用户名: 密码: 验证码:
高粘度酸液酸岩反应动力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界碳酸盐岩储层酸化压裂改造技术经过50余年的研究和发展,形成了以控制酸液滤失、降低酸岩反应速率为目的的多种深度酸压改造技术,不同类型的高粘度酸液体系已广泛应用于这些深度酸压改造技术中。地层裂缝中高粘度酸液与岩石发生的化学反应直接决定了酸蚀有效作用距离和酸蚀裂缝导流能力,因此高粘度酸液体系的酸岩反应是深度酸压改造的核心研究内容,对预测酸压改造效果和指导工艺方案设计有重要意义。
     目前在酸岩反应研究中粘度对酸岩反应影响机理方面的研究较少,不同粘度酸液的酸岩反应规律认识较浅显。这是由于高粘度酸液体系的液体类型、流态特征以及反应过程与常规低粘度酸液具有较大的差异,使用常规的实验方式进行测试时,模拟的酸岩反应与地层实际情况差异较大,且获取的数据结果误差较大。因此,有必要设计和研发一套针对高粘度酸液酸岩反应动力学行为研究的实验方法,同时深入研究粘度对酸岩反应的影响机理及相关规律,建立考虑酸液粘度的酸岩反应动力学理论模型。
     本文从酸岩反应模拟室内实验方法研究出发,对比分析了常规酸岩反应模拟实验在测试高粘度酸液体系时的适应性,在此基础上建立了一套适用于高粘度酸液酸岩反应动力学研究的实验方法,进行不同粘度酸液酸岩反应规律实验研究。结合流体力学、化学反应动力学等理论和相关原理,研究粘度对酸岩反应的影响机理,获得酸液粘度与传质系数的关系式,建立了地层裂缝和酸岩反应实验中考虑酸液粘度的酸岩反应动力学模型,应用该模型分析了地层裂缝中不同粘度酸液的H-传质系数和酸岩反应速率分布规律以及酸蚀有效作用距离。通过论文的研究,主要取得了以下成果:
     1、系统研究了常规酸岩反应模拟实验方法,结合化学反应工程学理论和搅拌原理,设计并研发了一种不同粘度酸液体系酸岩反应模拟实验新方法,通过室内实验研究了酸浓度、温度及流速与不同粘度酸液酸岩反应速率之间的相关关系规律;
     2、结合普朗特边界层理论,分析并建立了地层裂缝和酸岩反应实验中边界层分布与酸液粘度之间的关系,模拟计算了酸液在地层裂缝中的边界层分布与流态情况,界定了旋转圆盘实验方式适用的酸液粘度;
     3、结合碰撞理论与扩散反应动力学原理中H+扩散系数与溶液粘度的关系,利用化工原理中的基础实验值,拟合获得H+扩散系数与酸液粘度、温度和浓度的关系式;
     4、基于质量传递理论中双膜传质模型的相关原理,建立了地层裂缝、酸岩反应实验中层流、湍流对流传质系数与粘度关系的数学模型,通过模拟计算分析了酸液粘度、排量、缝宽及酸液流态对H+传质系数的影响;
     5、研究了地层裂缝与酸岩反应实验中的酸岩反应机理,结合H+传质系数方程与化学反应动力学理论,建立了地层裂缝和酸岩反应实验中考虑酸液粘度的酸岩反应动力学理论模型;
     6、通过幂律流体表观粘度与地层裂缝流动的剪切速率分析,结合粘度与剪切时间的拟合关系式,获得地层裂缝中酸液粘度变化规律。应用考虑酸液粘度的酸岩反应动力学理论模型,模拟计算不同粘度酸液H+传质系数和酸岩反应速率沿地层裂缝长度方向上的分布规律,评价了酸液排量与粘度变化对酸蚀有效作用距离的影响。
     本文研究旨在建立适用于高粘度酸液酸岩反应模拟的实验方法,探索高粘度酸液的酸岩反应机理,建立粘度与酸岩反应的相关规律,完善高粘度酸液体系的酸岩反应动力学基础理论。无论是对于推动碳酸盐岩油气藏酸化压裂基础理论的发展,还是对于提高碳酸盐岩储层高粘度酸液深度酸压技术应用效果均有重要的理论意义和实践意义。
After more than50years of research and development, a variety of carbonatereservoir deep-acid-fracturing technologies with purpose of controlling acid fluid loss,reducing the acid-rock reaction rate are formed in the world. Different types ofhigh-viscosity acid systems have been widely used in the deep acid fracturingtechnology. The chemical reaction between high viscosity acid and rock directlydetermines the etching effective distance and etching fracture conductivity ability. Sothe acid-rock reaction of high-viscosity acid system is the core research ofdeep-acid-fracturing technology and it is important to predict the effect of acidfracturing and guidance technology program.
     There are few studies on the mechanism of the viscosity influence on theacid-rock reaction in currently, and the understanding of acid-rock reaction withdifferent viscosity acids is elementary. It is because the type of liquid, thecharacteristics of the flow pattern and acid-rock reaction of high-viscosity acid systemis quite different from conventional low-viscosity acid system. When usingconventional experimental test, the simulation acid-rock reaction result is quitedifferent from the actual situation, and the results are usually error. Therefore, invent anew experimental method that suits for the kinetic behavior of high-viscosity acidacid-rock reaction is very necessary. Meanwhile, study on the viscosity influence onthe acid-rock reaction mechanism and related laws so as to establish a consideringacid viscosity acid-rock reaction kinetic theory model.
     Based on the indoor experimental simulation of acid-rock reaction with thehigh-viscosity acid system, by the analysis of the adaptability, this paper established anew experimental method suits for the kinetic behavior of high-viscosity acidacid-rock reaction which can use for the different viscosity acids acid-rock reaction study.
     Combining theory and principles of fluid mechanics, chemical reaction kinetics,this paper researches viscosity influence mechanism of the acid-rock reaction andobtains the acid viscosity and mass transfer coefficient relationship to establish twoacid-rock reaction kinetic models considering acid viscosity in the reservoir fractureand the acid-rock reaction experiment. This paper also analyze the H~+mass transfercoefficient and acid-rock reaction rate distribution law and the effective etchingdistance in reservoir fracture by using the model. The study results in this paper are asfollows:
     1. Systematic study of the conventional acid-rock reaction simulationexperimental methods, combining the chemical reaction engineering theory andmixing principle, this paper designed and developed a new different viscosity acidssystem acid-rock reaction simulation experimental method. Based on the method, thispaper studies the correlation law between the acid concentration, temperature andflow rate with different viscosity acids acid-rock reaction rate by laboratoryexperiments.
     2. Binding the Prandtl boundary layer theory to establish the relationship of theformation fractures and acid-rock reaction experimental boundary layer distributionand the acid viscosity. Simulate the distribution and flow pattern of acid in theformation fracture boundary layer and define the applicable acid viscosity for therotating disk experiments.
     3. Combined with collision theory of reaction and diffusion kinetics theory of H~+diffusion coefficient and solution viscosity relationship, using the basis experimentalvalues in chemical principle, the relational expression between H~+diffusioncoefficient and acid viscosity, temperature and concentration was obtained.
     4. Based on double membrane mass transfer principle of mass transfer theory, themathematical model of Laminar and turbulent with convective mass transfercoefficient and viscosity relationship in formation fractures, acid-rock reactionexperiments was established. Calculate and analyze the acid viscosity, acid emission,fracture width and acid flow pattern influence on H~+mass transfer coefficient bysimulating.
     5. Study on the acid-rock reaction mechanism of the formation fractures andacid-rock reaction experiments, combined with H~+mass transfer coefficient equationchemical reaction kinetics theory, establish the acid-rock reaction considering the acidviscosity kinetics theory model of formation fractures and acid-rock reaction simulation experiment.
     6. By the analysis of the apparent viscosity of power law fluid and the formationfracture flow shear rate, via viscosity and shear time fitting relational expression toobtain the acid viscosity variation law in the formation fractures. Application of theconsidering acid viscosity acid-rock reaction kinetics theoretical model to simulatedifferent viscosity acid H~+mass transfer coefficient and acid-rock reaction rate alongthe fracture length direction distribution and to evaluate the impact of the acidemission with the viscosity change of the effective role of the etching distance.
     The purpose of this paper is to invent a simulation experimental method suitablefor the high-viscosity acid acid-rock reaction, to explore high-viscosity acid acid-rockreaction mechanism, to establish the relationship law of acid viscosity and acid-rockreaction and to perfect the high-viscosity acid system acid-rock reaction dynamicsbasic theory. Whether it is for the promotion of the development of the basic theory ofacid fracturing of carbonate reservoirs, or for improving the deep-acid-fracturingtechnology application effect of the carbonate reservoirs with high viscosity acid, it isof important theoretical and practical significance.
引文
[1]罗平,张静,刘伟,等.中国海相碳酸盐岩油气储层基本特征[J].地学前缘,2008,15(1):36-49.
    [2]赵文智,汪泽成,胡素云,等.中国陆上三大克拉通盆地海相碳酸盐岩油气藏大型化成藏条件与特征[J].石油学报,2012,增2(33):1-9.
    [3]胥云.低渗透复杂岩性油藏酸压技术研究与应用[D].成都:西南石油大学,2005.
    [4]伊向艺,卢渊,宋毅,等.碳酸盐岩储层交联酸携砂酸压改造新技术[C].第五届油气藏地质与开发工程国家重点实验室国际会议论文集,成都理工大学,2009:909-912.
    [5]伊向艺,卢渊,宋毅,等.靖边气田白云岩储层交联酸酸压技术实践]J].油气地质与采收率,2008,15(6):92-94.
    [6]伊向艺,卢渊,李沁,等.碳酸盐岩储层交联酸携砂酸压改造新技术[J].中国科技论文在线,2010,5(11):837-839.
    [7]伊相艺.碳酸盐岩储层交联酸酸压技术研究与应用[D].成都:成都理工大学,2006.
    [8]王海涛.交联酸携砂酸压在白云岩储层改造中的应用[D].成都:成都理工大学,2007.
    [9]伊向艺,卢渊,王海涛等.交联酸在白云岩储层酸压施工中携砂能力实验评价[C].成都:油气藏地质及开发工程国家重点实验室,2007:1086-1089.
    [10]伊向艺,卢渊,王海涛等.白云岩储层交联酸滤失性能评价研究[C].成都:油气藏地质及开发工程国家重点实验室,2007:1249-1253.
    [11]王海涛,伊向艺等.新型交联酸与白云岩反应动力学行为研究[J].新疆石油地质,2009,30(3):346-348.
    [12]李沁,伊向艺,卢渊,等.高粘度酸液在人工裂缝中流态规律研究[J].石油与天然气化工,2012,41(5):512-515.
    [13]李沁.高粘度酸液酸岩反应模拟试验新方法探索[D].成都:成都理工大学,2010.
    [14]赵立强.碳酸盐岩和盐酸反应动力学的试验研究[J].西南石油学院报,1988,10(1):34-41.
    [15]朱永东.酸岩反应动力学实验研究方法评述[J].内蒙古石油化工,2008,10:23-25.
    [16]Lund K, Fogler H S, McCune C C. Acidization-I.The Dissolution of Dolomite in Hydrochloric Acid[J]. Chemical Engineer Science,1973,28:691-700.
    [17]Lund K, Fogler H S, McCune C C, et al. Acidization-II.The Dissolution of Calcite in Hydrochloric Acid[J]. Chemical Engineer Science,1975,30:825-835.
    [18]William G F, Ford, Roberts L D. The Effect of Foam on Surface Kinetics in Fracture Acidizing [J]. SPE Production Engineering,1985,37(1):89-97.
    [19]Rick Gdanski. Kinetics of the Primary Reaction of HF on Alumino-Silicates[C]. Oklahoma:SPE Production Engineering, SPE37459,1997.
    [20]Nasr-EI-Din H A, AI-Mohammad A M, AI-Aamri A M. Reaction Kinetics of Gelled Acids With Calcite [J]. SPE Production Engineering,2006,21:5-7.
    [21]Taylor K C, Nasr-EI-Din H A, Mehta S. Anomalous Acid Reaction Rates in Carbonate Reservoir Rocks [J]. SPE89417,11(4):488-496.
    [22]Nasr-EI-Din H A, AI-Mohammad A M, AI-Aamri A M, et al. Quantitative Analysis of Reaction Rate Retardation in Surfactant-Based Acids [J]. SPE107451:1-11.
    [23]Rabie A I, Gomaa A M, Nasr-El-Din H A. Determination of Reaction Rate of In-situ Gelled Acids With Calcite Using the Rotating Disk Apparatus[C]. Tunis:Production and Operations Conference and Exhibition, SPE133501,2010.
    [24]Rozieres J, Chang F F, Sullivan. Measuring Diffusion Coefficient in Acid Fracturing Fluids and Their Application to Gelled Acid and Emulsified[C]. New Orleans:Annual Technical Conference and Exhibition, SPE28552,1994.
    [25]Mumallah N A. Hydrochric Acid Diffusion Coefficients at Acid Fracturing Conditions [J]. JPTE,1996,15:361-374.
    [26]Navarreate R C, Holms B A, McConnell S B. Emulsified Acid Enhances Well Production in High-Temperature Carbonate Formations[C]. SPE50612,1998.
    [27]Navarreate R C, Miller M J, Gordon J E. Laboratory and Theoretical Studies for Acid Fracture Stimulation Optimization[C]. Texas:Permian Basin Oil and Gas. Recovery Conference, SPE39776,1998.
    [28]Marten Buijse, Peter de Boer, Bert Breukel, et al. Organic Acid in Carbonate Acidizing [C]. SPE82211,2003.
    [29]Rabie A I, Nasr-El-Din H A. Measuring the Reaction Rate of Lactic Acid with Calcite Using the Rotating Disk Apparatus[C]. Manama:Middle East Oil and Gas Show and Conference, SPE140167,2011.
    [30]任书泉,李联奎,袁子光,等.旋转岩盘实验仪的研制和应用[J].石油钻采工艺,1983,5:69-75.
    [31]任书泉,袁子光,李联奎,等.酸岩反应的旋转模拟试验[J].石油钻采工艺,1983,6:61-67.
    [32]赵立强,陈冀嵋,任书泉.酸岩反应动力学的试验研究[J].西南石油学院学报,1984,2:14-30.
    [33]张黎明,任书泉.白云岩与盐酸非均相表面反应动力学研究[J].油田化学,1994,11(1):32-38.
    [34]张黎明,任书泉,陈冀嵋.用旋转圆盘仪研究酸岩表面反应动力学[J].化学反应工程与工艺,1996,12(3):238-246.
    [35]张建利,孙忠杰,张泽兰.碳酸盐岩油藏酸岩反应动力学实验研究[J].油田化学,2003,20(3):216-219.
    [36]张继周,蒋晓敏,韩晓强等.RDA100高温高压动态腐蚀测定仪在酸岩反应研究中的应用[J].新疆石油科技,2003,13(4):39-42.
    [37]何春明,陈红军,刘岚,等.VES自转向酸反应动力学研究[J].石油化工与天然气化工,2010,33(9):246-253.
    [38]伊向艺,卢渊,李沁,等.不同粘度酸液体系酸岩反应动力学参数测定装置:中国,ZL200910058898.7[P].2012-08-08.
    [39]张继周,赵小丽,刘静.变粘酸酸岩反应动力学研究[J].新疆石油科技,2008,18(3):28-30.
    [40]Williams B B, Gidley J L, Guin J A, et al. Characterization of Liquid-Solid Reac-tion:The Hydrochloric Acid-Calcium Carbonate Reactions[M].ind.and Eng.Chem.Fun d.(1970)9,589-596.
    [41]Droberts L, Guin J A. The effect of surface kinetics in fracture acidizing[J].SPE4349:385-395.
    [42]Li L, Nasr-El-Din H A, Chang F F, et al. Reaction of Simple Organic Acids and Chelating Agents With Calcite [J]. IPTC12886:1-15.
    [43]Jain R, Green D W, Willhite G P, et al. Reaction Kinetics of the Uptake of Chromium(III) Acetate by Polyacrylamide[J]. SPE89399:247-254.
    [44]Mackay E J. Modeling In-Situ Scale Deposition:The Impact of Reservoir and Well Geometriesand Kinetic Reaction Rates [J]. SPE81830:45-56.
    [45]Hoefner M L, Fogler H S, Fluid-Velocity and Reaction-Rate Effects During Carbonate Acidizing:Application of Network Model[J]. SPE15573:56-62.
    [46]Al-Mutairi S H, Nasr-El-Din H A, Hill A D. Effect of Droplet Size on the Reaction Kinetics of Emulsified Acid With Calcite[J]. SPE112454:1-19.
    [47]Gomaa A M, Nasr-El-Din H A. New Insights into Wormhole Propagation in Carbonate Rocks Using Regular, Gelled and In-Situ Gelled Acids[J]. SPE133303.:1-12.
    [48]Rabie A I, Gomaa A M, Nasr-El-Din H A. Determination of Reaction Rate of In-situ Gelled Acids With Calcite Using the Rotating Disk Apparatus[J]. SPE133501:1-18.(2010)
    [49]Alkhaldi M H, Sarma H K, Nasr-EI-Din H A. Diffusivity of Citric Acid During its Reaction With Calcite[J]. Jourmal of Canadian Petroleum Technology,2010:48-52.
    [50]Rabie A I, Mahmoud M, Nasr-El-Din H A. Reaction of GLDA with Calcite:Reaction Kinetics and Transport Study[J]. SPE139816:1-20(2011)
    [51]Rabie A I, Gomaa A M, Nasr-El-Din H A. HCl-Formic In-Situ Gelled Acid for Carbonate Acidizing:Core Flood and Reaction Rate Study [J]. SPE140138.(March2011).
    [52]任书泉,李联奎,袁子光,等.压裂酸化时氢离子有效传质系数变化规律的试验研究[J].石油钻采工艺,1983,53-60,52.
    [53]李小刚,杨兆中,胡学明,等.酸压裂缝中酸液流动反应行为研究综述[J].钻井液与完井液,2008,25(6):70-73.
    [54]任书泉,熊宏杰.同离子效应和温度场对裂缝中酸液有效作用距离的影响[J].西南石油学院学报,1986,4:23-35.
    [55]陈赓良,黄瑛.碳酸盐岩酸化反应机理分析[J].天然气工业,2006,26(1):104-108.
    [56]朱永东.酸岩反应动力学实验研究方法评述[J].内蒙古石油化工,2008,10:23-25.
    [57]张黎明,任书泉.酸岩反应动力学方式与酸溶蚀行为关系的理论判别[J].油田化学,1996,13(1):48-56.
    [58]孙连环.塔里木盆地塔中碳酸盐岩储层酸岩反应动力学实验研究[J].石油与天然气化工,2006,35(1):51-53.
    [59]赵碧华,任书泉.同离子效应对酸液有效作用距离的影响[J].石油学报,1986,7(1):71-82.
    [60]李海军.塔河油田碳酸盐岩储层酸压酸岩反应影响因素研究[J].中外能源,2006,11(3):26-29.
    [61]王宝峰.砂岩基质酸化中HF与石英的反应动力学[J].西安石油大学学报,2000,15(4):52-55.
    [62]任书泉,李联奎.酸在裂缝中流动有效作用距离的计算[J].石油勘探开发,1981,6:65-75.
    [63]张黎明.酸-岩反应模拟实验装置及其应用[J].中国海上油气(工程),1995,5(2):45-50.
    [64]郭建春,陈朝刚.酸化工作液发展现状[J].河南石油,2004,18(6):40-42.
    [65]陈志海,戴勇.深层碳酸盐岩储层酸压工艺技术现状与展望[J].石油钻探技术,2005,33(1):58-61.
    [66]吴兴国,王小泉,丁培芳.深井超深井温控交联酸的特点与室内性能调试[J].石油与天然气化工,2005.34(4):296-298.
    [67]李力.用人工模拟裂缝装置研究盐酸/白云岩反应速率的影响因素[J].钻采工艺,2000,23(1):29-31.
    [68]贺伟,冯文光,贺承祖.碳酸盐岩储层酸蚀反应机理的实验研究[J].天然气勘探与开发,2000,23(2):27-30.
    [69]张智勇,蒋廷学,梁冲等.胶凝酸反应动力学试验研究[J].钻井液与完井液.2005,22(5):28-30.
    [70]B.B.威廉斯,J.L.吉德里,R.S.谢克特.油井酸化原理[M].北京:石油工业出版社,1984.
    [71]郭春清,沈忠民,张林晔,等.砂岩储层中有机酸对主要矿物的溶蚀作用及机理研究综述[J].地质地球化学,2003,31(3):53-57.
    [72]李颖川.采油工程[M].北京:石油工业出版社,2002.
    [73]许越.化学反应动力学[M].北京:化学工业出版社,2004.
    [74]Mumallah N A. Factors Influencing the Reaction Rate of Hydrochloric Acid and Carbonate Rock[J]. SPE21036:371-383.
    [75]Gdanshi R D, Norman L R. Using the Hollow-Core Test To Determine Acid Reaction Rates[J]. SPE12151:111-116.
    [76]Crowe C W, McGowan G R, Baranet S E. Investigation of Retarded Acids Provides Better Understanding of Their Effectiveness and Potential Benefits[J]. SPE1990(5):166-170.
    [77]SY/T6526-2002盐酸与碳酸盐岩动态反应速率测定方法[S].北京:国家经济贸易委员会,2002.
    [78]R.S.谢克特.油井增产技术[M].北京:石油工业出版社,2003.
    [79]刘崇建,刘绘新.判别液体流态准数Z值的讨论[J].西南石油学院学报.1981,2:12-23.
    [80]袁渭康.化学工程手册反应动力学及反应器[M].北京:化学工业出版社,1989.
    [81]王凯,虞军.搅拌设备[M].北京:化学工业出版社,2003.
    [82]陈乙崇.化工设备设计全书搅拌设备设计[M].上海:上海科学技术出版社,1985.
    [83]尹芳华李为民.化学反应工程基础[M].北京:中国石化出版社,2000.
    [84]米卡尔J.埃克诺米德斯.油藏增产措施(第三版)[M].北京:石油工业出版社,2003.
    [85]金家骏.液相化学反应动力学原理[M].上海:上海科学技术出版社,1984.
    [86]孙康.宏观反应动力学及其解析方法[M].北京:冶金工业出版社,1998.
    [87]梁文懂,肖时钧.传递现象基础[N].北京:冶金工业出版社,2006.
    [88]陈懋章.粘性流体动力学基础[M].北京:高等教育出版社,2002.
    [89]章伯其.牛顿和非牛顿流体力学[M].北京:兵器工业出版社,1997.
    [90]李兆敏,蔡国琰.非牛顿流体力学[M].东营:石油大学出版社,1998.
    [91]诸林,刘瑾,王兵,等.化工原理[M].北京:石油工业出版社,2007.
    [92]吴其晔巫静安.高分子材料流变学[M].北京:高等教育出版社,2002.
    [93]张琪.采油工程原理与设计[M].北京:石油大学出版社,2000.
    [94]李沁,伊向艺,卢渊,等.储层岩石矿物成分对酸蚀裂缝导流能力影响[Jl.西南石油大学学报(自然科学版),2013,35(2)
    [95]李沁,伊向艺,卢渊,等.储层纵向渗透率非均质性对酸压改造效果的影响[J].钻采工艺,2012,35(6).24-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700