconium Complexes Containing Bidentate PyrroleLigands: Synthesis, Structural Characterization and Ethylene Polymerization[J].Organometallics,2001,20:5788-5791
    [57] Yoshida Y,Matsui S, Fujita T. New Titanium Complexes Having Two Pyrrolide-ImineChelate Ligands: Syntheses, Structures and Ethylene Polymerization Behavior[J].Organometallics,2001,20:4793-4799
    [58] Yoshida Y, Saito J, Fujita T. Living ethylene/norbornene copolymerisation catalyzed bytitanium complexes having two pyrrolide-imine chelate ligands[J]. Chem. Commun.,2002,1298-1299
    [59]张军.新型钛族烯烃聚合催化剂的合成及其催化性能研究[D].上海:复旦大学,2006
    [60] Matsui S, Mitani M, Saito J, et al. Post-metallocenes: a newbis(salicylaldiminato)zirconium complex for ethylene polymerization[J]. Chem. Lett.,1999,1263-1264
    [61] Matsui S, Tohi Y, Mitani M, et al. New bis(salicylaldiminato) titamium complexes forethylene polymerization[J]. Chem. Lett.,1999,1065-1066
    [62] Matsui S, Mitani M, Saito J, et al. Post metallocenes: catalytic perfomance of newbis(salicylaldiminato) zirconium complexes for ethylene polymerization[J]. Chem. Lett.,2000,554-555
    [63] Saito J, Mitani M, Matsui S, et al. Polymerization of1-hexene withbis[N-(3-tert-butylsalicylidene)phenylaminato]titanium(IV)dichlo-ride usingiBu3Al/Ph3CB(C6F5)4as a cocatalyst[J]. Macromol. Rapid Commun.,2000,21:1333-1336
    [64] Kojoh S, Matsugi T, Saito J, et al. New monodisperse ethylene-propylene copolymers and ablock copolymer created by a titanium complex having fluorine-containing phenocy-iminechelate ligands[J]. Chem. Lett.,2001,822-823
    [65]聂玉静.钛锆双核茂金属和非茂钛金属化合物的合成及其催化乙烯及甲基丙烯酸甲酯聚合[D].杭州:浙江大学,2007-04-01
    [66] Mitani M, Mohri J, Yoshida Y, et al. Living polymerization of ethylene catalyzed bytitanium complexes having fluorine-containing phenoxy-imine chelate ligands[J]. J. Am.Chem. Soc.,2002,124:3327-3336
    [67] Saito J, Mitani M, Onda M, et al. Microstructure od highly syndiotactic livingpoly(proprylene)s produced from a titanium complex with chelating fluorine-containingphenoxyimine ligand (an FI catalyst)[J]. Macromol. Rapid Commun.,2001,22:1072-1075
    [68] Saito J, Mitani M, Mohri J, et al. Highly syndiospecific living polymerization of propyleneusing a titanium complex having two phenoxy-imine chelate ligands[J]. Chem. Lett.,2001:576-577
    [69] Mitani M, Furuyama R, Mohri J, et al. Fluorine-and trimethylsilyl-containingphenoxy-imine Ti complex for highly syndiotactic living polypropylenes with extremelyhigh melting temperatures[J]. J. Am. Chem. Soc.,2002,124:7888-7889
    [70] Saito J, Mitani M, Matsui S, et al. A new titanium complex having two phenoxy-iminechelate ligands for ethylene polymerization[J]. Macromol. Chem. Phys.,2002,203:59-65
    [71] Ishii S, Saito J, Mitani M, et al. Highly active ethylene polymerization catalysts based ontitanium complexes having two phenoxy-imine chelate ligands[J]. J. Mol. Catal. A: Chem.,2002,179:11-16
    [72] Ishii S, Mitani M, Saito J, et al. Zirconium complexes having phenocy/cycloalkyliminechelate ligands for the polymerization of ethylene for vinyl-terminated low molecularweight[J]. Chem. Lett.,2002,740-741
    [73] Matsui S, Fujita T. FI catalysts: super active new ethylene polymerization catalysts[J]. Catal.Today,2001,66:63-73
    [74] Matsui S, Inoue Y, Fujita T. Development of super active new olefin polymerizationcatalysts FI Catalyst[J]. J. Synth. Org. Chem. Jpn.,2001,59:232-240
    [75] Matsui S, Mitani M, Saito J, et al. A family of zirconium complexes having twophenoxy-imine chelate ligands for olefin polymerization[J]. J. Am. Chem. Soc.,2001,123:6847-6856
    [76] Matsukawa N, Matsui S, Mitani M, et al. Ethylene polymerization activity under practicalconditions displayed by zirconium complexes having two phenoxy-imine chelate ligands[J].J. Mol. Catal. A: Chem.,2001,169:99-104
    [77] Oakes D, Kimberley B S, Gibson V C, et al. The surprisingly beneficial effect of softdonors on the performance of early transition metal olefin polymerisation catalysts[J]. Chem.Commun.,2004,2174-2175
    [78] Hu W Q, Sun X L, Wang C, et al. Synthesis and Characterization of novel teridentate [NOP]titanium complexes and their application to copolymerization and polymerization ofethylene[J]. Organometallics,2004,23:1684-1688
    [79] Wang C, Ma Z, Sun X L, et al. Synthesis and Characterization of Titanium(IV) ComplexesBearing Monoanionic [O-NX](X=O, S, Se) Tridentate Ligands and Their Behaviors inEthylene Homo-and Copolymerizaton with1-Hexene[J]. Organometallics,2006,25,3259-3266
    [80]李晓芳.非茂过渡金属烯烃聚合催化剂的研究[D].长春:长春应化所,2003
    [81] Li X F, Dai K, Ye W P, et al. New titanium complexes bearing two β-ketoiminato chelateligands: Syntheses, structures, and olefin polymerization activities[J]. Organometallics,2004,23:1223-1230
    [82] Tang L M, Hu T, Pan L, et al. Ethylene/α-olefin copolymerization withbis(β-enaminoketonato) titanium complexes activated with MMAO[J]. J. Polym. Sci. Part A:Polym. Chem.,2005,43:6323-6330
    [83] Tang L M, Duan Y Q, Pan L, et al. Copolymerization of ethylene and cyclopentene withbis(β-enaminoketonato) titanium complexes[J]. J. Polym. Sci. Part A: Polym. Chem.,2005,43:1681-1689
    [84] Sobota P, Przybylak K, Utko J, et al. Syntheses, structure, and reactivity of chiral titaniumcompounds: procatalysts for olefin polymerization[J]. Chem. Eur. J.2001,7:951-958
    [85] Scollard J D, McConville D H, Payne N C, et al. Polymerization of α-olefins by chelatingdiamide complexes of titanium[J]. Macromolecules,1996,29:5241-5243
    [86]宋东坡.中性镍催化剂催化烯烃聚合的研究[D].长春:吉林大学,2008
    [87] Patton J T, Bokota M M, Abboud K A. Indium-bridged chelating diamide group IV metalolefin polymerization catalysts[J]. Organometallics,2002,21:2145-2148
    [88] Kim S J, Jung I N, Yoo B R, et al. Sterically controlled silacycloalkyl diamide complexesof titanium(IV): synthesis, structure and catalytic behavior of (cycl)Si(NBu)TiCl [(cycl)Si=silacyclobutane, silacyclopentane, silacyclop-entene and silacyclohexane]t22[J].Organometallics,2001,20:2136-2144
    [89] Male N A H, Thornton-Pett M, Bochmann M. Synthesis and structure of zirconium(IV)alkyl complexes with bi-, tri-, tetra-and penta-dentate amido ligands[J]. J. Chem. Soc.,Dalton Trans,1997,2487-2494
    [90] Baumann R, Stumpf R, Davis W M, et al. Titanium and zirconium complexes that containthe tridentate diamido ligands [(i-PrN-o-C6H4)2O]2-([i-PrNON]2-) and
    [(C6H11N-o-C6H4)2O]2-([CyNON]2-)[J]. J. Am. Chem. Soc.,1999,121:7822-7836
    [91] Yoshida Y, Matsui S, Fujita T. Post-metallocenes: new bis(pyrrolyl-2-aldimi-nato)Titanium complexes for ethylene polymerization[J]. Chem. Lett.,2000,1270-1271
    [92] Averbuj C, Tish E, Eisen M S. Stereoregular polymerization of α-olefins catalyzed by chiralgroup4benzamidinate complexes of C1and C3symmetry[J]. J. Am. Chem. Soc.,1998,120:8640-8646
    [93] Jayaratne K C, Sita L R. Stereospecific living Ziegler-Natta polymerization of1-hexene[J].J. Am. Chem. Soc.,2000,122:958-959
    [94] Saito J, Mitani M, Onda M, et al. Microstructure of highly syndiotactic “living”poly(proprylene)s produced from a titanium complex with chelating fluorine-containingphenoxyimine ligand (an FI catalyst)[J]. Macromol. Rapid Commun.,2001,22:1072-1075
    [95] Tian J, Coates G W. Development of a diversity-based approach for the discovery ofstereoselective polymerization catalysts: identification of a catalyst for the synthesis ofsyndiotactic polypropylene[J]. Angew. Chem., Int. Ed.,2000,39:3626-3629
    [96] Bazan G C. Tuning a catalyst for new plastics[J]. Science,1996,271:1363
    [97] Sen, A. Mechanistic aspects of metal-catalyzed alternating copolymerizat-ion of olefinswith carbon monoxide[J]. Acc. Chem. Res.,1993,26:303-310
    [98]杨泽. Ti-Mg催化剂的活性及载体研究[D].杭州:浙江大学,2008
    [99] Zhong C F, Gao M Z, Mao B Q. Influence of methylaluminoxane and alkylaluminiums onpropylene polymerization at high temperature with TiCl4/MgCl2/diether catalysts[J]. Catal.Commun.,2005,6:173-176
    [100]刘海涛,高明智,杜宏斌,等.用于烯烃聚合的催化剂组分及其催化剂[P].CN1542024A,2004.
    [101] Fu Z S, Dong Q, Li N, et al. Influence of polymerization conditions on the structure andproperties of polyethylene/polypropylene in-reactor alloy synthesized in the gas phase witha spherical Ziegler–Natta catalyst[J]. J. Appl. Polym. Sci.,2006,101:2136-2143
    [102] Peukert M, Keim W. A new nickel complex for the oligomerization of ethylene[J].Organometallics,1983,2:594-601
    [103] Johnson L K, Killian C M, Brookhart M. New Pd(II)-and Ni(II)-Based Catalysts forPolymerization of Ethylene and α-Olefins[J]. J. Am. Chem. Soc.,1995,117:6414-6415
    [104] Johnson L K, Mecking S, Brookhart M. Copolymerization of Ethylene and Propylene withFunctionalized Vinyl Monomers by Palladium(II) Catalysts[J]. J. Am. Chem. Soc.,1996,118:267-278
    [105] Brookhart M, Wangner M I. Synthesis of a Stereoblock Polyketone through AncillaryLigand Exchange[J]. J. Am. Chem. Soc.,1996,118:7219-7220
    [106] Killian C M, Johnson L K, Brookhart M. Preparation of Linear Olefins Using CationicNickel(II) Diimine Catalysts[J]. Organometallics,1997,16:2005-2016
    [107] Younkin T R, Connor E F, Grubbs R H. Neutral single-component Nickel(II) polyolefincatalysts that tolerate heteroatoms[J]. Science,2000,281:460-462
    [108] Johnson L K, Killian C M, Brookhart M. New Pd(II)-and Ni(II)-based catalysts forpolymerization of ethylene and alpha-olefins[J]. J. Am. Chem. Soc.,1995,117:6414-6415
    [109] Johnson L K, Mecking S, Brookhart M. Copolymerization of ethylene and propylene withfunctionalized vinyl monomers by palladium(II) catalysts[J]. J. Am. Chem. Soc.,1996,118:267-268
    [110] Johnson L, Bennett A, Dobbs K, et al. PMSE-Preprints[C].223rd ACS National Meeting,American Chemical Society: Washington, DC:2002,86:319
    [111] McLain S J, Sweetman K J, Johnson L K, et al. PMSE-Preprints[C].223rd ACS NationalMeeting, American Chemical Society: Washington, DC:2002,86:320-321
    [112] Fernandes S, Marques M M, Correia S G, et al. Diimine nickel catalysis of ethylenecopolymerization with polar cyclic monomers[J]. Macromol. Chem. Phys.,2000,201:2566-2572
    [113]黄远标.新型过渡金属烯烃聚合催化剂的合成及烯烃聚合反应[D].福州:福建师范大学,2006
    [114] Marques M M, Fernandes S, Correia S G, et al. Synthesis of polar vinyl monomer-olefincopolymers by α-diimine nickel catalyst[J]. Polym. Int.,2001,50:579-587
    [115] Mclain S J, Feldman J, Mccord E F. Addition polymerization of cyclopentene with nickeland palladium catalysts[J]. Macromolecules,1998,31:6705
    [116] Small B L, Brookhart M, Bennett A M A. Highly active iron and cobalt catalysts for thepolymerization of ethylene[J]. J. Am. Chem. Soc.,1998,120:4049-4058
    [117] Britovsek G J P, Gibson V C. Novel olefin polymerization catalysts based on iron andcobalt[J]. J. Chem. Soc., Chem. Commun.,1998,13:849-856
    [118] Britovsek G J P, Bruce M, Gibson V C, et al. Iron and cobalt ethylene polymerizationcatalysts bearing2,6-bis(imino)pyridyl ligands: synthesis, structures, and polymerizationstudies[J]. J. Am. Chem. Soc.,1999,121:8728-8740
    [119] Pellecchia C, Mazzeo M, Pappalardo D. Isotactic-specific polymerization of propene withan iron-based catalyst: polymer end groups and regiochemistry of propagation[J]. Macromol.Rapid Commun.,1998,19:651-655
    [120] Small B L, Brookhart M. Polymerization of propylene by a new generation of iron catalysts:mechanisms of chain initiation, propagation, and termination[J]. Macromolecules,1999,32:2120-2130
    [121] Bennett A M A, Feldman J, McCord E F. Copolymerization of olefins using2,6-diacylpy-ridimebisimine complexes as catalysts[P]. PCT Int. Appl. WO9962967,1999
    [122] Lutz E F. Shell higher olefins process[J]. J. Chem. Edu.,1986,63:202-203
    [123] Keim W, Behr A, Limbacker B, et al. Novel nickel-oligomerization catalysts witharsenic-oxygen chelate ligands[J]. Angew. Chem., Int. Ed. Engl.,1983,22:503
    [124] Keim W, Behr A, Kraus G. Influences of olefinic and diketonate ligands in thenickel-catalyzed linear oligomerization of1-butene [J]. J. Organomet. Chem.1983,251:377-391
    [125] Peuckert M, Keim W. Heterogenization of homogeneous nickel-based ethyleneoligomerization catalysts[J]. J. Mol. Catal.,1984,22:289-295
    [126] Keim W. Advances in olefin, cycloolefin and diolefin polymerization[J]. Makromol. Chem.,Macromol. Symp.,1993,66:225-230
    [127] Kissin Y V. Co-oligomerization of ethylene and higher linear alpha olefins. II. Olefinreactivities in various reaction steps of co-oligomerization with nickel ylide-based system[J].J. Poly. Sci., Part A: Polym. Chem.,1989,27:623-637
    [128] Keim W. Nickel: an element with wide application in industrial homogeneous catalysis[J].Angew. Chem., Int. Ed. Engl.1990,29:235-244
    [129] Keim W, Schulz R P. Chelate control in the nickel-complex catalysed homogeneousoligomerization of ethylene[J]. J. Mol. Catal.,1994,92:21-33
    [130] Keim W, Kowalt F H, Goddard R, et al. Novel coordination of(benzoylmethylene)triphenylphosphorane in a nickel oligomerization catalyst[J]. Angew.Chem., Int. Ed. Engl.,1978,17:466-467
    [131] Klabunde U, Ittel S D. Nickel catalysis for ethylene homo-and copolymerization[J]. J. Mol.Catal.,1987,41:123-134
    [132] Desjardins S Y, Carvell K J, Hoare J Let al. Single component N-O chelated arylnickel(II)complexes as ethene polymerisation and CO/ethene copolymerisation catalysts. Examplesof ligand induced changes to the reaction pathway[J]. J. Organomet. Chem.,1997,544:163-174
    [133] Desjardins S Y, Carvell K J, Jin H, et al. Insertion into the nickel-carbon bond of N-Ochelated arylnickel(II) complexes. The development of single component catalysts for theoligomerisation of ethylene[J]. J. Organomet. Chem.,1996,515:233-243
    [134] Ittel S D, Johnson L K, Brookhart M. Late-metal catalysts for ethylene homo-andcopolymerization[J]. Chem. Rev.,2000,100:1169-1203
    [135] Mecking S, Held A, Bauers F M. Aqueous catalytic polymerization of olefins[J]. Angew.Chem., Int. Ed. Engl.,2002,41:544-561
    [136] Held A, Bauers F M, Mecking S. Coordination polymerization of ethylene in water by Pd(II)and Ni(II) catalysts[J]. Chem. Commun.,2000,301-302
    [137] Held A, Mecking S. Coordination polymerization in water affording amorphouspolyethylenes[J]. Chem. Eur. J.,2000,6:4623-4629
    [138] Bauers F M, Mecking S. Aqueous homo-and copolymerization of ethylene by neutralnickel(II) complexes[J]. Macromolecules,2001,34:1165-1171
    [139] Soula R, Novat C, Tomov A, et al. Catalytic polymerization of ethylene in emulsion[J].Macromolecules,2001,34:2022-2026
    [140] Tomov A, Broyer J P, Spitz R. Emulsion polymerization of ethylene in water mediumcatalysed by organotransition metal complexes[J]. Macromol. Symp.,2000,150:53-58
    [141] Pietsch J, Braunstein P, ChauvinY. Nickel phenyl complexes with chelating κ2-P,O ligandsas catalysts for the oligomerization of ethylene into linear α-olefins[J]. New J. Chem.,1998,22:467-472
    [142] Heinicke J, K hler M, Peulecke N, et al.2-Phosphanylphenolate nickel catalysts for thepolymerization of ethylene[J]. Chem. Eur. J.,2003,9:6093-6107
    [143] Ostonja Starzewski A K, Witte J. Control of the molecular weight of polyethylene insynthesis with bis(yield)nickel catalysts[J]. Angew. Chem., Int. Ed. Engl.1987,26:63-64
    [144] Ostonja Starzewski A K, Bayer G M. Polyacetylene in polyacrylonitrile matrix: novelsoluble matrix polyacetylenes by ylide-nickel catalysis[J]. Angew. Chem., Int. Ed. Engl.,1991,30:961-962
    [145] Ostonja Starzewski A K, Born L. Electronic structure and reactivity of ylide system[J].Organometallics,1992,11:2701-2704
    [146] Ostoja Starzewski A K, Grubbs R H. Scope of olefin polymerization nickel catalysts andresponse[J]. Science,2000,288:1749
    [147] Bonnet M C, Dahan F, Ecke A, et al. Synthesis of cationic and neutral methallyl nickelcomplexes and application in ethene oligomerisation[J]. J. Chem. Soc., Chem. Commun.,1994,615-616
    [148] Komon Z J A, Bu X H, Bazan G C. Synthesis of butene-ethylene andhexene-butene-ethylene copolymers from ethylene via tandem action of well-definedhomogeneous catalysts[J]. J. Am. Chem. Soc.,2000,122:1830-1831
    [149] Komon Z J A, Bu X H, Bazan G C. Synthesis, characterization, and ethyleneoligomerization action of [(C6H5)2PC6H4C(O-B(C6F5)3)O-2P,O]Ni-(3-CH2C6H5)[J]. J. Am.Chem. Soc.,2000,122:12379-12380
    [150] Wang C M, Friedrich S, Younkin T R, et al. Neutral nickel(II)-based catalysts for ethylenepolymerization[J]. Organometallics,1998,17:3149-3151
    [151] Younkin T R, Connor E F, Grubbs R H. Neutral single-component nickel(II) polyolefincatalysts that tolerate heteroatoms[J]. Science,2000,281:460-462
    [152]李忠水.新型P^N配体过渡金属烯烃聚合催化剂的合成及烯烃聚合反应[D].福州:福建师范大学,2007
    [153] Hicks F A, Jenkins J C, Brookhart M. Synthesis and ethylene polymerization activity of aseries of2-anilinotropone-based neutral nickel(II) catalysts[J]. Organometallics,2003,22:3533-3545
    [154] S S, Joe D J, Na S J, et al. Ethylene/polar norbornene copolymerizations by bimetallicsalicylaldimine-nickel catalysts[J]. Macromolecules,2005,38:10027-10033
    [155] Johnson L K, Bennett A M A, Ittel S D, et al. Polymerization of ethylene[P]. WO PatentApplication9830609to DuPont,1997
    [156] Tian G, Boone W, Novak B M. Neutral Palladium complexes as catalysts for olefin-methylacrylate copolymerization: A cautionary tale[J]. Macromolecules,2001,34:7656-7663
    [157] Coates G W, Waymouth R M. Oscillating Stereocontrol: A Strategy for the Synthesis ofThermoplastic Elastomeric Polypropylene[J]. Science,1995,267:217-219
    [158]孙天旭,王立,董晓臣,等.等规-无规立体嵌段聚丙烯链增长机理[J].高分子通报,2006,10:29-35
    [159] Hustad P D, Kuhlman R L, Arriola D J, et al. Continuous Production of Ethylene-BasedDiblock Copolymers Using Coordinative Chain Transfer Polymerization[J].Macromolecules,2007,40:7061-7064
    [160] Arriola D J, Carnahan E M, Huatad P D, et al. Catalytic Production of Olefin BlockCopolymers via Chain Shuttling Polymerization[J]. Science,2006,312:714-719
    [161] Hustad P D. Frontiers in Olefin Polymerization: Reinventing the World’s Most CommonSynthetic Polymers[J]. Science,2009,325:704-707
    [162]罗祥,伍青.环烯烃加成聚合[J].石油化工,2001,30:567-570
    [163] Melanie S Sanford,Jennifer A Love,Robert H Grubbs. Mechanism and Activity ofRuthenium Olefin Metathesis Catalysts [J]. J. Am. Chem. Soc.2001,123:6543-6554
    [164] Delaude L, Jan D, Simal F. Ruthenium-based catalysts for the ring-opening metathesispolymerization (ROMP) of functionalized cyclic olefins [J]. Macromol. Symp.,2000,153:133-144
    [165] Wendt R A, Fink G. Ethene-norbornene copolymerizations using two different homogeneousmetallocene catalyst systems and investigations of the copolymer microstructure [J]. Journalof Molecular Catalysis A: Chemical,2003,203:101-111
    [166]吕飞.环烯烃共聚物的制备过程研究[D].杭州:浙江大学,2006
    [167] Triott I, Boggioni L, Ferro D R. Alternating Isotactic Ethylene-Norbornene Copolymers byC1-Symmetric Metallocenes: Determination of the Copolymerization Parameters andMechanistic Considerationa on the Basis of Pentad Analysis [J]. Macromolecules,2004,37:9681-9693
    [168] Rosa C D, Buono A, Auriemma F, et al. Crystal Structure of AlternatingEthylene-Norbornene Copolymer[J]. Macromolecules,2004,37:9489-9502
    [169] Tenney, Linwood P, Shen. Substrate for optical recording media and molding compositiontherefore[P]. US5115041,1992
    [170] Shen, Dennis C. Porcess for making a Polymer for an optical substrate by hydrogenating acyclo-olefin copolymer[P]. US5206306,1993
    [171] Goodall, Brian L. Oxide cocatalysts in ring opening polymerization of polycycloolefins [P].US5155188,1992
    [172] Shen, Dennis C, Tenney. Porcess for making a polymer for an optical substrate byhydrogena-ting a cycloolefin copolymer[P]. US5319034,1994.
    [173] Nishi, Yoshikatsu, Ohshima. Ring-opening polymer and a process for production thereof [P].US5599882,1997
    [174] Nishi, Yoshikatsu, Ohshima. Ring-opening hydrogenated copolymer and process forproducing the same [P]. US5191026,1993
    [175] Nishi, Yoshikatsu, Ohshima. Ring-opening hydrogenated copolymer and process forprod-ucing the same [P]. US5580934,1996
    [176] Hosaka, Tohru Mizuno, Hideharu. Hydrogenated products of thermoplastic norbornenepolymers,their production,substrates for optical elements obtained by molding them,optical elements and lenses [P]. US5462995,1995
    [177] Hoska, Tohru, Mizuno. Hydrogenated products of thermoplastic norbronene polymers,theirproduction,substrates for optical elements obtained by molding them,optical elements andlenses [P]. US5462995,1995
    [178]宫木伸行,宫本佳和,福原诚二,等.降冰片烯衍生物及其降冰片烯系开环聚合物[P].CN1568302,2005.
    [179] Yi, Kong S, Tenney. Continuous process for making melt-processable optical gradering-opened polycyclic (co)polymers in a single-stage multi-zoned reactor [P]. US5439992,1995
    [180] Ruchatnz D, Fink G. Ethene-Norbornene Copolymerization Using HomogenousMetallocene and Half-Sandwich Catalysts: Kinetics and Relationships between CatalystStructure and Polymer Strutcture.1.kinetics of the Ethene-Norbornene CopolymerizationUsing [(Isopropylidene)(è5-inden-l-ylidene-è5-cyclopen tadienyl)] zirconiumDichloride/Methylaluminoxane Catalyst [J]. Macromolecules,1998,31:4669-4673
    [181] Tina M Trnka, Robert H Grubbs. The Development of L2X2RudCHR Olefin MetathesisCatalysts: An Organometallic Success [J]. Acc. Chem. Res.,2001,34:18-29
    [182] Zhang D F, Huang J L, Qian Y L. Ring-opening metathesis polymerization of nobronene anddicyclopentadiene catalyzed by Cp Ti Cl2RMgX [J]. Journal of Molecular Catalysis A:Chemical,1998,133:131-133
    [183]Novak B M, Grubbs R. H. The Ring Opening Metathesis Polymerization of7-0xabicyclo
    [2.2.1]hept-5-ene Derivatives: A New Acyclic Polymeric Ionophore [J]. J. Am. Chem. Soc.,1988,110:960-961
    [184] Grubbs R H. The Development of Functional Group Tolerant Romp Catalysts [J].Macromol.Sci-Pure Appl. Chem.,1994,31:1829-1833
    [185] Chu P P, Cheng M H. Conformational conversion and local packing of cyclic olefincopolymers [J]. Macromocules,2000,33:9360-9366
    [186]朱银邦.负载化茂金属催化剂及催化丙稀聚合的研究[D].杭州:浙江大学,2002
    [187] Wnag Q, Weng J H, Fan Z Q. Influence of mixed aluminoxane systems on ethylenenobornene copolymerization catalyzed by metallocene [J]. Macromol Rapid Commun,1997,18:1101-1107
    [1]王光娜.新型Ziegler-Natta催化剂用于乙烯淤浆聚合的研究[D].大庆:东北石油大学,2011
    [2]姜涛. MgCl2/SiO2复合载体催化剂用于丙烯均聚及多相共聚的研究[D].北京:北京化工大学,2005
    [3]洪定一.塑料工业手册-聚烯烃[M].北京:化学工业出版社,1999
    [4]黄葆同,沈之荃.烯烃双烯烃配位聚合进展[M].北京:科学出版社,1998
    [5]肖士镜,于赋生.烯烃的配位聚合及聚烯烃催化剂[M].北京:化学工业出版社,2002
    [6]黄付玲,孙永成,韩云光,等. Si02载体茂金属催化剂研究述评[J].江苏化工,2004,32:21-24
    [7] Togni A, Halterman R L. Metallocenes[M]. Wiley-VCH,1998
    [8] Fink G, Mulhaupt R, Brintzinger HH. Ziegler Catalysts[M]. Springer,1995
    [9] Jongsomjit B, Ngamposri S, Praserthdam P. Catalytic Activity During Copolymerization ofEthylene and1-Hexene via Mixed TiO2/SiO2-Supported MAO with rac-Et[Ind]2ZrCl2Metallocene Catalyst[J]. Molecules,2005,10:672-678
    [10] Morilloa A, Paradab A, Ibarrac D, et al. Ethylene polymerization using metallocenessupported on MgCl2/SiCl4-n(n-C6H13O)n[J]. Des. Monomers Polym.,2007,10:507-516
    [11] Klapper M, Nenov S, Diesing T, et al. Morphology Control in Metallocene Polymerization;Organic Supports vs. Non-aqueous Emulsion Polymerization[J]. Macromol. Symp.,2007,260:90-97
    [12] Kaminsky W, Küpler K, Niedoba S. Olefin polymerization with highly active solublezirconium compounds using aluminoxane as cocatalyst[J]. Makromol. Chem. Macromol.Symp.,1986,3:377-387
    [13] Frediani M, Sémeril D, Comucci A, et al. Ultrahigh-molecular-weight poly-ethylene byusing a titanium calix[4]arene complex with high thermal stability under polymerizationconditions[J]. Macromol. Chem. Phys.,2007,208:938-945
    [14] Wang Q, Song C L, Xu J, et al. NMR spectroscopic study on copolymer ofethylene-norbornene[J]. Chinese J. Polym. Sci.,1997,15:248-253
    [15] Tsujino T, Saeguss T, Furukawa J. Polymerization of norbornene by modifiedZiegler-catalysts[J]. Makromol. Chem.,1965,85:71-79
    [1]黄付玲,孙永成,韩云光,等. Si02载体茂金属催化剂研究述评[J].江苏化工,2004,32:21-24
    [2] Togni A, Halterman RL. Metallocenes[M]. Wiley-VCH,1998
    [3] Fink G, Mulhaupt R, Brintzinger H H. Ziegler Catalysts[M]. Springer,1995.317
    [4] Jongsomjit B, Ngamposri S, Praserthdam P. Catalytic Activity During Copolymerization ofEthylene and1-Hexene via Mixed TiO2/SiO2-Supported MAO with rac-Et[Ind]2ZrCl2Metallocene Catalyst[J]. Molecules,2005,10:672-678
    [5] Morilloa A, Paradab A, Ibarrac D, et al. Ethylene polymerization using metallocenessupported on MgCl2/SiCl4-n(n-C6H13O)n[J]. Des. Monomers Polym.,2007,10:507-516
    [6] Klapper M, Nenov S, Diesing T, et al. Morphology Control in Metallocene Polymerization;Organic Supports vs. Non-aqueous Emulsion Polymerization[J]. Macromol. Symp.,2007,260:90-97
    [7] Kaminsky W, Küpler K, Niedoba S. Olefin polymerization with highly active solublezirconium compounds using aluminoxane as cocatalyst[J]. Makromol. Chem. Macromol.Symp.,1986,3:377-387
    [8] Frediani M, Sémeril D, Comucci A, et al. Ultrahigh-molecular-weight polyethylene by usinga titanium calix[4]arene complex with high thermal stability under polymerizationconditions[J]. Macromol. Chem. Phys.,2007,208:938-945
    [9]张春雨,王胜伟,张学全,等.用于制备间同立构聚苯乙烯的催化剂及间同立构聚苯乙烯的制备方法[P].中国专利,申请号:201210132658.9
    [10]黄葆同,沈之荃.烯烃双烯烃配位聚合进展[M].北京:科学出版社,1998
    [11]肖士镜,于赋生,烯烃的配位聚合及聚烯烃催化剂[M].北京:化学工业出版社,2002
    [12] Long Y Y, Ye W P, Shi X C, et al. Living copolymerization of ethylene with norbornenemediated by heteroligated (Salicylaldiminato)(β-enaminoketonato)titanium catalysts[J]. J.Polym. Sci. Part A: Polym. Chem.,2009,47:6072-6082
    [13]李永飞,伍青.乙烯/降冰片烯共聚物的合成及其结构[J].西安工业大学学报,2010,30:449-453
    [1]刘斌.刚性二茂铁衍生物的合成、性质研究及在Heck反应中的应用[D].郑州:郑州大学,2006
    [2] Herrmann W A, Brossmer C, Reisinger C. P, et al. Palladacycles: Efficient New Catalysts forthe Heck Vinylation of Aryl Halides[J]. Chem.–Eur. J.,1997,3:1357-1364
    [3]王德平. Dabco促进的过渡金属钯或铜催化偶联反应研究[D].长沙:湖南师范大学,2006
    [4]任格瑞.钯、铜化合物催化碳—碳键生成反应研究[D].郑州:郑州大学,2010
    [5] Keim W, Schulz R P. Chelate control in the nickel-complex catalysed homogeneousoligomerization of ethylene[J]. J. Mol. Catal.1994,92,21-33
    [6] Meijboom N, Van Doorn J A, Drent E, et al. Catalyst compositions and process forcopolymerizing Co with one or more olefinically unsaturated compounds[P]. Eur. Pat. Appl.,EP0280380,1988
    [7] Rosner T, Le Bars J, Pfaltz A, et al. Kinetic Studies of Heck Coupling Reactions UsingPalladacycle Catalysts: Experimental and Kinetic Modeling of the Role of Dimer Species[J].J. Am. Chem. Soc.,2001,123:1848-1855
    [8] Schultz T, Schmees N, Pfaltz A. Palladium(II) complexes with P,N-and C,N-ligands ascatalysts for the Heck reaction[J]. Appl. Organomet. Chem.,2004,18:595-601
    [9] Amatore C, Jutand A. Anionic Pd(0) and Pd(II) Intermediates in Palladium-Catalyzed Heckand Cross-Coupling Reactions[J]. Acc. Chem. Res.,2000,33:314-321
    [10] Thomas Schultz, Andreas Pfaltz. Palladium(II) Complexes with Chelating P,O-Ligands asCatalysts for the Heck Reaction[J]. SYNTHESIS,2005,6:1005–1011
    [11]张浩,张贺新,蔡小平,等.8-苯胺-1-萘磺酸钛配合物的合成及其催化乙烯与降冰片烯共聚合的研究[J].高等学校化学学报,2012,33:2784-2788
    [12] Long Y Y, Ye W P, Shi X C, et al. Living copolymerization of ethylene with norbornenemediated by heteroligated (Salicylaldiminato)(β-enaminoketonato)titanium catalysts[J]. J.Polym. Sci. Part A: Polym. Chem.,2009,47:6072-6082
    [13]李永飞,伍青.乙烯/降冰片烯共聚物的合成及其结构[J].西安工业大学学报,2010,30:449-453
    [1]贾爱铨.新型钛系及后过渡金属烯烃聚合催化剂的合成及催化烯烃聚合反应[D].上海:复旦大学,2010
    [2] Lamberti M, Pappalardo D, Zambelli A, et al. Syndiospecific Polymerization of PropenePromoted by Bis(salicylaldiminato)titanium Catalysts: Regiochemistry of MonomerInsertion and Polymerization Mechanism[J]. Macromolecules,2002,35:658-663
    [3]孟夏.半夹心结构铱化合物的合成及性质研究[D].上海:复旦大学,2009
    [4] Hustad P D, Coates G W. Insertion/Isomerization Polymerization of1,5-Hexadiene:Synthesis of Functional Propylene Copolymers and Block Copolymers[J]. J. Am. Chem.Soc.,2002,124:11578-11579
    [5] Kohn R D, Haufe M, Kociok-Kohn G, et al. Selective Trimerization of α-Olefins withTriazacyclohexane Complexes of Chromium as Catalysts[J]. Angew. Chem., Int. Ed.,2000,39:4337-4339
    [6]葛彦姝.三齿[ONO]配体-钛、锆配合物的合成及其催化乙烯聚合和1-己烯齐聚反应研[D].大连:大连理工大学硕士论文,2012
    [7] Younkin T R, Connor E F, Henderson J I, et al. Neutral, Single-Component Nickel (II)Polyolefin Catalysts That Tolerate Heteroatoms[J]. Science,2000,287:460-462
    [8] Bambirra S, Leusen D V, Meetsma A, et al. Neutral and cationic yttrium alkyl complexeswith linked1,4,7-triazacyclononane-amide monoanionic ancillary ligands: synthesis andcatalytic ethene polymerisation[J]. Chem. Commun.,2001,637-638
    [9] Long Y Y, Ye W P, Shi X C, et al. Living copolymerization of ethylene with norbornenemediated by heteroligated (Salicylaldiminato)(β-enaminoketonato)titanium catalysts[J]. J.Polym. Sci. Part A: Polym. Chem.,2009,47:6072-6082
    [10] Sudhakar P. Appreciable norbornene incorporation in the copolymerization ofethylene/norbornene using titanium catalysts containing trianionic N[CH2CH(Ph)O]33ligands[J]. J. Polym. Sci. Part A: Polym. Chem.,2008,46:444-452
    [11] Volkis V, Shmulinson M, Averbuj C, et al. Pressure Modulates Stereoregularities in thePolymerization of Propylene Promoted by rac-Octahedral Heteroallylic Complexes[J].Organometallics,1998,17:3155-3157
    [12] Scollard J D, McConville D H. Living Polymerization of α-Olefins by Chelating DiamideComplexes of Titanium[J]. J. Am. Chem. Soc.,1996,118:10008-10009
    [13] Warren T H, Schrock R R, Davis W M. Neutral and Cationic Group4ComplexesContaining Bis(borylamide) Ligands,[R2BNCH2CH2NBR2]2-(R=2,4,6-i-Pr3C6H2, M=Zr;R=Cyclohexyl, M=Ti, Zr, Hf)[J]. Organometallics,1998,17:308-321
    [14] Linden A J, Schaverien C, Meijboom N, et al. Polymerization of.alpha.-Olefins andButadiene and Catalytic Cyclotrimerization of1-Alkynes by a New Class of Group IVCatalysts. Control of Molecular Weight and Polymer Microstructure via Ligand Tuning inSterically Hindered Chelating Phenoxide Titanium and Zirconium Species[J]. J. Am. Chem.Soc.,1995,117:3008-3021
    [15] Zhang H, Zhang H X, Cai X P, et al. Titanium complex bearing8-anilino-1-naphthalenesulfonate ligand: synthesis and catalytic behavior toward ethylene(co-)polymerization[J]. J. Appl. Polym. Sci.,2013,127:1403-1408
    [16] Saito J, Mitani M, Mohri J, et al. Highly Syndiospecific Living Polymerization ofPropylene Using a Titanium Complex Having Two Phenoxy-Imine Chelate Ligands[J].Chem. Lett.,2001,576-577
    [17] Yoshida Y, Saito J, Mitani M, et al. Living ethylene/norbornene copolymerisation catalyzedby titanium complexes having two pyrrolide-imine chelate ligands[J]. Chem. Commun.,2002,1298-1299
    [18] Xu T, Liu J, Wu G, et al. Highly Active Ethylene Polymerization and Regioselective1-Hexene Oligomerization Using Zirconium and Titanium Catalysts with Tridentate [ONO]Ligands[J]. Inorg. Chem.,2011,50:10884-10892
    [19] Zhang J, Lin Y J, Jin G X. Synthesis, Characterization, and Ethylene Polymerization ofGroup IV Metal Complexes with Mono-Cp and Tridentate Aryloxide or ArylsulfideLigands[J]. Organometallics,2007,26:4042-4047
    [20] Ravasio A, Boggioni L, Tritto I. Copolymerization of Ethylene with Norbornene by NeutralAryl Phosphine Sulfonate Palladium Catalyst[J]. Marcomolecules,2011,44:4180-4186
    [21]张浩,张贺新,蔡小平,等.8-苯胺-1-萘磺酸钛配合物的合成及其催化乙烯与降冰片烯共聚合的研究[J].高等学校化学学报,2012,33:2784-2788
    [22]李永飞,伍青.乙烯/降冰片烯共聚物的合成及其结构[J].西安工业大学学报,2010,30:449-453
    [23] Xiao T P F, Zhang S, Li B X, et al. Ferrous and cobaltous chloride complexes bearing2-(1-(arylimino)methyl)-8-(1H-benzimidazol-2-yl)quinolines: Synthesis, characterizationand catalytic behavior in ethylene polymerization[J]. Polymer,2011,52:5803-5810

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700