用户名: 密码: 验证码:
酪素基无皂核壳复合乳液的合成、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球石油资源的日益枯竭和非降解合成高分子材料造成的环境污染问题日益严重,可再生资源和环境友好型材料的开发和利用受到越来越多的关注,并已被列为国际前沿学科领域之一。酪素是来源广泛的可再生资源之一,具有独特的成膜特性(如成膜不连续,耐高温等),加之含有多种活性基团易于被改性,正在成为皮革、造纸、涂料、包装等领域应用最广泛的化工原料之一。在皮革工业领域,酪素作为水性涂饰材料之一,自被应用以来便一直占据着重要地位。尤其是随着人们对成品革的穿着及使用舒适度的要求不断提高,酪素类成膜材料由于其所形成涂层卫生性能优异而越来越受到青睐。但是,作为蛋白质,酪素涂层耐水性差和易脆裂等缺陷限制了其进一步应用。为了改善酪素成膜的缺陷,本研究提出在无皂乳液聚合体系中,对其进行一系列改性,工作主要包括以下几个方面:
     (1)引入己内酰胺与酪素发生缩聚反应,考察了己内酰胺改性酪素(CA-CPL)的合成条件,包括pH调节剂、己内酰胺用量、反应温度、反应时间等条件对乳液性能、成膜性能及涂饰应用性能的影响规律;对所得乳胶粒的化学结构、微观形貌、粒径大小及分布与成膜微观形貌等进行了表征;并探讨了乳液的成膜机理。当采用三乙醇胺水溶液对酪素进行溶解,己内酰胺用量为35%,改性温度采用75℃,改性时间为3.0h时,CA-CPL乳液性能、成膜性能及涂饰革样的综合性能最优,改性后涂层的柔韧性有大幅提升;傅立叶红外光谱(FT-IR)、~(13)C-固体核磁(~(13)C-NMR)表征结果显示:成功获得己内酰胺与酪素的缩聚产物;透射电子显微镜(TEM)表征结果显示:与纯酪素相比,改性后乳胶粒粒径大幅减小,均一性明显提高;扫描电子显微镜(SEM)、原子力显微镜(AFM)与接触角测试结果表明:CA-CPL薄膜均一性优且具有较好的疏水性。
     (2)通过物理共混法在CA-CPL中引入水性聚氨酯(WPU)制备了己内酰胺改性酪素/水性聚氨酯(CA-CPL/WPU)复合乳液;考察了WPU用量对CA-CPL/WPU复合乳液的微观结构、形貌、粒径大小、乳液性能、成膜性能及涂饰应用性能的影响规律,探讨了复合乳胶粒中组分之间的作用力;研究了复合乳液的成膜机理,并建立了相关模型;FT-IR、TEM与DLS测试结果显示:在复合材料中,CA-CPL与WPU组分之间存在较强的氢键作用力。这种作用力在很大程度上影响着乳胶粒的粒径大小及分布。SEM与接触角测试结果显示:当适当用量的WPU引入体系中时,WPU在体系中分散性较好,薄膜表面的疏水性有所增强。涂饰应用结果表明:当复合材料中含有适当用量的WPU时,涂层具有较为优异的柔韧性及疏水性,但是涂层的强度和透水汽性有所降低。
     (3)采用CA-CPL为自乳化剂,在酪素基体中引入丙烯酸酯类单体制备核壳型己内酰胺-丙烯酸酯共改性酪素乳液;优化了在无皂乳液聚合过程中的合成条件,包括丙烯酸酯类单体用量、丙烯酸酯类单体配比、反应温度、反应时间等对核壳乳液的结构、性能及微观形貌的影响规律;考察了不同合成条件下所获乳液的性能、成膜性能及涂饰应用性能,结合对乳胶粒形貌、大小、结构等的表征结果,探讨了核壳乳胶粒的形成机理及成膜机理,并建立了相关模型。FT-IR测试结果显示:酪素与丙烯酸酯类单体成功发生了接枝共聚反应。TEM和DLS检测结果表明:己内酰胺-丙烯酸酯共改性酪素乳胶粒粒径大小在纳米级,粒径分布均一。SEM及AFM表征结果显示:己内酰胺-丙烯酸酯共改性酪素乳胶膜结构均一性优。TGA与接触角数据分别显示:和纯酪素相比,己内酰胺-丙烯酸酯共改性酪素热稳定性明显提升,其乳胶膜疏水性大幅提高。
     (4)采用单原位法在己内酰胺-丙烯酸酯共改性酪素中引入市售的纳米二氧化硅(SiO_2)粒子,获得核壳结构规整的单原位酪素基SiO_2纳米复合乳液。考察了纳米SiO_2种类、纳米SiO_2用量及引发剂用量等合成条件对复合乳液性能及成膜性能的影响规律;探讨了单原位酪素基SiO_2纳米复合乳胶粒的形成机理及成膜机理,并建立了相关模型。当纳米SiO_2种类为表面含有双键的RNS-D,RNS-D用量为0.3%,引发剂用量为3%时,所制备的单原位酪素基SiO_2纳米复合乳液综合性能最佳;TEM表征结果显示:所得单原位酪素基SiO_2纳米复合乳胶粒呈规则球形,平均粒径为59.34nm,且分布较为均匀。接触角和展色性数据表明:所得复合乳胶膜具有较优的疏水性及展色性;涂饰应用结果显示:与不含SiO_2的己内酰胺-丙烯酸酯共改性酪素乳液相比,单原位酪素基SiO_2纳米复合乳液涂饰革样的抗张强度和卫生性能提高,但耐曲挠度有一定下降。
     (5)为进一步提高酪素基SiO_2纳米复合乳液的稳定性及综合性能,采用纳米SiO_2的前驱体正硅酸乙酯(TEOS)代替单原位法中的市售纳米SiO_2粉体,同时引入硅烷偶联剂γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570),即采用双原位法制备了具有核壳结构的双原位酪素基SiO_2纳米复合乳液;考察了TEOS用量、KH570用量、TEOS及KH570加入方式、反应温度及反应时间等合成条件对复合乳液及成膜性能的影响规律;探讨了复合乳胶粒的形成机理及成膜机理,并建立了相关模型。同时,将双原位法获得的复合乳液与常规复配法获得的复合乳液进行了乳胶粒微观形貌、粒径大小及分布、成膜性能及应用性能的对比研究,并分析了双原位乳液及复配乳液的乳胶粒形成机理及成膜机理,探讨了双原位法制备酪素基SiO_2纳米复合乳液的优势之所在。采用双原位法制备的复合乳胶粒呈规则核壳型球状,粒径约为80nm左右,粒子大小分布均一,且SiO_2均匀包裹于壳层。与未引入SiO_2的己内酰胺-丙烯酸酯共改性酪素相比,采用双原位法制备的酪素基复合材料稳定性更优,粒径更小,且成膜耐热稳定性、耐水性及机械力学性能均有一定幅度提升。与常规复配法获得的复合乳液相比,采用双原位法获得的乳胶粒粒径更小,粒径分布更均一,乳胶粒稳定性更优,且双原位乳液能赋予涂饰革样更为优异的耐热稳定性、耐水性及机械力学性能。
     (6)为拓展酪素基复合材料的应用领域,将采用双原位法制备的酪素基SiO_2纳米复合乳液成膜应用于布洛芬的负载与缓释性能研究;探讨了不同pH条件下酪素基复合薄膜的溶胀程度;分析了不同SiO_2含量对薄膜负载药物及缓释药物性能的影响规律;结合对复合薄膜在负载药物前后及释放药物前后宏观及微观形貌与化学结构的表征结果,建立了酪素基SiO_2纳米复合薄膜对药物的缓释机理模型。薄膜在不同pH条件下的溶胀度测试结果显示:酪素基复合薄膜具有pH响应性,随着接枝碱性的增强,薄膜的溶胀度逐渐增大。结合对药物、未载药薄膜及载药薄膜的微观形貌及结构表征结果,可以得到:SiO_2壳层的存在在很大程度上促进了薄膜对药物的负载及缓释性能。在酸性介质中,薄膜对药物的缓释性能最优,说明其具备成为一种胃环境中的载药材料的前景。
With the deficiency of global oil resources and the increasingly seriousenvironmental pollutions caused by non-degradable synthetic polymer materials,there is a good preference for developing and utilizing renewable resources andenvironmentally friendly materials, which has been listed as one of theinternational frontier disciplines. As a bio-based protein, casein is one of therenewable resources and has unique film-forming features, such as discontinuousproperty, high temperature resistant and so on. In addition, casein containsvarious active groups on its chains, so it can be easily modified. Consequently,casein-based film-forming material is becoming one of the most widely usedchemical materials in leather, paper making, paint and packaging fields. Inleather industry, casein has been chosen as one of the most dominant water-basedfinishing materials since it was used. With the increasing requirement for thewearing comfort of leather product, casein is attracting more and more attentionbecause of the unmatchable hygienic properties of its coatings. However, caseincoatings have serious defects such as poor water resistance and brittleness, whichlimits its further application. The aim of this study is to improve the defects ofcasein films in the soap-free emulsion polymerization system by a series ofmodification.
     In detail, the main works in this study include the following parts:
     (1) Caprolactam was firstly employed to modify casein throughpolycondensation reaction to prepare caprolactam modified casein (CA-CPL).Emulsion properties, film properties and finishing application results were takenas the main indexes to systematically optimize the reaction conditions, includingthe type of pH regulators, caprolactam usage, reaction temperature and reactiontime. Chemical structure, microstructure, particle size and particle distribution ofthe as-prepared CA-CPL were characterized by fourier transform infrared(FT-IR), solid-state13C-NMR, transmission electron microscopy (TEM), scanning electron microscopey (SEM), dynamic light scattering (DLS), atomicforce microscope (AFM) and contact angle measurement. Based on the aboveresults, the formation mechanism of the CA-CPL latexes and the film wereestablished. When casein was dissolved in triethanolamine solution, caprolactamusage was35%, modification temperature was75℃, modification time was3.0h, CA-CPL emulsion property and its film-forming performance were optimal.The introduction of CPL chains onto casein molecules gave relatively strongerhydrophobic and flexibility to the modified coatings. Characterization resultsverified the successful occurrence of polycondensation between caprolactam andcasein. In addition, the particle size of the CA-CPL decreased dramatically andthe size distribution became more even compared with those of neat casein.
     (2) Waterborne polyurethane (WPU) was introduced into CA-CPL bymeans of physical blending and caprolactam modified casein/waterbornepolyurethane (CA-CPL/WPU) composite emulsion was prepared. Effects ofWPU usage on CA-CPL/WPU micro-structure, particle size and performancewere mainly investigated. Meanwhile, its application performances in leatherfinishing agent were measured. FT-IR, TEM and DLS characterizations wereconducted to investigate the structure, particle morphology and size distributionof CA-CPL/WPU. In order to find out the relation between the morphology andproperties of the composite, the interaction force between the components in thecomposite latex as well as the film forming mechanism were both discussed, andthe relevant models were established. The results showed that stronger hydrogenbonding interactions existed between CA-CPL and WPU components in thecomposite CA-CPL/WPU. This interaction affected the particle diameter sizeand its distribution to a large extent. SEM and contact angle results showed thatwhen the appropriate usage of WPU was introduced into the composite,dispersibility of WPU was good. Application results showed that when the usageof WPU was proper, the composite materials could endow coatings withexcellent flexibility and hydrophobicity. However, the strength and the watervapor permeability of the coatings decreased.
     (3) CA-CPL was used as the self-emulsifier and acrylate monomers wereintroduced into casein system to obtain core-shell type caprolactam-acrylateco-modified casein latexes via soap-free emulsion polymerization process. Effects of reaction conditions including the usage and proportion of acrylicmonomers, reaction temperature, and reaction time on the grafting degree,microstructure and performance of the resultant emulsion were discussed. Theoptimal caprolactam-acrylate co-modified casein emulsion was applied in leatherfinishing, and the application performance was studied compared with that of asimilar commercial product. The mechanism models for core-shell latex particlesformation and its film-forming were established. FT-IR results showed that thecaprolactam-acrylate co-modified casein was successfully obtained via soap-freeemulsion polymerization. TEM and DLS results indicated that the as-preparedlatex particles were nanoscale in size with uniform distribution, bearing obviouscore-shell structures. SEM and AFM results exhibited the homogeneous anduniform structure of modified casein-based latex films. Contact angleaccompanying with TGA data showed that hydrophobicity and thermal stabilityimproved significantly after modification compared with those of neat casein.
     (4) Single-in-situ method was adopted by introducing commerciallyavailable nano-silica (SiO_2) particles into caprolactam-acrylate co-modifiedcasein system to obtain core-shell structural casein-based SiO_2nanocompositelatexes. Effects of the variety of nano-SiO_2, the usage of nano-SiO_2, and usage ofthe initiator on the composite emulsion performance and film-forming propertieswere mainly discussed. The formation mechanism of the as-preparedcasein-based composite latexes and the composite films were also explored thusthe relevant models were established. When RNS-D was chosen as thenano-SiO_2, RNS-D usage was0.3%and initiator usage was3%, performancesof casein-based SiO_2composite emulsion prepared through single-in-situ methodreached best. TEM and DLS results showed that the modified casein emulsionparticles were spherical in shape, and their average particle size was59.34nmwith uniform size distribution. Contact angle and color developing data showedthat casein-based nano SiO_2composite had superior hydrophobicity andmatchable colors developing property. Application results showed that theintroduction of SiO_2could give improved tensile strength and sanitationproperties to the finished leather samples, however, the flexibility declined to acertain extent.
     (5) To further improve the stability and comprehensive properties of the casein-based SiO_2composite, a method called double-in-situ was employed toprepare the casein-based SiO_2composite latexes. In the double-in-situ method,nano-SiO_2was introduced by adding the precursor ethylorthosilicate (TEOS)instead of directly using the nano-SiO_2powder, and silane coupling agentγ-Methacryloxypropyl trimethoxy silane (KH570) was used to enhance theinterfacial force between inorganic and organic phases, thus obtaining stablecore-shell structural casein-based SiO_2composite latexes. Effects of TEOS usage,KH570usage and their feeding style, reaction temperature and reaction time onthe composite performance were investigated. The mechanism models for latexformation and film formation were also established. To verify the performanceadvantages of casein-based silica composite prepared via double-in-situ method,the control emulsion of casein-based silica composite via physical blending wasprepared and its performance was tested. Contrastive analysis was conducted onthe emulsion prepared via double-in-situ and that prepared via physical blending.TEM and DLS results verified that the resultant double-in-situ casein-based SiO_2nano-composite latexes exhibited evident core-shell structure, and their particlesize was around80nm with uniform particle size distribution. From the SEMand XPS results, SiO_2particles were proved uniformly coated on the shell layerof the core-shell composite latexes. Compared with the composite latexesprepared via single-in-situ method, particles obtained via double-in-situ methodshowed better stability. Through comparison and contrast, it’s noted thatdouble-in-situ method was favor for obtaining more homogeneous particles withhigher stability, heat stability, water resistance and mechanical properties.
     (6) The film formed from the as-prepared casein-based SiO_2composite viadouble-in-situ method was applied in ibuprofen delivery system. Beforemeasuring its drug-releasing behavior, swelling degree of the composite filmunder different pH conditions was tested. Effects of SiO_2content on the loadingand releasing properties was studied. The morphology and structure of the drug,drug-loaded film and drug-released film were also investigated through SEM,NMR and FT-IR. Based on the above results, slow-release mechanism model forcasein-based SiO_2nano composite film was propsed. The casein-basedcomposite films were proved pH responsive and the swelling degree of the filmunder different pH conditions followed the order in alkaline medium, neutral medium and acid medium. The loading and releasing behaviors results showedthat the existence of SiO_2layer largely contributed to the film's loading andreleasing performance due to its excellent adsorption ability with drug. In acidmedium, the casein-based film showed superiror controlled release behavior,which suggested that it has a potential application in the stomach sustainedrelease system.
引文
[1] N. G. Wang, L. N. Zhang, Y.S. Lu, et al. Properties of crosslinked casein/water-bornepolyurethane composites[J]. Journal of Applied Polymer Science,2004,91(1):332-338.
    [2]兰云军.皮革化学品的制备—理论与实践[M].北京:中国轻工业出版社,2001:126-129.
    [3]杨宗邃,盛克敏,潘津生.酪素的改性及其在皮革涂饰应用中的新进展[J].中国皮革,1990,19(6):6-9.
    [4]李敬,石留政.改性干酪素标签胶的研制[J].中国胶黏剂,2003,34(1):48-51.
    [5]孟辉,唐丽,郑文慧.密胺树脂改性酪素皮革涂剂的合成与应用[J].皮革化工,2003,20(4):21-23.
    [6] X.Y. Pan, M.F. Mu, B. Hu, et al. Micellization of casein-graft-dextran copolymer preparedthrough maillard reaction[J]. Biopolymers,2006,81(1):29-38.
    [7] N. Somanathan, R.G. Jeevan, R. Sanjeevi. Syhthesis of casein graft poly (acrylonitrile)[J].Polymer Journal,1993,25(9):939-946.
    [8]樊丽辉,刘杰,周明,等.聚氨酯改酪素皮革涂饰剂的制备与应用[J].皮革化工,2006,23(2):26-28.
    [9]樊丽辉,唐丽,荣星,等.有机硅改性酪素皮革涂饰剂的合成与应用[J].皮革化工,2004,21(6):23-26.
    [10]魏世林,李艳英,刘镇华.聚氨酯改性酪素的研究[J].皮革科学与工程,1999,9(1):1-5.
    [11]徐卫国,杨文堂,王新,等.羟甲基丙烯酸树脂改性酪素皮革顶涂剂合成与应用的探讨[J].皮革化工,1997,5(2):14-17.
    [12]申晓庆,兰云军,许晓红.酪素改性的技术手段与改性产品的性能特点[J].西部皮革,2009,31(13):31-34.
    [13]李运涛,王廷平,杨军胜.改性酪素涂饰剂的研制及应用表征[J].中国皮革,2007,36(7):37-39.
    [14]戴红,张宗才,林波,等.酪素的改性及改性产品的性能[J].皮革科学与工程,1998,8(3):47-51.
    [15]李继,余学军,徐丹,等.聚硅氧烷和己内酰胺双改性酪素涂饰剂的研制[J].皮革化工,1998,15(6):19-20.
    [16]兰云军,银德海,黄秀娟.皮革涂饰用酪素及其改性产品[J].西部皮革,1999,21(6):41-43.
    [17]杨宗邃,盛克敏.皮革涂饰粘合剂---改性酪素CAAS系列的研究[J].中国皮革,1991,20(9):7-12.
    [18]马建中,兰云军,王利民,等.制革整饰材料化学[M].北京:中国轻工业出版社,1998:416-457.
    [19] Y.H. Liu, Y.Z. Zhang, Z.H. Liu, et al. Graft copolymerization of butylacrylate onto caseininitiated by potassium diperodatonicklate (Ⅳ) inalkaline medium[J]. European PolymerJournal,2002,38(7):1619-1625.
    [20] Z.R. He, L.X. Zhang, L.H. Zhu. Prepartion and application of2,6-naphthalenedicarboxylic acid and dimethy-2,6-naphthalene dicarboxylate[J]. Coal ChemicalEngineering,2001,1(1):51-54.
    [21]王良东,杜风光,史吉平.高速啤酒标签胶[J].中国胶黏剂,2006,15(3):48-49.
    [22]石松林.高速耐水干酪素标签胶的研制[J].化学与粘合,2004,1(1):45-49.
    [23]蒋小友.酪蛋白标签胶研制[J].化学与粘合,2006,28(2):88-90.
    [24]牛犇,广忠勇,王爱霞.干粉酪素胶的研制[J].中国胶黏剂,2008,17(5):20-23.
    [25]周学林,曹长青.聚乙烯醇改性干酪素标签胶粘剂[J].青岛科技大学学报,2006,27(6):515-518.
    [26]曾小君,徐刚.超高速酪蛋白商标胶的制备研究[J].中国胶黏剂,2002,6:25-28.
    [27]艾海荣,陈欢.连结料的组合与油墨的干燥[J].印刷世界,2009,5:22-23.
    [28]黄志虹,张黎明,苏韦佳.干酪素型水性油墨及其制备方法[P].中国专利:200610034699,2006-03-31.
    [29] Y.D. Livney. Milk proteins as vehicles for bioactives, Current Opinion in Colloid&Interface Science,2010,15(1-2):73-83.
    [30] A.O. Elzoghby, W.S. Abo El-Fotoh, N.A. Elgindy. Casein-based formulations aspromising controlled release drug delivery systems[J]. Journal of Controlled Release,2011,153(3):206-217.
    [31] M. Motoki, H. Aso, K. Seguro. αS1-Casein film prepared usin gtransglutaminase[J].Agricultural Biology and Chemistry,1987,51(1):993-996.
    [32] O. Abu Diak, A. Bani-Jaber, B. Amro, et al. The manufacture and characterization ofcasein films as novel tablet coatings[J]. Food and Bioproducts Processing,2007,85(3):284-290.
    [33] P. Macheras, G. Ismailos, C. Reppas. Bioavailability study of a freeze-dried sodiumphenytoin-m ilk formulation[J]. Biopharmaceutics&Drug Disposition,1991,12(9):687-695.
    [34] A. Watanabe, T.Hanawa, M. Sugihara, et al. Release profiles of phenytoin from new oralusage form for the elderly[J]. Chemical&Pharmaceutical Bulletin,1994,42(8):1642-1645.
    [35] R.H. Gubbins, C.M. O'Driscoll, O.I. Corrigan. The effects of casein on diclofenac releasefrom hydroxypropylmethylcellulose (HPMC) compacts[J]. International Journal ofPharmacy,2003,260(1):69-76.
    [36] D. Oakenfull, J. Pearce, R.W. Burley. Food proteins and their applications[M]. New York:Marcel Dekker,1997:57-110.
    [37] F. Song, L.M. Zhang, C. Yang, et al. Genipin-crosslinked casein hydrogels for controlleddrug delivery[J]. International Journal of Pharmaceutics,2009,373(1-2):41-47.
    [38] P.C. Lorenzen, E. Schlimme, N. Roos. Crosslinking of sodium caseinate by a microbialtransglutamin ase[J]. Nahrung,1998,42(3-4):151-154.
    [39] F.C. Millar, O.I. Corrigan. Influence of sodium caseinate on the dissolution rate ofhydrochlorothiazide and chlorothiazide[J]. Drug Development and Industrial Pharmacy,1991,17(12):1593-1607.
    [40] F.C. Millar, O.I. Corrigan. Dissolution mechanism of ibuprofen-casein compacts[J].International Journal of Pharmaceutics,1993,92(1-3):97-104.
    [41] H. Jing, D.D. Kitts. Chemical characterization of different sugar-casein Maillard reactionproducts and protective effects on chemic al-induced cytotoxicity of Caco-2cells[J].Food and Chemical Toxicology,2004,42(11):1833-1844.
    [42] J.A. Gerrard. Protein–protein crosslinking in food: methods, consequences, applications[J]. Trends in Food Science&Technology,2002,13(1):391-399.
    [43] K. Nishinari, H. Zhang, S. Ikeda. Hydrocolloid gels of polysacchar ides and proteins[J].Current Opinion in Colloid&Interface Science,2000,5(3):195-201.
    [44] L. Pellegrino, M.V. Boekel, H. Gruppen, et al. Heat-induced aggregation and covalentlinkages in β-casein model systems[J]. International Dairy Journal,1999,9(3):255-260.
    [45] X. Pan, S. Yu, P. Yao, et al. Self-assembly of β-casein and lysozyme[J]. Journal of Colloidand Interface Science,2007,316(2):405-412.
    [46] T. Aoki, H. Sakamoto, Y. Kako. Cross-linking of caseins by colloidal calcium phosphatein the presence of urea[J]. International Dairy Journal,1991,1(1):67-75.
    [47] W.A. Knepp, A. Jayakrishnan, J.M. Quigg, et al. Goldberg, Synthesis, properties, andintratumor alevaluation of mitoxantrone-loaded casein microspheres in Lewis lungcarcinoma[J]. Journal of Pharmacy and Pharmacology,1993,45(10):887-891.
    [48] Y. Chen, N. Willmott, J. Anderson, et al. Comparison of albumin and casein microspheres as a carrier for doxorubicin[J]. Journal of Pharmacy and Pharmacology,1987,39(12):978-985.
    [49] N. Willmott, Y. Chen, J. Goldberg, C. Mcardle, et al. Biodegradation rate of embolizedprotein microspheres in lung, liver and kidney of rats[J]. Journal of Pharmacy andPharmacology,1989,41(7):433-438.
    [50] N. Willmott, G.A. Magee, J. Cummings, et al. Doxorubicin-loaded casein microspheres:protein nature of drug incorporation[J]. Journal of Pharmacy and Pharmacology,1992,44(6):472-475.
    [51]王世泰,张庆思,李洪宝.羧基丁苯-聚氨酯-干酪素复合胶粘剂及其在涂布纸中的应用[J].中国胶粘剂,2000,9(2):312-314.
    [52] Y.D. Zhang, S.H. Lee, M. Yoonessi, et al. Phenolic resin-trisilanolphenyl polyhedraloligomeric silsesquioxane (POSS) hybrid nanocomposites: structure and properties[J].Polymer,2006,47(9):2984-2996.
    [53] B. Strachotova, A. Strachota, M. Uchman, et al. Super porous organic-inorganic poly(N-isopropylacrylamide)-based hydrogel with a very fast temperature response[J].Polymer,2007,48(6):1471-1482.
    [54] F. Zhang, Y. Wang, C. Chai. Preparation of styrene-acrylic emulsion by using nano-SiO2as seeds[J]. Polymer International,2004,53(9):1353-1359.
    [55] P. Hajji, L. David, J.F. Gerard, et al. Synthesis, structure, and morphology of polymer–silica hybrid nanocomposites based on hydroxyethyl methacrylate[J]. Journal ofPolymer Science Part B: Polymer Physics,1999,37(22):3172-3187.
    [56] F. Rullens, A. Laschewsky, M. Devillers. Bulk and thin films of bismuth vanadatesprepared from hybrid materials made from an organic polymer and inorganic salts[J].Chemical of Materials,2006,18(14):771-777.
    [57]王胜杰,李强,漆宗能,等.硅橡胶/蒙脱土复合材料的制备、结构与性能[J].高分子学报,1998,42(2):149-153.
    [58]柯昌美,汪厚植,赵惠忠.纳米纯丙胶乳制备TiO2-SiO2杂化材料的研究[J].高分子材料科学与工程,2005,21(5):282-285.
    [59]熊明娜,周树学,游波,等.丙烯酸树脂/TiO2有机-无机杂化材料的力学、热学和光学性能研究[J].材料科学与工程学报,2005,23(2):191-195.
    [60]马建中,张志杰,刘凌云,等.丙烯酸树脂/纳米SiO2复合涂饰剂的合成研究[J].皮革科学与工程,2005,15(2):8-11.
    [61]陈国新,赵石林.纳米SiO2/丙烯酸UV屏蔽透明涂料的制备及性能研究[J].涂料工业,2003,33(10):7-9.
    [62] S.W. Zhang, S.X. Zhou, Y. Weng, et al. Synthesis of SiO2/polystyrene nanoeompositepartieles via miniemulsion polymerization[J]. Langmuir,2005,21(6):2124-2128.
    [63] A. Pepe, M. Aparieio, S. Ceré, et al. Preparation and charaeterization of cerium dopedsilica sol-gel coatings on glass and aluminum substrates[J]. Journal of Non-crystallineSolids,2004,348(1):162-171.
    [64] M.N. Xiong, L.M. Wu, S.X. Zhou, et al. Reparation and characterization of acryliclatex/nano-SiO2composites[J]. Polymer International,2002,51(8):693-698.
    [65] Y.G. Hsu, I.L. Chiang, J.F. Lo. Properties of hybrid materials derived fromhydroxyl-containing linear polyester and silica through sol-gel process: I. Effects ofthermal treatment [J]. Journal of Applied Polymer Science,2000,78(6):1179-1190.
    [66] V.V. Annenkov, E.N. Danilovtseva, V.A. Pal’shin, et al. Poly(vinyl amine) silicacomposite nanoparticles: models of the silicic acid cytoplasmic pool and as a silicaprecursor for composite materials formation. Biomacromolecules,2011,12(5):1772-1780.
    [67] C.L. Jackson, B.J. Bauer, A.I. Nakatani, et al. Synthesis of hybrid organic-inorganicmaterials from interpenetrating polymer network chemistry [J]. Chemistry of Materials,1996,8(3):727-738.
    [68] A. Bandyopadhyay, A.K. Bhowmick, M.D. Sarkar. Synthesis and characterization ofacrylic rubber/silica hybrid composites prepared by sol-gel technique [J]. Journal ofApplied Polymer Science,2004,93(25):2579-2589.
    [69] F. Baver, Flyvwtr, Chalk, et al. UV Curing and matting of acrylate coatings reinforced bynano-silica and micro-corundum particles [J]. Progress in Organic Coatings,2007,60(2):121-126.
    [70] X. Tong, T. Tao, L. Qing, et al. Preparation of polymer/silica nanoscale hybrids throughSol-Gelmethod involving emulsion polymerⅡpoly (ethyl acrylate)/SiO2[J]. Journal ofApplied Polymer Science,2002,83(1):446-454.
    [71]张晟卯,高永建,张治军.TiO2聚丙烯酸丁酯纳米复合膜的制备及摩擦性能[J].应用化学,2002,19(9):914-916.
    [72]周树学,陈敏,游波,等.草莓型SiO2/PMMA纳米复合微球的制备[J].高等学校化学学报,2005,26(7):1352-1355.
    [73]陈希翀,武利民,周树学.原位聚合法制备聚酯聚氨酯/SiO2纳米复合涂料及性能测试[J].上海涂料,2002,40(4):5-8.
    [74]刘国军,张桂霞,曾汉民.聚丙烯酸酯纳米/SiO2有机-无机复合压敏胶乳液的制备[J].高分子材料科学与工程,2007,23(2):54-58.
    [75] J. kvarla. Hydrophobic interaction between macroscopic and microscopic surfacesunification using surface thermodynamics[J]. Advances in Colloid and Interface Science,2001,91(3):335-390.
    [76] Y.J. Chen, E.T. Kang, K.G. Neoh. Chemical modification of polyaniline powders bysurface graft copolymerization[J]. Polymer,2000,41(9):3279-3287.
    [77] M.J. Percy, C. Barthet, J.C. Lobb, et al. Synthesis and characterization of vinylpolymer-silica colloidal nanocomposites[J]. Langmuir,2000,16(17):6913-6920.
    [78] X.F. Ding, Y.Q. Jiang, K.F. Yu, et al. Silicon dioxide as coating on polystyrenenanoparticles in situ emulsion polymerization[J]. Materials Letters,2004,58(11):1722-1725.
    [79] R.M. Ali, A. Mohsen, B.M. Ardavan. Preparation of poly(styrene–methylmethacrylate)/SiO2composite nanoparticles via emulsion polymerization:An investigation into the compatiblization[J]. European Polymer Journal,2007,43(2):336-344.
    [80] E. Bourgeat-Lami, P. EsPiard, A. Guyot. Functionalization and dispersion of silica[J].Polymer,1995,36(23):4385-4389.
    [81] P. EsPiard, A. Guyot. Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica:Functionalization and dispersion of silica[J]. Polymer,1995,36(23):4391-4395.
    [82] S. Reeulusa, C. Mingotaud, E. Bouxgeat-Lami, et al. Synthesis of daisyshaped andmultipod-like silica/polystyrene nanocomposites[J]. Nano Letters,2004,4(9):1677-1682.
    [83] K. Zhang, H.T. Chen, X. Chen, et al. Monodisperse silica-polymer core-shellmicrospheres via surface grafting and emulsion polyerization[J]. MacromolecularMaterials and Engineering,2003,288(4):380-385.
    [84] I. Tissot, C. Novat, F. Lefebvre, et al. Hybrid latex particles coated with silica[J].Macromolecules,2001,34(17):5737-5739.
    [85] S. Reculusa, C. Poncet-Legrand, S. Ravaine, et al. Syntheses of raspberry-likesilica/polystyrene materials[J]. Chemistry of Materials.2002,14(5):2354-2359.
    [86] A. Perro, S. Reculusa. Synthesis of hybrid colloidal particles: fromsnowman-like toraspberry-like morphologies[J]. Colloids and Surfaces A: Physicochem Eng Aspects,2006,284-285:78-83.
    [87] S. Reculusa, C. Minogotaud, E. Bourgeat-Lami, et al. Synthesis of daisyshaped andmultipod-like silica/polystyrene nanocomposites[J]. Nano Letters,2004,4(1):1677-1682.
    [88] C. Barthlet, A.J. Hickey, D.B. Carins, et al. Synthesis of novel polymer-silica colloidalnanocomposites via free-radical polymerization of vinyl monomers[J]. AdvancedMaterials,1999,11(3):408-410.
    [89] J. Zhu, A.B. Morgan, F.J. Lamelas, et al. Fire properties of polystyrene-claynanocomposites[J]. Chemistry of Materials,2001,13(2):3774-3780.
    [90] J.D. Cho, H.T. Ju, J.W. Hong. Photocuring kinetics of UV-initiated free-radicalphotopolymerizations with and without silica nanoparticles[J]. Journal of PolymerScience Part A: Polymer Chemistry,2005,43(3):658-670.
    [91] J. Zhou, S.W. Zhang., X.G. Qiao, et al. Synthesis of SiO2/poly(styrene-co-butyl acrylate)nanocomposite microspheres via miniemulsion polymerization[J]. Journal of PolymerScience Part A: Polymer Chemistry,2006,44(10):3202-3209.
    [92] M.S. Fleming, T.K. Mandal, D.R. Walt. Nanosphere-microsphere assembly: Methods forcore-shell materials preparation[J]. Chemistry of Materials,2001,13(6):2210-2216.
    [93] Y.Q. Hua, H.P.Wua, K. Gonsalves, et al. Nanocomposite resists for electron beamnanolithography[J]. Microelectronic Engineering,2001,56(3-4):289-294.
    [94] I.I. Slowing, B.G. Trewyn, S. Giri, et al. Mesoporous silica nanoparticles for smart drugdelivery[J]. Advanced Functional Materials,2007,17(5):1225-1258.
    [95] C. Barbe, J. Bartlett, L. Kong, et al. Silica particles: A novel drug-delivery system[J].Advanced Materials,2004,16(1):1959-1962.
    [96] W. Tan, K. Wang, X. He, et al. Bionanotechnology based on silica nanoparticles [J].Medicinal Research Reviews,2004,24(5):621-638.
    [97] T.C. Chang, Y.T. Wang, Y.S. Hong, et al. Organic-inorganic hybrid materials. V.Dynamics and degradation of poly(methyl methacrylate) silica hybrids[J]. Journal ofPolymer Science,2000,38(11):1772-1980.
    [98] G.H. Hsiue, W.J. Kuo, Y.P. Huang, et al. Microstructural and morphologicalcharacteristics of PS-SiO2nanocomposites[J]. Polymer,2000,41(8):2813-2825.
    [99] I. Sondi, T.H. Fedynyshyn, R. Sinta, et al. Encapsulation of nanosized silica by in situpolymerization of tert-butyl acrylate monomer[J]. Langmuir,2000,16(23):9031-9034.
    [100] M.Z. Rong, M.Q. Zhang, Y.X. Zheng, et al. Improvement of tensile properties ofnano-SiO2/PP composites in relation to percolation mechanism[J]. Polymer,2001,42(7):3301-3304.
    [101] S.X. Zhou, L.M. Wu, J. Sun, et al. The change of the properties of acrylicbasedpolyurethane via addition of nanosilica[J]. Progress in Organic Coatings,2002,45(1):33-42.
    [102] M.J. Percy, C. Barthet, J.C. Lobb, et al. Synthesis, Characterization of vinylpolymer–silica colloidal nanocomposites[J]. Langmuir,2000,16(17):6913-6920.
    [103] H. Kaddami, J.F. Gerard, P. Hajji, et al. Silica-filled poly (HEMA) from hema/graftedSiO2nanoparticles: polymerization kinetics and rheological changes[J]. Journal ofApplied Polymer Science,1999,73(13):2701-2713.
    [104]蔡亮珍,杨挺.纳米SiO2在高分子领域中的应用[J].现代塑料加工应用,2002,14(6):20-23.
    [105] L. Mascia, A. Kioul. Influence of siloxane composition and morphology on properties ofpolyimide–silica hybrids[J]. Polymer,1995,36(19):3649-3659.
    [106] C.E. Sroog. Polyimides[J]. Progress in Polymer Science,1991,16(4):561-694.
    [107] G. Maier. Low dielectric constant polymers for microelectronics[J]. Progress in PolymerScience,2001,26(1):63-65.
    [108] B. Krause, G.H. Koops, N.F.A. van der Vegt, et al. Ultralow-kdielectrics made bysupercritical foaming of thin polymer films[J]. Advanced Materials,2002,14(15):1041-1046.
    [109] H.E. Bergna, W.O. Roberts. Colloidal Silica: Fundamentals and Applications[M].Portland: Taylor&Francis,2006:131-135.
    [110] R.K. Iler. The chemistry of silica: solubility. polymerization. colloid and surfaceproperties, and biochemistry[M]. New York: John Wiley,1979:667-670.
    [111] W. Sto¨ber, A. Fink, E. Bohn. Controlled growth of monodisperse silica spheres in themicron size range[J]. Journal of Colloid and Interface Science,1968,26(1):62-69.
    [112] S. Fleming, T.K. Mandal, D.R. Walt. Nanosphere microsphere assembly methods forcore shell materials preparation[J]. Chemistry of Materials,2001,13(1):2210-2218.
    [113] J.J. Schneider. Magnetic core/shell and quantum confined semiconductor nanoparticlesvia chimie douce organometallic synthesis[J]. Advanced Materials,2001,13(7):529-532.
    [114] T. Matsuno, M. Morita, K. Watanabe, et al. Strength of bond to bone and cytotoxicity ofsintered bodies of hydroxyapatite/zirconia composite particles[J]. Journal of MaterialsScience: Materials in Medicine,2003,14(6):547-555.
    [115] Y. Kobayashi, Y. Tadaki, D. Nagao, et al. Deposition of gold nanoparticles on silicaspheres by electroless metal plating technique[J]. Journal of Colloid Interface Science,2005,283(1):601-604.
    [116] F. Iskandar, I.W. Lenggoro, B. Xia, et al. The preparation of silica powders derived fromcolloidal suspensions by sol spraying[J]. Journal of Nanoparticle Research,2001,3(4):263-270.
    [117] H. Tsai, Y. Lee. Facile method to fabricate raspberry-like particulate films forsuperhydrophobic surfaces[J]. Langmuir,2007,23(25):12687-12692.
    [118] R.H. Ottewill, A.B. Schofield, J.A. Watcrs, et al. Preparation of core-shell polymercolloid particles[J]. Colloid&Polymer Science,1997,275(3):274-283
    [119] K. Yamaguchi, M. Ito, T. Taniguchi, et al. Preparation of core-shell composite polymerparticles by a novel heterocoagulation based on hydrophobic interaction[J]. Colloid&Polymer Science,2004,282(1):366-372.
    [120] X.G. Li, S. Takahashi, K. Watanabe, et al. Hybridization and characteristics of Fe andFe-Co nanoparticles with polymer particles[J]. Nano Letters,2001,1(9):475-480.
    [121] A. Pich, J. Hain, Y. Prots, et al. Composite polymeric particles with ZnS shells[J].Polymer,2005,46(19):7931-7944.
    [122] Z.Z. Xu, A. Xia, C.C. Wang, et al. Synthesis of raspberry-like magnetic polystyrenemicrospheres[J]. Materials Chemistry and Physics,2007,103(2-3):494-499.
    [123] Y. Kobayashi, Y. Tadaki, D. Nagao, et al. Deposition of gold nanoparticles onpolystyrene spheres by electroless metal plating technique[J]. Journal of Physics:Conference Series,2007,61(1):582-586.
    [124] M. Chen, S. Zhou, B. You, et al. A novel preparation method of raspberry-likePMMA/SiO2hybrid microspheres[J]. Macromolecules,2005,38(15):6411-6417.
    [125] Y. He, X. Yu. Preparation of silica nanoparticle-armored polyaniline microspheres in apickering emulsion[J]. Material Letter,2007,61(10):2071-2074.
    [126]A. Schmid, S. Fujii, S.P. Armes. Polystyrene-silica colloidal nanocomposite particlesprepared by alcoholic dispersion polymerization[J]. Chemistry of Materials,2007,19(10):2435-2445.
    [127] F. Caruso. Nanoengineering of particle surfaces[J]. Advanced Materials,2001,13(1):11-22.
    [128] T. Ji, V.G. Lirtsman, Y. Avny, et al. Preparation, characterization, and application ofAu-shell/polystyrene beads and Au-shell/magnetic beads[J]. Advanced Materials,2001,13(1):1253-1256.
    [129] A.Imhof. Preparation and characterization of titania-coated polystyrene spheres andhollow titania shells[J]. Langmuir,2001,17(35):79-85.
    [130] H.X. Guo, X.P. Zhao, G.H. Ning, et al. Synthesis of Ni/polystyrene/TiO2multiplycoated microspheres[J]. Langmuir,2003,19(1):4884-4888.
    [131] Song CX, Wang DB, Gu GH, et al. Preparation and characterization of silver/TiO2composite hollow spheres[J]. Journal of Colloid and Interface Science,2004,272(2):340-344.
    [132] M.J. Percy, C. Barthet, J.C. Lobb, et al. Synthesis and characterization of vinylpolymer-silica colloidal nanocomposites[J]. Langmuir,2000,16(69):13-20.
    [133] T.K. Mandal, M.S. Fleming, D.R. Walt. Preparation of polymer coated goldnanoparticles by surface-confined living radical polymerization at ambienttemperature[J]. Nano Letters,2002,2(1):3-7.
    [134] P. Espiard, A. Guyot. Poly (ethyl acrylate) latexes encapsulating nanoparticles of silica:2. grafting process onto silica[J]. Polymer,1995,36(1):4391-4395.
    [135] X. Xu, G. Friedman, K.D. Humfeld, et al. Synthesis and utilization of monodispersesuperparamagnetic colloidal particles for magnetically controllable photonic crystals[J].Chemitry of Materials,2002,14(12):49-56.
    [136] E. Bourgeat-Lami, J. Lang. Encapsulation of inorganic particles by dispersionpolymerization in polar media:2. Effects of silica size and concentration on themorphology of silica–polystyrene composite particles[J]. Journal of Colloid andInterface Science,1999,210(1):281-289.
    [137] E. Bourgeat-Lami, J. Lang. Silica-polystyrene composite particles[J]. MacromolecularSymposia,2000,151(1):377-385.
    [138] F. Tiarks, K. Landfester, M. Antonietti. Silica nanoparticles as surfactants and fillers forlatexes made by miniemulsion polymerization[J]. Langmuir,2001,17(19):5775-5780.
    [140] M. Zhang, G. Gao, C.Q. Li, et al. Titania-coated polystyrene hybrid microballs preparedwith miniemulsion polymerization[J]. Langmuir,2004,20(1):1420-1424.
    [141] R. Schirrer, R. Lenke, J. Boudouaz. Study of mechanical damage in rubber-toughenedpoly(methyl methacrylate) by single and multiple scattering of light[J]. PolymerEngineering and Science,1997,37(10):1748-1760.
    [142] S. Pathak, M.T. Greci, R.C. Kwong, et al. Synthesis and applications ofpalladium-coated poly(vinylpyridine) nanospheres[J]. Chemistry of Materials,2000,12(7):1985-1989.
    [143] S. Asokan, K.M. Krueger, A. Alkhawaldeh, et al. The use of heat transfer fluids in thesynthesis of high-quality CdSe quantum dots, core/shell quantum dots, andquantumrods[J]. Nanotechnology,2005,16(1):2000-2011.
    [144] R. Yang, G. Chen, M.S. Dresselhaus. Thermal conductivity modeling of core-shell andtubular nanowires[J]. Nano Letters,2005,5(1):1111-1115.
    [145] Y. Lu, Y. Yin, Z. Li, et al. Synthesis and self-assembly of Au@SiO2core-shell colloids[J].Nano Letters,2002,2(7):785-788.
    [146] A. Rogach, A. Susha, F. Caruso, et al. Nano-and microengineering:3-D colloidalphotonic crystals prepared from sub-lm-sized polystyrene latex spheres pre-coated withluminescent polyelectrolyte/nanocrystal shells[J]. Advanced Materials,2000,12(5):333-337.
    [147] F. Piret, C. Bouvy, W. Marine, et al. A new series of optoelectronic nanocomposites:CMI-1mesoporous core/ZnS shell[J]. Chemical Physics Letters,2007,441(1):83-87.
    [148] M. Riskin, B. Basnar, Y. Huang, et al. Magnetoswitchable charge transport andbioelectrocatalysis using maghemite-Au core-shell nanoparticle/polyanilinecomposites[J]. Advanced Materials,2007,19(18):2691-2695.
    [149] K. Maeda, K. Teramura, D. Lu, et al. Noble-metal/Cr2O3core/shell nanoparticles as acocatalyst for photocatalytic overall water splitting[J]. Angewandte ChemieInternational Edition,2006,45(46):7806-7809.
    [150] Y. Lu, Y. Mei, M.B. Drechsler, et al. Thermosensitive core-shell particles as carriers forAg nanoparticles: modulating the catalytic activity by a phase transition in networks[J].Angewandte Chemie International Edition,2006,45(23):813-816.
    [151] Y. Lvov, A.A. Antipov, A. Mamedov, et al. Urease encapsulation in nanoorganizedmicroshells[J]. Nano Letters,2001,1(3):125-128.
    [152] S. Mecking, R. Thomanm. Core-shell microspheres of a catalytically active rhodiumcomplex bound to a polyelectrolyte-coated latex[J]. Advanced Materials,2000,12(13):953-956.
    [153] Y. Qiang, J. Antony, A. Sharma, et al. Iron/iron oxide core-shell nanoclusters forbiomedical applications[J]. Journal of Nanoparticle Research,2006,8(1):489-496.
    [154] T. Basinska. Hydrophilic core-shell microspheres: a suitable support for controlledattachment of proteins and biomedical diagnostics.[J]. Macromolecular Bioscience,2005,5(12):1145-1168.
    [155] D. Trau, W. Yang, M. Seydack. Nanoencapsulated microcrystalline particles forsuperamplified biochemical assays[J]. Analytical Chemistry,2002,74(21):5480-5486.
    [156] A.J. Khopade, F. Caruso. Stepwise self-assembled poly (amidoamine) dendrimer andpoly(styrenesulfonate) microcapsules as sustained delivery vehicles[J].Biomacromolecules,2002,3(6):1154-1162.
    [157] F. Caruso, C. Schüler. Enzyme multilayers on colloid particles: assembly, stability, andenzymatic activity[J]. Langmuir,2000,16(24):9595-9603.
    [158] Z. Zhong, Y. Yin, B. Gates, et al. Preparation of mesoscale hollow spheres of TiO2andSnO2by templating against crystalline arrays of polystyrene beads[J]. AdvancedMaterials,2000,12(3):206-209.
    [159] M. Zhang, G. Gao, C. Li, et al. Titania-coated polystyrene hybrid microballs preparedwith miniemulsion polymerization[J]. Langmuir,2004,20(4):1420-1424.
    [160] B. Erdem, E.D. Sudol, V.L. Dimonie, et al. Encapsulation of inorganic particles viaminiemulsion polymerization, II. Preparation and characterization of styreneminiemulsion droplets containing TiO2particles[J]. Journal of Polymer Science Part A:Polymer Chemistry,2000,38(24):4431-4440.
    [161] D. Kaempfer, R. Thomann, R. Mülhaupt. Melt compounding of syndiotacticpolypropylene nanocomposites containing organophilic layered silicates and in situformed core/shell nanoparticles[J]. Polymer,2002,43(10):2909-2916.
    [162] F. Corcos, E. Bourgeat-Lami, C. Novat, et al. Poly (styrene-b-ethylene oxide)copolymers as stabilizers for the synthesisof silica-polystyrene core-shell particles[J].Journal of Applied Polymer Science,1999,277(12):1142-1151.
    [163] F. Tiarks, K. Landfester, M. Antonietti. Silica nanoparticles as surfactants and fillers forlatexes made by miniemulsion polymerization[J]. Langmuir,2001,17(19):5775-5780.
    [164] J.L. Lula-Xavier, A. Guyot, E. Bourgeat-Lami Synthesis and characterization ofsilica/poly (methyl methacrylate) nanocomposite latex particles through emulsionpolymerization using a cationic azo initiator[J]. Journal of Colloid and Interface Science,2001,250(1):82-92.
    [165] X.J. Cui, S.L. Zhong, J. Yan, et al. Synthesis and characterization of core-shellSiO2-fluorinated polyacrylate nanocomposite latex particles containing fluorine in theshell[J]. Colloids and Surfaces A-Physicochem and Eng. Aspects,2010,360(1-3):41-46.
    [166] C. Perruchot, M.A. Khan, A. Kamitsi, et al. Synthesis of well-defined, polymer-graftedsilica particles by aqueous ATRP[J]. Langmuir2001,17(1):4479-4481.
    [167] Z.X. Dong, J. Mao, M.Q. Yang, et al, Phase Behavior of Poly (sulfobetainemethacrylate)-grafted silica nanoparticles and their stability in protein solutions[J].Langmuir,2011,27(3),15282-15291.
    [168] L.M. Liz-Marzan, M. Giersig, P. Mulvaney. Effects of chain length and concentration ofperfluorinated anionic surfactants on their binding to the surface[J]. Langmuir,2001,17(13):6220-6228.
    [169] X. Ding, Z. Wang, D. Han, et al. An effective approach to synthesis of Poly(methylmethaerylate)/Silica NanocomPosites[J]. Nanoteehnology,2006,17(1):4796-4801.
    [170] I. Freris, D. Cristofori, P. Riello, et al. Encapsulation of submicrometer-sized silicaparticles by a thin shell of poly(methyl methacrylate)[J]. Journal of Colloid andInterface Science,2009,331(14):351-355.
    [171] H. Wei, C. Cheng, W.Q. Chen, et al. Synthesis and applications of shell cross-linkedthermoresponsive hybrid micelles based onpoly(N-isopropylacrylamide-co-3-(trimethoxysilyl) propyl methacrylate)-b-poly (methylmethacrylate)[J]. Langmuir,2008,24(9):4564-4570.
    [172]陈敏.聚合物/SiO2有机-无机纳米复合微球的制备与表征[D].上海:复旦大学,2006.
    [173] Q. Huo, J. Liu, L.Q. Wang, et al. A new class of silica cross-linked micellar core–shellnanoparticles[J]. Journal of the American Chemical Society,2006,128(13):6447-6451.
    [174] T. Taniguchi, S. Obi, Y. Kamata, et al. Preparation of organic/inorganic hybrid andhollow particles by catalytic deposition of silica onto core/shell heterocoagulatesmodified with poly [2-(N, N-dimethylamino)ethyl methacrylate[J]. Journal of Colloidand Interface Science,2012,368(1):107-114.
    [175] M. Chen, S. Zhou, B. You, et al. A novel prepartion mehtod of raspberry-likePMMA/SiO2Hybrid Microspheres[J]. Macromoleeules,2005,38(15):6411-6422.
    [176] L. Zhang, H.B. Wang, Z.F. Zhang, et al. Preparation of monodisperse polystyrene/silicacore-shell nano-composite abrasive with controllable size and its chemical mechanicalpolishing performance on copper[J]. Applied Surface Science,2011,258(3):1217-1224.
    [177] J. Lee, C.K. Hong, S. Choe, et al. Synthesis of polystyrene/silica composite particles bysoap-free emulsion polymerization using positively charged colloidal silica [J]. Journalof Colloid and Interface Science,2007,310(1):112-120.
    [178] Y.G. Lee, C.Y. Park, K.H. Song, et al. Preparation of monodispersed PNIPAm/silicacomposites and characterization of their thermal behaviors[J]. Journal of Industrialand Engineering Chemistry,2012,18(1):744-751.
    [179] L.L. Duan, M. Chen, S.X. Zhou, et al. Synthesis and characterization ofpoly(N-isopropylacrylamide)/silica composite microspheres via inverse pickeringsuspension polymerization[J]. Langmuir,2009,25(3):3467-3472.
    [180] M.W. Pi, T.T. Yang, J.J. Yuan, et al. Biomimetic synthesis of raspberry-like hybridpolymer–silica core–shell nanoparticles by templating colloidal particles with hairypolyamine shell[J]. Colloids and Surfaces B: Biointerfaces,2010,78(1):193-199.
    [181] M. Giersig, T. Ung, L.M. Liz-Marzhn, et al. Hollow, nanoscale SiO2particles wererecently prepared using similar procedures[J]. Advanced Materials,1997,9(1):570-579.
    [182] C.E. McNamee, M. Matsumoto, P.G. Hartley, et al. Interaction forces and zeta potentialsof cationic polyelectrolyte coated silica surfaces in water and in ethanol: effects of chainlength and concentration of perfluorinated anionic surfactants on their binding to thesurface[J]. Langmuir,2001,17(20):6220-6227.
    [183] C. Graf, D.L.J. Vossen, A. Imhof, et al. A general method to coat colloidal particles withsilica[J]. Langmuir,2003,19(2):6693-6670.
    [184] C. Graf, A.V. Blaaderen. Metallodielectric colloidal core-shell particles for photonicapplications[J]. Langmuir,2002,18(2):524-534.
    [185] J. Hong, H. Han, C.K. Hong, et al. A direct preparation of silica shell on polystyrenemicrospheres prepared by dispersion polymerization with polyvinylpyrrolidone[J].Journal of Polymer Science Part A: Polymer Chemistry,2008,46(8):2884-2890.
    [186] J. Hong, J. Lee, Y.M. Rhym, et al. Polyelectrolyte-assisted synthesis of polystyrenemicrospheres by dispersion polymerization and the subsequent formation of silicashell[J]. Journal of Colloid and Interface Science,2010,344(2):410-416.
    [187] A. Uchimura, S. Kubota, S. Yamada, et al. Facile and versatile method for preparingcore-shell microspheres with controlled surface structures based on silicaparticles-monolayer[J]. Materials Chemistry and Physics,2011,129(3):871-880.
    [188] Y. Zhang, S. Luo, S. Liu, et al. Hybrid nanoparticles with thermoresponsive coronas viaa self-assembling approach [J]. Macromolecules,2005,38(1):9813-9820.
    [189] H. Wei, C. Cheng, C. Chang, et al. Synthesis and applications of shell cross-linkedthermoresponsive hybrid micelles based on poly(N-isopropylacrylamide-co-3-(trimethoxysilyl) propyl methacrylate)-b-poly(methylmethacrylate)[J]. Langmuir,2008,24(9):4564-4570.
    [190] Wolfgang H. Binder, Robert Sachsenhofer. Polymersome/silica capsules by'click'-chemistry[J]. Macromolecular Rapid Communications,2008,29(12-13):1097-1103.
    [191] F. Caruso, R.A. Caruso, H. M hwald. Science. Nanoengineering of inorganic and hybridhollow spheres by colloidal templating[J]. Science,1998,282(1):1111-1119.
    [192] Q. Huo, J. Liu, L.Q. Wang, et al. Effects of Side-Chain Substituents on self-assembly ofperylene diimide molecules morphology control[J]. Journal of the American ChemicalSociety,2006,128(9):6447-6451.
    [193] G.Y. Liu, H.F. Ji, X.L. Yang, et al. Synthesis of a Au/silica/polymer trilayer compositeand the corresponding hollow polymer microsphere with a movable Au core[J].Langmuir,2008,24(3):1019-1025.
    [194] N. Boukos, G. Kordas. A.F. Metaxa, et al. Efthimiadou polysaccharides as source ofadvanced materials: cellulose hollow micro-spheres for drug delivery in cancertherapy[J]. Journal of Colloid and Interface Science,2012,384(1):198-206.
    [195] J. Hu, J.Z. Ma, W.J. Deng. Properties of acrylic resin/nano-SiO2leather finishing agentprepared via emulsifier-free emulsion polymerization[J]. Materials Letters,2008,62(2):2931-2934.
    [196] J. Hu, J.Z. Ma, W.J. Deng. Synthesis of alkali-soluble copolymer (butyl acrylate/acrylicacid) and its application in leather finishing agent[J]. European Polymer Journal,2008,44(8):2695-2701.
    [197] Y. Ohtsuka, H. Kawaguchi, Y. Sugi. Copolymerization of styrene with acrylamide in anemulsifier-free aqueous medium[J]. Journal of Applied Polymer Science,1981,26(5):1637-1647.
    [198] G.W. Ceska. The Effects of carboxylic monomers on surfactant-free emul-sioncopolymerization [J]. Journal of Applied Polymer Science,1974,18(2):427-431.
    [199] L.F. Hao, Q.F. An, W. Xu, et al. Synthesis film morphology and hydrophobicity ofnovel fluorinated polyacrylate emulsion and solution on silicon wafer[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2012,396:83-89.
    [200] W.M. Choi; T.W. Kim; O.O. Park Preparation and characterization of poly(hydroxybutyrate-co-hydroxyvalerate)-organoclay Nanocomposites[J]. Journal ofApplied Polymer Science,2003,90(2):525-529.
    [201] T.M. Wu, C.Y. Wu. Biodegradable poly (lactic acid)/chitosan-modified montmorillonitenanocomposites: preparation and characterization[J]. Polymer Degradation and Stability,2006,91(1):2198-2204.
    [202] P. Bordes, E. Pollet, L. Ave′rous. Nano-biocomposites: Biodegradable polyester/nanoclay systems[J]. Progress in Polymer Science,2009,34(2):125-155.
    [203] Y. Xie, D. Kohls, I. Noda. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)nanocomposites with optimal mechanical properties[J]. Polymer,2009,50(19):4656-4670.
    [204] T. Pojanavaraphan, R. Magaraphan, B.S. Chiou. Development of biodegradablefoamlike materials based on casein and sodium montmorillonite clay[J].Biomacromolecules,2009,11(10):1681-1688.
    [205]申晓庆,兰云军,许晓红.酪素改性的技术手段与改性产品的性能特点[J].西部皮革,2009,31(3):30-32.
    [206]李运涛,王廷平,杨军胜.改性酪素涂饰剂的研制及应用表征[J].中国皮革,2007,36(7):37-39.
    [207]王良东,杜风光,史吉平,等.高速啤酒标签胶[J].中国胶黏剂,2006,15(3):48-50.
    [208]蒋小友.酪蛋白标签胶研制[J].化学与粘合,2006,28(2):88-90.
    [209]马建中,李娜,鲍艳.多元单体接枝改性酪素树脂的合成及表征[J].中国塑料,2009,23(6):54-59.
    [210] J.L. Audic, B. Chaufer, G. Daufn. Non-food applications of milk components and dairyco-products: a review[J]. Lait,2003,83(6):417-438.
    [211] P.L.M. Barreto, A.T.N. Pires, V. Soldi. Thermal degradation of edible films based onmilk proteins and gelatin in inert atmosphere[J]. Polymer Degradation and Stability,2003,79(1):147-152.
    [212] A. Ghosh, M.A. Ali, G.J. DiasGhosh. Effects of cross-linking on microstructure andphysical performance of casein protein[J]. Biomacromolecules,2009,11(10):1681-1688.
    [213] Tassawuth Pojanavaraphan, Rathanawan Magaraphan, et al. Development ofbiodegradable foamlike materials based on casein and sodium montmorillonite clay[J].Biomacromolecules,2010,11(10):2640-2646.
    [214] Y. Poirier, C. Nawrath, C. Somerville. Production of polyhydroxyalkanoates a family ofbiodegradable plastics and elastomers in bacteria and plants[J]. Biotechnology,1995,13(2):142-150.
    [215] R. Gebhardt, M. Burghammer, C. Riekel, et al. Investigation of surface modification ofcasein films by rennin enzyme action using micro-beam grazing incidence small angleX-ray scattering[J]. Dairy Science and Technology,2010,90(1):75-86.
    [216] P.F. Fox, A. Brodkorb. The casein micelle:historical aspects, current concepts andsignificance[J]. International Dairy Journal,2008,18(7):677-684.
    [217] X.Y. Song, J. Zhai, Y.L. Wang, et al. Fabrication of superhydrophobic surfaces Byself-assembly and their water-adhesion properties[J]. The Journal of Physical ChemistryB,2005,109(9):4048-4052.
    [218] G.T. Howard. Biodegradation of polyurethane: a review[J]. InternationalBiodeterioration&Biodegradation,2002,49(4):245-252.
    [219] S.J. Huang. M.S. Roby. Biodegradable polymers poly (amide-urethanes)[J]. Journal ofBioactive and Compatible Polymers,1986,1(1):61-67.
    [220] B.K. Kim., J.w. Seo, H.m. Jeong. Morphology and properties of waterbornepolyurethance/clay nanocomposite[J]. European Polymer Journal,2003,39(1):85-91.
    [221]瞿金清,陈焕钦.水性聚氨酯涂料研究进展[J].高分子材料科学与工程,2003,19(9):43-47.
    [222] M. Bock, H. Casselmann, H. Blum. New Developments in Polyketimine-PolyisocyanateCoatings--Their Chemisrty and Applications[C]. Waterborne, higher-solids and powdercoatings symposium. New Orleans,1994:55-56
    [223] Dieterich D. Aqueous emulsions, dispersion and solutions of polyurethanes synthesisand properties[J]. Progress in Organic Coatings,1981,9(3):281-340.
    [224]李坚,周晓彤.非离子型水分散性聚氨酯的制备及性能研究[J].中国胶黏剂,2002,12(1):26-30.
    [225] T.C. Wen, S.S. Luo, C.H. Yang Ionic conductivity of polymer electrolytes derived fromvarious didsocyanate-based waterborne polyurethanes[J]. Polymer,2000,41(18):6755-6764.
    [226] T.C. Wen, J.H.Y. Wang, T.T. Cheng, et al. The Effects of DMPA unit on ionicconductivity of PEG-DMPA-IPDI waterborne polyurethane as single-ion electrolytes[J].Polymer,1999,40(14):3979-3988.
    [227] M.C. Depech, F.M.B. Coutinho Waterborne anionic polyurethanes andpoly(urethane-urea)s: influence of the chain extender on mechanical and adhesiveproperties[J]. Polymer Testing,2000,19(8):939-952.
    [228] H. Ultich. Polyurethane. In: Modern Plastics Encyclopedia[M]. New York: McGraw-Hill,1983:76-84.
    [229] K.L. Noble. Waterborne Polyurethane[J]. Progress in Organic Coatings,1997,32(1-4):131-136.
    [230]孙大庆.聚氨酯改性酪素皮革涂饰剂的研究[J].皮革化工,1996,(4):14-17.
    [231]樊丽辉,刘杰,周明.聚氨酯改性酪素皮革涂饰剂的制备与应用[J].皮革化工,2006,23(2):25-28.
    [232]刘冠峰,陈建勇,周雪梅.壳聚糖与水分散型聚氨酯共混膜的结构与性能[J].高分子材料科学与工程,1998(6):129-134.
    [233]樊李红,杜予民,唐汝培.海藻酸钠/水性聚氨酯共混膜的结构与表征和性能测试[J].分析科学学报,2002,18(6):441-444.
    [234]王念贵.水性聚氨酯改性蛋白质塑料的结构与性能研究[D].武汉:武汉大学,2004.
    [235] F. Li, J.Q. Dong, Q. Shen. Terpolymerization of carbon dioxide with epoxides[J].Polymer Bulletin,2009,46(1):45-50.
    [236] Z.F. Li, D.H. Li, G.H. Yang. Production of polyhydroxyalkanoates, a family ofbiodegradable plastics and elastomers, in bacteria and plants[J]. Elastomers,1997,55(1):28-32.
    [237] L.N. Zhang, G.Yang, L. Xiao. Blend membranes of cellulose cuoxam/casein[J]. Journalof Membrane Science,1995,103(1-2):65-71.
    [238]徐卫国,杨文堂,王新.羟甲基丙烯酸树脂改性酪素皮革顶涂剂合成与应用的探讨[J].皮革化工,1997,(2):14-17.
    [239]戴红,张宗才,林波.酪素的改性及改性产品的性能[J].皮革科学与工程,1998,(3):47-51.
    [240]宋孟恩,张志国,朱晓丽.接枝共聚制备PMMA-干酪素核壳纳米颗粒[J].济南大学学报,2009,23(3):229-232.
    [241]陈永芳,丁志文.胶原蛋白接枝共聚改性的研究[C].全国皮革化学品会议论文集.西安,2007:288-293.
    [242] N.G. Wang, L.N. Zhang, Y.S. Lu. Effects of the particle size in dispersions on theproperties of waterborne polyurethane/casein composites[J]. Industrial&EngineeringChemistry Research,2004,43(13),3336-3342.
    [243]饶赟.干酪素的接枝与共混交联改性[D].广州:中山大学,2008.
    [244] A. Serrano-Medina. Bio-mimetically synthesized Ag@BSA microspheres as a novelelectrochemical biosensing interface for sensitive detection of tumor cells[J]. Journal ofColloid and Interface Science,2012,369(1):82-90.
    [245] R. Yan, Y.Y. Zhang, X.H. Wang, et al. Synthesis of porous poly (styrene-co-acrylic acid)microspheres through one-step soap-free emulsion polymerization: Whys andwherefores[J]. Journal of Colloid and Interface Science,2012,368(1):220-225.
    [246]刘钦,沈一丁,费贵强,等.自交联酪素接枝丙烯酸酯共聚物乳液的制备及表面施胶和增强机理[J].高分子材料科学与工程,2011,27(7):151-154.
    [247]肖学文,廖双泉,廖建和,等.K2S2O8/Na2S2O3引发剑麻纤维接枝的研究[J].纤维素科学与技术,2005,13(2):1-5.
    [248] J.T. Park, J.H. Koh, J.A. Seo, et al. Synthesis and characterization of TiO2/Ag/polymerternary nanoparticles via surface-initiated atom transfer radical polymerization[J].Applied Surface Science,2011,257(20):8301-8306.
    [249] D. Qi, Y. Bao, Z. Huang, et al. Anchoring of polyacrylate onto silica and formation ofpolyacrylate/silica nanocomposite particles via in situ emulsion polymerization[J].Colloid and Polymer Science,2008,286(2):233-241.
    [250] A. Ferchichi, S. Calas-Etienne, M. Smaihi, et al. Relation between structure andmechanical properties (elastoplastic and fracture behavior) of hybrid organic-inorganiccoating[J]. Journal of Materials Science,2009,44(20):2752-2758.
    [251] B. Montero, C. Ramírez, M. Rico, et al. Mechanism of thermal degradation of aninorganic-organic hybrid based on an epoxy-POSS[J]. Macromolecular Symposium,2008,267(12):74-78.
    [252] C. Ni, G. Ni, L. Zhang, et al. Syntheses of silsesquioxane (POSS)-basedinorganic/organic hybrid and the application in reinforcement for an epoxy resin[J].Journal of Colloid and Interface Science,2011,362(1):94-99.
    [253] M.S. Wang, G. Xu, Z.J. Zhang, et al. Inorganic-organic hybrid photochromicmaterials[J]. Chemical Communications,2009,46(3):361-376.
    [254] E. Coronado, C. Mingotaud. Hybrid organic/inorganic Langmuir-Blodgett films. Asupramolecular approach to ultrathin magnetic films[J]. Advanced Materials,1999,11(10):869-872.
    [255] S.J. Cho, I.S. Bae, H.D. Jeong, et al. A study on electrical and mechanical properties ofhybrid-polymer thin films by a controlled TEOS bubbling ratio[J]. Applied SurfaceScience,2008,254(23):7817-7820.
    [256] B.Y. Kim, L.Y. Hong, Y.M. Chung, et al. Solvent-resistant PDMS microfluidic deviceswith hybrid inorganic/organic polymer coatings[J]. Advanced Functional Materials,2009,19(23):3796-3803.
    [257] M. Sadat-Shojai, M. Atai, A. Nodehi, et al. Hydroxyapatite nanorods as novel fillers forimproving the properties of dental adhesives: synthesis and application[J]. DentalMaterials,2010,26(5):471-482.
    [258] E. Holder, N. Tessler, A.L. Rogach. Hybrid nanocomposite materials with organic andinorganic components for opto-electronic devices[J]. Journal of Materials Chemistry,2008,18(10):1064-1078.
    [259] A. Wight, M. Davis. Design and preparation of organic-inorganic hybrid catalysts[J].Chemical Reviews,2002,102(10):3589-3614.
    [260] M. Vallet-Regí, M. Colilla, B. González. Medical applications of organic–inorganichybrid materials within the field of silica-based bioceramics[J]. Chemical SocietyReviews,2010,40(2):596-607.
    [261] C.S. Chang, H.S. Ni, S.Y. Suen, et al. Preparation of inorganic–organic anion-exchangemembranes and their application in plasmid DNA and RNA separation[J]. Journal ofMembrane Science,2008,311(1-2):336-348.
    [262] H.E. Bergna, W.O. Roberts. Colloidal silica fundamentals and applications; SurfactantScience Series[M], Florida: CRC Press,2006:62-69.
    [263] R.K. Iler. The Chemistry of Silica. Solubility, polymerization, colloid and surfaceproperties, and biochemistry[M]. New York: Wiley,1979:125-135.
    [264] W. Sto. ber, A. Fink, E. Bohn. Controlled growth of monodisperse silica spheres in themicron size range[J]. Journal of Colloid and Interface Science,1968,26(1):62-69.
    [265] B. Li, S. Zhang, Q. Xu, B. Wang. Preparation of composite polyacrylate latex particleswith in situ-formed methylsilsesquioxane cores[J]. Polymers for AdvancedTechnologies,2009,20(12):1190-1194.
    [266] J.Z. Ma, Q.N. Xu, D.G. Gao. Study on synthesis and performances of casein resingrafting modified by caprolactam/acrylic esters/vinyl acetate/organic silicone[J].Advanced Materials Research,2010,123-125:1267-1270.
    [267] A.B. Beltran, G.M. Nisola, E. Cho, et al. Organosilane modified silica/polydimethylsiloxane mixed matrix membranes for enhanced propylene/nitrogenseparation[J]. Applied Surface Science,2011,258(1):337-345.
    [268] J.H. Zhou, L. Zhang, J.Z. Ma. Synthesis and properties of nano-SiO2/polysiloxanemodified polyacrylate emulsifier-free emulsion[J]. Polymer-Plastics Technology andEngineering,2011,50(1):15-19.
    [269] X. P. Mao, J. F. Huang, M. F. Leung, et al. Novel core-shell nanoparticles and theirapplication in high-capacity immobilization of enzymes[J]. Applied Biochemistry andBiotechnology,2006,135(3):229-239.
    [270] Ho, K.M., Li, W.Y., et al. Amphiphilic polymeric particles with core-shellnanostructures: Emulsion-based syntheses and potential applications[J]. Colloid andPolymer Science,2010,288(16-17):1503-1523.
    [271]周建华,张琳.纳米SiO2改性硅丙无皂乳液皮革涂饰剂的合成和应用[J].中国皮革,2010,39(11):41-44.
    [272]申欣,孙文强,王春芙.常温固化内交联水性木器乳业的研制[J].涂料技术与文摘,2003,(2):24-26.
    [273]张卫英,李晓,刘昌健.聚丙烯酸钠高吸水树脂的制备及性能研究[J].精细化工,2000,17(3):531-533.
    [274]张静,籍保平,李博,等.酸性条件下牛乳酪蛋白纯体系稳定性的研究[J].西北农林科技大学学报(自然科学版),2004,32(9):43-46.
    [275]柳建宏,于杰,何敏,等.KH570用量对纳米SiO2接枝改性的影响[J].胶体与聚合物,2010,28(1):19-21.
    [276]刘丹丹,曾幸荣,李红强,等.聚合条件对丙烯酸酯微乳液粒径及其分布的影响[J].中国胶粘剂,2011,20(1):20-26.
    [277]王巍,张斌,张绪刚,等.聚丙烯酸酯乳液聚合的影响因素[J].化学与黏合,2009,31(6):5-9.
    [278] A. Oláh, H. Hillborg, G.J. Vancso. Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surfacemodification[J]. Applied Surface Science,2005,239(3-4):410-423.
    [279] X. Zhang, Y.Y. Wu, S.Y. He, et al. Structural characterization of sol–gel compositesusing TEOS/MEMO as precursors[J]. Surface&Coatings Technology,2007,201(1):6051-6058.
    [280] J.Z. Ma, N. Li, Y. Bao. Synthesis and characterization of graft casein resin modifiedwith multi-monomers[J]. China Plastic,2009,23(6):54-59.
    [281] B. Chmielewska, L. Czarnecki, J. Sustersic, et al. The influence of silane couplingagents on the polymer mortar[J]. Cement&Concrete Composites,2006,28(2):803-810.
    [282]罗权尡,王真智.硅烷偶联剂对硅橡胶性能的影响[J].特种橡胶制品,1998,19(5):7-11.
    [283]郭中宝,刘杰民,范慧俐,等.硅烷偶联剂对环氧改性有机硅树脂耐高温性能的影响[J].化学建材,2006,22(6):28-32.
    [284] C.K. Radhakrishnan, A. Sujith, G. Unnikrishnan, et al. Effects of the blend ratio andcrosslinking system on the curing behaviour, morphology, and mechnical properties ofstyrene-butadiene rubber/poly(ethylene-covinyl acetate) blend[J]. Journal of AppliedPolymer Science,2004,94(2):827-837.
    [285]江海亮,应丽艳.硅烷偶联剂对化学交联EVA及其性能的影响[J].塑料工业,2010,38(5):63-67.
    [286]马英子,肖新颜.核壳型纳米SiO2/含氟聚丙烯酸酯复合乳液的合成与表征[J].化工学报,2011,62(4):1145-1148.
    [287] R. Langer, New methods of drug delivery[J]. Science,1990,249(76):1527-1533.
    [288] Y. Lu, S.C. Chen. Micro and nano-fabrication of biodegradable polymers for drugdelivery[J]. Advanced Drug Delivery Reviews,2004,56(11):1621-1633.
    [289] D.H. Lewis, M. Chasin, R. Langer. Biodegradable polymers as drug deliverysystems[M], New York: Marcel Dekker,1990:56-66.
    [290] A.O. Elzoghby, W.S. Abo El-Fotoh, N.A. Elgindy. Casein-based formulations aspromising controlled release drug delivery systems[J]. Journal of Controlled Release,2011,153(1):206-216.
    [291] L. Chen, G. Remondetto, M. Rouabhia, et al. Kinetics of the breakdown of cross-linkedsoy protein films for drug delivery[J]. Biomaterials,2008,29(27):3750-3756.
    [292] A.J. Kuijpers, P.B. Wachem, M.J.A. Luyn, et al. In vitro and in vivo evaluation of gelatinchondroitin sulphate hydrogels for controlled release of antibacterial proteins[J].Biomaterials,2000,21(17):1763-1772.
    [293] R.G. Payne, M.J. Yaszemski, A.W. Yasko, et al. Development of an injectable, in situcrosslinkable, degradable polymeric carrier for osteogenic cell populations, Part1,encapsulation of marrow stromal osteoblasts in surface crosslinked gelatinmicroparticles[J]. Biomaterials,2002,23(22):4359-4371.
    [294] M. Rosemberg, S.L. Young. Whey proteins as microencapsulating agents. Microen-capsulation of anhydrous milk fat structure evaluation[J]. Food Structure,1993,12(1):31-41.
    [295] O.A. Diak, A. Bani-Jaber, B. Amro, et al. The manufacture and characterization ofcasein films as novel tablet coatings[J]. Food and Bioproducts Process,2007,85(3):284-290.
    [296] S. Missaghi, R. Fassihi. A novel approach in the assessment of polymeric film formationand film adhesion on different pharmaceutical solid substrates[J]. Aaps Pharm. Sci. Tech.2004,5(2):32-39.
    [297] J.T. Park, J.H. Koh, J.A. Seo, et al. Synthesis and characterization of TiO2/Ag/polymerternary nanoparticles via surface-initiated atom transfer radical polymerization[J].Applied Surface Science,2011,257(20):8301-8306.
    [298] C. Ni, G. Ni, L. Zhang, et al. Syntheses of silsesquioane (POSS)-basedinorganic/organic hybrid and the application in reinforcement for an epoxy resin[J].Journal of Colloid and Interface Science,2011,362(2):94-101.
    [299] M.S. Wang, G. Xu, Z.J. Zhang, et al. Inorganic-organic hybrid photochromicmaterials[J]. Chemical Communications,2010,46(3):361-376.
    [300] B.Y. Kim, L.Y. Hong, Y.M. Chung, et al. Solvent-resistant PDMS microfluidic deviceswith hybrid inorganic/organic polymer coatings[J]. Advanced Functional Materials,2009,19(23):3796-3803.
    [301] M. Sadat-Shojai, M. Atai, A. Nodehi, et al. Hydroyapatite nanorods as novel fillers forimproving the properties of dental adhesives: synthesis and application[J]. DentalMaterials,2010,26(5):471-482.
    [302] M. Vallet-Regí, M. Colilla, B. González. Medical applications of organic-inorganichybrid materials within the field of silica-based bioceramics[J]. Chemical SocietyReviews,2010,40(2):596-607.
    [303] H.E. Bergna, W.O. Roberts. Colloidal silica fundamentals and applications; SurfactantScience Series[M], Florida: CRC Press,2006:130-154.
    [304] W. Sto¨ber, A. Fink, E. Bohn. Controlled growth of monodisperse silica spheres in themicron size range[J]. Journal of Colloid and Interface Science,1968,26(1):62-69.
    [304] Q.N. Xu, J.Z. Ma, J.H. Zhou, et al. Synthesis and performance of polyacrylate modifiedcasein/nano SiO2leather finishing agent using soap-free emulsion polymerization[C].Chongqing: Functional Materials and Applications,2011:554-559.
    [305]马建中,徐群娜,周建华,等.双原位法制备酪素基纳米二氧化硅复合皮革涂饰剂的方法[P].中国专利:201110394826.7,2011-12-02.
    [306] H.K. Ju, S.Y. Kim, Y. M. Lee. pH/temperature-responsive behaviors of semi-IPN andcomb-type graft hydrogels composed of alginate and poly (N-isopropylacrylamide)[J].Polymer,2001,42(16):6851-6857.
    [307] Shaul M. Aharoni. Synthesis characterization and theory of polymeric networks andgels[M]. New York: Plenum Press,1992:100-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700