用户名: 密码: 验证码:
离子化气流辅助切削机理与应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要

The ionized air assisted cutting is one of green cutting modes, and the air jet treated by corona discharge is injected to the cutting zone and plays a lubricating and cooling effect. The changes on machine structure are not necessary in the application of ionized air assisted cutting. In the cutting of difficult-to-cut materials, the technology is close or superior to traditional cutting fluids on processing efficiency, processing quality, tool life, low cost etc., almost no environmental pollution and health hazards, and is a kind of cutting technology owning broad prospect.
     A series of basic theoretical and experimental study on the principles and characteristics of atmospheric pressure gas discharge was carried out using self-designed ionized air generating device. The effects of the ionized air in the cutting zone on convective heat transfer, metal wettability, the surface free energy, friction and wear, cutting forces tool wear and their mechanism were analyzed and researched. The main research work is as follows:
     Based on general properties of gas discharge, the gas discharge form and the occurrence conditions of ionized air assisted cutting were determined. The evolvement rule of gas discharge with different electrode structure and discharge power was researched. The discharge status with the DC and AC power in air and nitrogen atmosphere were analyzed and the plasma properties were decided. The results show that nitrogen plasma jet (NPJ) and ionized air jet (IAJ) generated by AC pin-cylindrical corona discharge are suitable for the gas discharge form of ionized air assisted cutting. On this basis, ionized air generating device that can produce stable NPJ an IAJ was built.
     The combination of discharge parameters of ionized jet assisted cutting was optimized. Based on voltage characteristics of gas discharge in atmospheric pressure, the influence law of discharge parameters on the ion concentration of IAJ and ozone concentration was studied. The results show that IAJ with a higher concentration of ions and ozone can be achieved on the condition of being as close as possible to the nozzle, the high discharge power, the nozzle air pressure0.1MPa, the nozzle exit diameter of4mm, the needle tip to the nozzle exit distance0.5mm. Evaluated by plasma jet scales, the influence of discharge parameters on the NPJ occurrence of efficient was researched. The results show that a larger scale NPJ suitable for the ionized jet assisted cutting can be produced with the nitrogen flow rate of1.0m3/h, the needle tip to the nozzle exit distance of2.5mm, the nozzle exit diameter4mm.
     The function mechanism of ionized jet on cutting zone was revealed. On the analysis of the Rehbinder effect and the principle of plasma solid surface modification, the ability of strengthening tablet on the convective heat was studied respectively using the needle-plate discharge and pin-tube discharge. The results show that both electrostatic ion wind and IAJ can improve the thermal efficiency of the convective. The effects of ionized jet on the wettability of the solid surface were experimental revealed. The results show that free radicals caused by the gas discharge can improve the wettability of the metal and non-metallic surface in a short period of time. The higher the discharge voltage and the longer the processing time, the better the surface hydrophilic. The processing of larger voltage or a longer period of time can achieve super-hydrophilic surface with the contact angle of0°.
     The lubricating mechanism and cooling effect of ionized air on difficult processing material cutting were studied.selecting TC4titanium alloy,304stainless steel and quenching hard45steel and carbide YG8to constitute friction pairs, friction wear experiments were researched in air, air jet, IAJ, nitrogen Jet, and NPJ atmosphere respectively. SEM and EDS were used on the friction surface morphology and composition analysis. The results reveal the laws and mechanism of action about anti-friction effect of ionized air on difficult-to-cut materials. The results show that NPJ has the best friction and wear properties for TC4titanium alloy due to TiN anti-friction film most easily was formed in the friction surface. For304stainless steel and hardened of GCrl5, IAJ can generate oxide films with good lubricating properties in the friction surface quickly, so it has better lubricating and cooling effect.
     In order to inspect the lubricating and cooling effect of ionized air to difficult-to-machine materials, the cutting experiments of TC4titanium alloy were conducted in the nitrogen gas jet and NPJ respectively. The cutting property of304stainless steel and hardened GCr15in the nitrogen gas jet and NPJ was experimental proved. The influence of ionized air on cutting force and tool wears in the different cutting speed and cutting depth was studied. The results show that cutting force and tool wears are significantly reduced in the influence of ionized air. It also show that the higher cutting speed, the bigger cutting depth, and more serious temperature and stress state are beneficial to the lubricating and cooling effect and the effect of reduce tool wears.
引文
[1]傅玉灿.难加工材料高效加工技术[M].西安:西北工业大学出版社,2010.
    [2]任敬心,康仁科,王西彬.难加工材料磨削技术[M].北京:电子工业出版社,2010.
    [3]Kimura F. An approach to configuring environmentally conscious manufacturing systems[J]. Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2005,71(8):941-945.
    [4]王西彬.绿色切削加工技术的研究[J].机械工程学报,2000(8):6-9.
    [5]曾庆良,许艳.绿色切削液的应用研究[J].机床与液压,2006(7):113-115.
    [6]Dornfeld D A. Green manufacturing:fundamentals and applications[M]. ed. New York; London: Springer,2010.
    [7]Association For Manufacturing Excellence U. S. Green manufacturing:case studies in lean and sustainability[M]. ed. New York: Productivity Press,2008.
    [8]Melnyk S A, Smith R T, Computer And Automated Systems Association Of SME. Green manufacturing[M]. ed. Dearborn, Mich.:Computer Automated Systems of the Society of Manufacturing Engineers,1996.
    [9]刘飞.绿色制造的理论与技术[M].北京:科学出版社,2005.
    [10]Khan Z. Cleaner production:an economical option for ISO certification in developing countries[J]. Journal of Cleaner Production,2008,16(1):22-27.
    [11]张悦.过热水蒸气作冷却润滑剂的绿色切削相关技术研究[D].哈尔滨:哈尔滨工业大学,2009.
    [12]Shintani K, Ushiro H, Takanami Y, et al. A study of high speed machining of soft magnetic material by binder-less PcBN tool[J]. Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering,2010,76(7):809-813.
    [13]张伯霖.高速切削技术及应用[M].北京:机械工业出版社,2002.
    [14]Krajnik P, Kopa V C J. Modern machining of die and mold tools[J]. Journal of materials processing technology,2004,157:543-552.
    [15]张伯霖,夏红梅,黄晓明.新世纪的干切削技术[J].制造技术与机床,2001(10):9-11.
    [16]艾兴等.高速切削加工技术[M].北京:国防工业出版社,2003.
    [17]李彦光.高速切削关键技术发展现状综述[J].机械工程师,2011(4):5-9.
    [18]Kelly A. Laser Assisted Machining of Hard to Wear Materials[J]. Maser Thesis, Swinburne University of Technology,2006,31(10):155-161.
    [19]Pfefferkorn F E, Lei S, Jeon Y, et al. A metric for defining the energy efficiency of thermally assisted machining[J]. International Journal of Machine Tools and Manufacture, 2009,49(5):357-365.
    [20]Chang C W, Kuo C P. An investigation of laser-assisted machining of A12O3 ceramics planing[J]. International Journal of Machine Tools and Manufacture,2007,47(3-4):452-461.
    [21]Chang C W, Kuo C P. Evaluation of surface roughness in laser-assisted machining of aluminum oxide ceramics with Taguchi method[J]. International Journal of Machine Tools and Manufacture, 2007,47(1):141-147.
    [22]Dumitrescu P, Koshy P, Stenekes J, et al. High-power diode laser assisted hard turning of AISI D2 tool steel [J]. International Journal of Machine Tools and Manufacture,2006,46(15):2009-2016.
    [23]邓志平,余愚,张兴发.等离子弧加热切削在金属切削加工中的应用研究[J].组合机床与自动化加工技术,2005(2):90-92.
    [24]Inan A, Others. Theoretical and experimental determination of tool life in hot machining of austenitic manganese steel[J]. International Journal of Machine Tools and Manufacture, 2001,41(2):163-172.
    [25]邓志平,余愚.等离子弧加热车削工艺的研究[J].机床与液压,2007(5):80-82.
    [26]袁巨龙.功能陶瓷的超精密加工技术[M].哈尔滨:哈尔滨工业大学出版社,2000.
    [27]刘超,田欣利,杨俊飞,等.非金属硬脆材料加热辅助切削技术研究进展[J].国防制造技术,2009(2):30-34.
    [28]卢芳,田欣利,吴志远.等离子弧加热切削工程陶瓷试验[J].装甲兵工程学院学报,2007(1):81-83.
    [29]Wang Z Y, Rajurkar K P, Fan J, et al. Hybrid machining of Inconel 718[J]. International Journal of Machine Tools and Manufacture,2003,43(13):1391-1396.
    [30]Leshock C E, Kim J N, Shin Y C. Plasma enhanced machining of Inconel 718:Modeling of workpiece temperature with plasma heating and experimental results[J]. International Journal of Machine Tools and Manufacture,2001,41(6):877-897.
    [31]孙鹏,徐文骥,刘新,等.淬硬钢的导电加热切削实验研究[J].电加工与模具,2006(2):35-37.
    [32]孙鹏.淬硬钢导电加热切削技术基础研究[D].大连:大连理工大学,2005.
    [33]Xu L Y, Wu Q, Ye B Y, et al. Heating current control in electric hot minipore drilling hard-to-cut material:Applied Mechanics and Materials[C]. Xiangtan, China:2010.
    [34]Bermingham M J, Kirsch J, Sun S, et al. New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6A1-4V[J]. International Journal of Machine Tools and Manufacture,2011,51(2):500-511.
    [35]Xavier S E D, Delijaicov S, de Farias A, et al. Investigation on the Surface Integrity and Tool Wear in Cryogenic Machining: AIP Conference Proceedings[C]. USA:American Institute of Physics.,2011.
    [36]Ghosh R, Knopf J A, Gibson D J, et al. Cryogenic Machining of Polymeric Biomaterials:An Intraocular Lens Case Study:Medical device materials IV:proceedings of the Materials \& Processes for Medical Devices Conference[C]. Palm Desert, California, USA:ASM International (OH),2008.
    [37]Ravi S, Pradeep Kumar M. Experimental investigations on cryogenic cooling by liquid nitrogen in the end milling of hardened steel[J]. Cryogenics,2011,51 (6):509-515.
    [38]王秋成,章振翔,林琼.液氮喷雾切削加工0Cr18Ni9不锈钢的实验研究[J].低温工程, 2011(1):46-50.
    [39]孟春,李淑娟.液氮低温切削钛合金实验研究[J].机械工程师,2012(3):30-32.
    [40]Venugopal K A, Paul S, Chattopadhyay A B. Tool wear in cryogenic turning of Ti-6A1-4V alloy[J]. Cryogenics,2007,47(1):12-18.
    [41]Pu Z, Outeiro J C, Batista A C, et al. Enhanced surface integrity of AZ31B Mg alloy by cryogenic machining towards improved functional performance of machined components[J]. International Journal of Machine Tools and Manufacture,2012,56(1):17-27.
    [42]Habak M, Lebrun J L. An experimental study of the effect of high-pressure water jet assisted turning (HPWJAT) on the surface integrity[J]. International Journal of Machine Tools and Manufacture, 2011,51 (5):661-669.
    [43]Vosough M, Svenningsson I. Influence of high pressure water-jet-assisted machining on surface residual stresses on the work-piece of Ti-6AL-4V alloy:Third Intl. Conf. on Experimental Mechanics and Third Conf. of the Asian Committee on Experimental Mechanics[C]. Bellingham:2005.
    [47]Habak M, Lebrun J L, Waldmann S, et al. Residual Stress in High-Pressure Water Jet Assisted Turning of Austenitic Stainless Steel[C].2006.
    [48]Kaminski J, Alvelid B. Temperature reduction in the cutting zone in water-jet assisted turning[J]. Journal of materials processing technology,2000,106(1):68-73.
    [49]Shet C, Deng X, E Bayoumi A. Finite element simulation of high-pressure water-jet assisted metal cutting[J]. International journal of mechanical sciences,2003,45(6-7):1201-1228.
    [50]尉红军.低温冷风微量润滑切削工艺试验研究[D].重庆:重庆大学,2010.
    [51]Li X P, Seah K. A pressured air jet approach to tool wear minimization in cutting of metal matrix composites[J]. Wear,2003,255(7-12):1352-1358.
    [52]Sarma D K, Dixit U S. A comparison of dry and air-cooled turning of grey cast iron with mixed oxide ceramic tool[J]. Journal of materials processing technology,2007,190(1):160-172.
    [53]Su Y, He N, Li L, et al. Refrigerated cooling air cutting of difficult-to-cut materials[J]. International Journal of Machine Tools and Manufacture,2007,47(6):927-933.
    [54]李登万,陈洪涛,许明恒,等.基于于均匀设计法的钛合金清洁加工试验研究[J].中国机械工程,2011(1):15-18.
    [55]徐胜.新型低温冷风发生装置的研制及应用[D].南京:南京航空航天大学,2006.
    [56]贺静.低温冷风加工难切削材料的实验研究[D].重庆:重庆大学,2006.
    [57]安庆龙.低温喷雾射流冷却技术及其在钛合金机械加工中的应用[D].南京:南京航空航天大 学,2006.
    [58]刘安虎.低温冷风车削合金钢的切削机理研究[D].重庆:重庆大学,2008.
    [59]甘建水.低温冷风切削加工实验研究[D].成都:西南交通大学,2010.
    [60]张悦,孙泰礼,由颖,等.气体作冷却润滑剂的绿色切削试验[J].沈阳工业大学学报,2010(3):306-310.
    [61]Trent E M, Wright P K. Metal cutting[M]. Fourth Edition ed. Woburn:Butterworth-Heinemann, 2000.
    [62]Cakir O, Kiyak M, Altan E. Comparison of gases applications to wet and dry cuttings in turning[J]. Journal of Materials Processing Technology,2004,153-154(1-3):35-41.
    [63]Stanford M, Lister P M. Investigation into the relationship between tool-wear and cutting environments when milling an austenitic stainless steel and En32 low carbon steel[J]. Industrial Lubrication and Tribology,2005,57(2):73-79.
    [64]赵威.基于绿色切削的钛合金高速切削机理研究[D].南京:南京航空航天大学,2006.
    [65]苏宇,何宁,李亮,等.低温氮气射流对钛合金高速铣削加工性能的影响[J].中国机械工程,2006(11):1183-1187.
    [66]赵威,何宁,李亮,等.氮气油雾介质下Ti-6A1-4V钛合金高速铣削试验研究[J].南京航空航天大学学报,2006(5):634-638.
    [67]Wei Z, Ning H E, Liang L I. Friction and Wear Properties of WC-Co Cemented Carbide Sliding Against Ti6A14V Alloy in Nitrogen Gas[J]. TRIBOLOGY,2006,26(5):439-442.
    [68]Zhao W, He N, Li L. Friction and Wear Properties of WC-Co Cemented Carbide Sliding against Ti6A14V Alloy in Nitrogen Gas[J]. Advanced Materials Research,2006,188(5):49-54.
    [69]Wei Z, Ning H, Liang L, et al. Experimental Study on High Speed Milling of Ti-6A1-4V Alloy with Nitrogen-Oil-Mist[J]. JOURNAL OF NANJING UNIVERSITY OF AERONAUTICS & ASTRONAUTICS,2006,38(5):634-638.
    [70]舒彪,何宁.无污染切削介质下钛合金铣削刀具磨损机理研究[J].机械科学与技术,2005(4):454-457.
    [71]Cakir O, Kiyak M, Altan E. Comparison of gases applications to wet and dry cuttings in turning[J]. Journal of Materials Processing Technology,2004,153-154(1-3):35-41.
    [72]高航,王继先,兰雄侯.一种适于低温冷气内冷却的CBN砂轮的研制[J].金刚石与磨料磨具工程,2001(5):9-10.
    [73]赵恒华,蔡光起,高航.基于绿色磨削的冷气冷却实验研究[J].制造技术与机床,2004(4):54-55.
    [74]张元良,周志民,黄春英,等.天然金刚石振动与气体保护切削黑色金属技术研究[J].机械科学与技术,2004(3):339-340.
    [75]Altan E, Kiyak M, Cakir O. The effect of oxygen gas application into cutting zone on machining: Proceedings of the Sixth Biennial Conference on Engineering Systems Design and Analysis[C]. Istanbul:2002.
    [76]Mahmoudi S R, Adamiak K, Castle P, et al. The effect of corona discharge on free convection heat transfer from a horizontal cylinder[J]. Experimental Thermal and Fluid Science, 2010,34(5):528-537.
    [77]Schlitz D, Singhal V. An electro-aerodynamic solid-state fan and cooling system:Annual IEEE Semiconductor Thermal Measurement and Management Symposium[C]. San Jose, CA, United states:2008.
    [78]Kawamoto H, Umezu S. Electrostatic micro-ozone fan that utilizes ionic wind induced in pin-to-plate corona discharge system[J]. Journal of Electrostatics,2008,66(7-8):445-454.
    [79]Go D B, Maturana R A, Fisher T S, et al. Enhancement of external forced convection by ionic wind[J]. International Journal of Heat and Mass Transfer,2008,51(25-26):6047-6053.
    [80]Laohalertdecha S, Naphon P, Wongwises S. A review of electrohydrodynamic enhancement of heat transfer[J]. Renewable and Sustainable Energy Reviews,2007,11(5):858-876.
    [81]Ashjaee M, Mahmoudi S R. Experimental investigation of thermal boundary layer thickness effects on corona discharge current with razor-isothermal cylinder geometry:Annual Report-Conference on Electrical Insulation and Dielectric Phenomena, CEIDP[C]. Vancouver, BC, Canada:2007.
    [82]Kibler K G, Carter Jr. H G. Electrocooling in gas[J]. Journal of Applied Physics, 1974,45(10):4436-4440.
    [83]O'Brien R J, Shine A J. Effect of Electrostatic Fields on Free-Convection Heat Transfer from Flat Plates[J]. ASME Journal of Heat Transfer,1967,89:114-115.
    [84]Demorest K E, Gause R L. Parameters affecting electrostatic cooling[J]. NASA STl/Recon Technical Report N,1976,77:12329.
    [85]Kishi K, Eda H. Practical development in the machining process by use of the electrostatic cooling[J]. International Journal of Machine Tool Design and Research,1976,16(1):23-32.
    [86]Jido M, Fukuzawa K. Study on electrostatic cooling (part 1). Electric wind by conical electrodes[J]. Journal of Mechanical Engineering Laboratory,1977,31(1):1-9.
    [87]Kumeoka Y, Jido M. Study of electrostatic cooling (part 2). Development of flow velocity in boundary layer[J]. Journal of Mechanical Engineering Laboratory,1984,38(1):26-33.
    [88]Jido M. Study of electrostatic cooling (part 3). An improvement of cooling by funnel core cathode[J]. Journal of Mechanical Engineering Laboratory,1988,42(6):230-236.
    [89]Eranke M E, Hogue L E. Electrostatic cooling of a horizontal cylinder[J]. ASME Transactions Journal of Heat Transfer,1991,113:544-548.
    [90]James B B. Electrostatic cooling enhances PA welds[J]. Welding Design & Fabrication, 1991,64(5):38.
    [91]McHale J. Purdue researchers demonstrate new chip cooling technology[EB/OL]. http://www.militaryaerospace.com/articles/print/volume-18/issue-11/news/news/purdue-researchers-demonstrate-new-chip-cooling-technology.html.
    [92]Schlitz D, Singhal V. An electro-aerodynamic solid-state fan and cooling system:Annual IEEE Semiconductor Thermal Measurement and Management Symposium[C]. San Jose, CA, United states:2008.
    [93]Oscar C B. Method and apparatus for cooling the workpiece and/or the cutting tools of a machining apparatus:US,3670606[P].1972.
    [94]Wakefield B D. Electrostatic Cooling Doubles Tool Life[J]. Iron Age Metalwork. Int., 1974,13(5):41-42.
    [95]Yamaga J, Jido M. Cooling method by use of corona discharge:JA,3938345[P].1976.2.17.
    [96]幺炳唐,闫家魁.金属切削干式静电冷却技术[J].机械工人.冷加工,2003(10):9-12.
    [97]么炳唐.静电冷却干切技术[J].制造技术与机床,2003(1).
    [98]中国机电日报.干式静电冷却技术优势明显[N].中国机电日报,2002-08-19.
    [100]Akhmetzyanov I D, Atik Z. Method and device for cooling the machine zone using an ionized gaseous cutting fluid:RU,5551324[P].1996.9.3.
    [104]Kholmogortsev Y P. Dry electrostatic cooling in hobbing[J]. Russian Engineering Research, 2001,21(1):38-42.
    [120]Matija R. Ionization of cutting fluids:6th International multidisciplinary conference[C]. Radisson Plaza:2005.
    [121]Kiselev E S, Koval Nogov V N, Korshunov V A. Thermal stressing and effectiveness of plane face grinding with ionized air as the LCTM[J]. Russian Engineering Research,2007,27(8):522-524.
    [123]Kirillov A K. Ecologically sound dry-cutting technology with lubricant and coolant functions[J]. Russian Engineering Research,2007,27(12):855-861.
    [125]Yakubu S O. Ecological pure ionized gaseous medium in the technology of machining[J]. International Journal of Physical Sciences,2009,4(3):133-138.
    [126]闫秀.绿色制造技术在铝型材制造过程中的运用[C].中国北京:中国材料研究学会,2004.
    [127]刘献礼,王艳鑫,郭凯.绿色切削技术的研究现状及发展[J].航空制造技术,2009(13):26-31.
    [128]生水.采用静电冷却提高刀具寿命[J].工具技术,1980(2):40.
    [129]洪都科技.刀具的静电冷却[J].洪都科技,1975(S2):15.
    [130]康亚琴.静电冷却干式切削装置的设计研究[D].沈阳:沈阳航空工业学院,2007.
    [131]高霁,曹国强,康亚琴.静电冷却辅助车削Tc10钛合金试验研究[J].机械设计与制造,2007(4):90-91.
    [132]康亚琴,高霁,高红.静电冷却干切钛合金BT20的试验研究[J].机械设计与制造, 2006(12):108-110.
    [133]Wang H, Han R D, Tang Y L, et al. Experimental Investigation on Green Cutting GH4169 with Ionized Air Cooling and Lubricating[J]. Key Engineering Materials,2010,426:279-283.
    [134]Wang H, Han R D, Wang Y. Tool Wear Investigation on Dry Electrostatic Cooling in Turning Titanium Alloy Ti6A14V[J]. Advanced Materials Research,2010,97:2058-2061.
    [135]王辉,韩荣第,王扬.静电冷却干式切削钛合金TC4的刀具磨损试验研究[J].工具技术,2010(5):17-20.
    [136]韩荣第.切削难加工材料的新型绿色高效冷却润滑技术[J].航空制造技术,2009(13):44-47.
    [137]戚宝运,何宁,李亮,等.静电冷却技术对钛合金摩擦磨损性能的影响[J].哈尔滨工业大学学报,2011(5):106-110.
    [138]杨雷.钛合金切削摩擦磨损的试验研究[D].南京:南京航空航天大学,2010.
    [139]张谷令,敖玲,胡建芳,等.应用等离子体物理学[M].北京:首都师范大学出版社,2008.
    [140]Smirnov B M, Reiss H R. Physics of ionized gases[M]. ed. Hoboken:Wiley Online Library,2001.
    [141]武占成.气体放电[M].北京:国防工业出版社,2012.
    [142]葛袁静,张广秋,陈强.等离子体科学技术及在工业中的应用[M].1.北京:中国轻工业出版社,2011.
    [143]许根慧等.等离子体技术与应用[M].北京:化学工业出版社,2006.
    [144]Akishev Y, Grushin M, Kochetov I, et al. Negative corona, glow and spark discharges in ambient air and transitions between them[J]. Plasma Sources Science and Technology,2005,14(2):S18-S25.
    [145]Li Q, Takana H, Pu Y K, et al. An atmospheric pressure quasiuniform planar plasma jet generated by using a dielectric barrier configuration[J]. Applied Physics Letters,2011,98(24):241501.
    [146]Walsh J L, Iza F, Janson N B, et al. Three distinct modes in a cold atmospheric pressure plasma jet[J]. Journal of Physics D:Applied Physics,2010,43(7).
    [147]Walsh J L, Kong M G. Contrasting characteristics of linear-field and cross-field atmospheric plasma jets[J]. Applied Physics Letters,2008,93(11).
    [148]Liu J H, Liu X Y, Hu K, et al. Plasma plume propagation characteristics of pulsed radio frequency plasma jet[J]. Applied Physics Letters,2011,98:151502.
    [149]熊紫兰,卢新培,鲜于斌,等.大气压低温等离子体射流及其生物医学应用[J].科技导报,2010(15):97-105.
    [150]Xiong Q, Lu X P, Ostrikov K, et al. Pulsed dc- and sine-wave-excited cold atmospheric plasma plumes:A comparative analysis[J]. Physics of Plasmas,2010,17(4).
    [151]Xiong Q, Lu X, Ostrikov K, et al. Length control of He atmospheric plasma jet plumes:Effects of discharge parameters and ambient air[J]. Physics of Plasmas,2009,16(4).
    [152]Lu X, Jiang Z, Xiong Q, et al. An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine[J]. Applied Physics Letters,2008,92(8).
    [153]聂秋月.大气压冷等离子体射流实验研究[D].大连:大连理工大学,2010.
    [154]Nie Q Y, Ren C S, Wang D Z, et al. A simple cold Ar plasma jet generated with a floating electrode at atmospheric pressure[J]. Applied Physics Letters,2008,93(1).
    [155]Nie Q Y, Ren C S, Wang D Z, et al. Self-organized pattern formation of an atmospheric pressure plasma jet in a dielectric barrier discharge configuration[J]. Applied Physics Letters,2007,90(22).
    [156]Ichiki R, Nagamatsu H, Yasumatsu Y, et al. Nitriding of steel surface by spraying pulsed-arc plasma jet under atmospheric pressure[J]. Materials Letters,2011.
    [157]林榕,毛根旺,唐金兰,等.用Langmuir探针诊断MPT羽流[J].固体火箭技术,2005(2):149-152.
    [158]窦鹏.高风速横向极板电除尘技术理论分析与实验研究[D].南京:江苏大学,2010.
    [159]杜广生.工程流体力学[M].北京:中国电力出版社,2007.
    [160]李凤蔚.空气与气体动力学引论[M].西安:西北工业大学出版社,2007.
    [161]Dmytrakh I M. Corrosion Fracture of Structural Metallic Materials:Effect of Electrochemical Conditions in Crack[J]. Strain,2010.
    [162]Postnikov S. N摩擦和切削及润滑中的电物理和电化学现象[M].北京:国防工业出版社,1983.
    [163]Go D B, Maturana R A, Fisher T S, et al. Enhancement of external forced convection by ionic wind[J]. International Journal of Heat and Mass Transfer,2008,51(25-26):6047-6053.
    [164]列宾杰尔Π.物理化学力学:一门新的科学领域[M].北京:中国工业出版社,1964.
    [165]阎守胜.固体物理基础[M].第3版.北京:北京大学出版社,2011.
    [166]丁伟,何立明,宋振兴.常压空气介质阻挡放电的能量传递过程[J].高电压技术,2010(03).
    [167]陈杰培.低温等离子体化学及其应用[M].北京:科学出版社,2001.
    [169]袁文征,邱明,张永振,等.氮/氧混合气氛环境下钢/铜摩擦副摩擦学性能研究[J].润滑与密封,2010(2):48-51.
    [170]崔晶,陈跃,刘敬超,等.高温氧气条件下CrNiMo钢的摩擦磨损特性研究[J].润滑与密封,2009(2):35-37.
    [171]袁文征,邱明,张永振,等.气氛环境下材料摩擦磨损行为研究进展[J].润滑与密封,2009(07).
    [172]王观民,张永振,杜三明.两种不同气氛下钢铜摩擦副摩擦磨损特性研究[J].热加工工艺,2006(12):8-11.
    [173]Wang G M, Zhang Y Z, Du S M, et al. Study on Tribological Behavior of Steel-brass Couples in Different Atmosphere under High Speed and Dry Sliding[J]. TRIBOLOGY,2007,27(4):346-351.
    [174]Yang X W, Zhang Y Z, Qiu M, et al. Study on Tribological Properties of Steel-copper Couples in Nitrogen Atmosphere[J]. TRIBOLOGY,2007,27(1):25-28.
    [175]杜三明,张永振,上官宝,等CrNiMo钢在不同氧气含量气氛中的高温摩擦磨损性能[J].润滑与密封,2010(8):12-14.
    [176]Liu X, Jiang Z, Li J, et al. Super-hydrophobic property of nano-sized cupric oxide films[J]. Surface and Coatings Technology,2010,204(20):3200-3204.
    [177]杜宁.聚四氟乙烯等离子体表面改性及其引发有机单体接枝共聚[D].天津:天津大学材料学,2010.
    [178]Song J, Xu W, Lu Y. One-step electrochemical machining of superhydrophobic surfaces on aluminum substrates[J]. Journal of Materials Science,2012,47(1):162.
    [179]张开.高分子界面科学[M].北京:中国石化出版社,1997.
    [180]Tang B, Wu P Q, Li X Y, et al. Tribological behavior of plasma Mo--N surface modified Ti--6Al--4V alloy[J]. Surface and Coatings Technology,2004,179(2):333-339.
    [181]Che H. Tool life and surface integrity in turning titanium alloy[J]. Journal of Materials Processing Technology,2001,118(1-3):231-237.
    [182]Kagnaya T, Boher C, Lambert L, et al. Wear mechanisms of WC--Co cutting tools from high-speed tribological tests[J]. Wear,2009,267(5):890-897.
    [183]Arsecularatne J A, Zhang L C, Montross C. Wear and tool life of tungsten carbide, PCBN and PCD cutting tools[J]. International Journal of Machine Tools and Manufacture,2006,46(5):482-491.
    [184]Cui Z D, Zhu S L, Man H C, et al. Microstructure and wear performance of gradient Ti/TiN metal matrix composite coating synthesized using a gas nitriding technology[J]. Surface and Coatings Technology,2005,190(2-3):309-313.
    [185]Yang Y L, Zhao G J, Zhang D, et al. Improving the surface property of TC4 alloy by laser nitriding and its mechanism[J]. Acta Metallurgica Sinica (English Letters),2006,19(2):151-156.
    [186]Perez M G, Harlan N R, Zapirain F, et al. Laser nitriding of an intermetallic TiAl alloy with a diode laser[J]. Surface and Coatings Technology,2006,200(16-17):5152-5159.
    [187]Vadiraj A, Kamaraj M, Gnanamoorthy R. Fretting wear studies on uncoated, plasma nitrided and laser nitrided biomedical titanium alloys[J]. Materials Science and Engineering A, 2007,445-446:446-453.
    [188]Zhao W, He N, Li L. Friction and Wear Properties of WC-Co Cemented Carbide Sliding against Ti6A14V Alloy in Nitrogen Gas[J]. Advanced Materials Research,2006,188(5):49-54.
    [189]Wei Z, Ning H E, Liang L I. Friction and Wear Properties of WC-Co Cemented Carbide Sliding Against Ti6A14V Alloy in Nitrogen Gas[J]. TRIBOLOGY,2006,26(5):439-442.
    [190]Lei M K, Zhu X M. Plasma-based low-energy ion implantation of austenitic stainless steel for improvement in wear and corrosion resistance[J]. Surface and Coatings Technology, 2005,193(1-3):22-28.
    [191]Kostov K G, Ueda M, Lepiensky M, et al. Surface modification of metal alloys by plasma immersion ion implantation and subsequent plasma nitriding[J]. Surface and Coatings Technology, 2004,186(1-2):204-208.
    [192]Blawert C, Mordike B L, Jiraskova Y, et al. Structure and composition of expanded austenite produced by nitrogen plasma immersion ion implantation of stainless steels X6CrNiTi1810 and X2CrNiMoN2253:Surface and Coatings Technology[C]. Garmisch-Partenkirchen, Ger:1999.
    [193]尤大伟.制备光学薄膜的离子源技术概述[J].真空科学与技术学报,2009(1):107-113.
    [194]CIRP. Reports of Scientific & Technical Committee of CIRP:Recommendation for the calibration and operation of machine tool dynamometers[R].1974.
    [195]机械工程手册编辑委员会.机械工程手册[M].北京:机械工业出版社,1997.
    [196]Xavior M A, Adithan M. Determining the influence of cutting fluids on tool wear and surface roughness during turning of AISI 304 austenitic stainless steel[J]. Journal of Materials Processing Technology,2009,209(2):900-909.
    [197]张建中,李秀人.超声振动干式镗削不锈钢[J].制造技术与机床,2003(4):42-44.
    [198]Endrino J L, Fox Rabinovich G S, Gey C. Hard AlTiN, AlCrN PVD coatings for machining of austenitic stainless steel[J]. Surface and Coatings Technology,2006,200(24):6840-6845.
    [199]邹伟文,刘光耀,张昌义,等.冷风条件下1Cr18Ni9Ti不锈钢车削加工的效率[J].新技术新工艺,2008(6):45-46.
    [200]刘安虎,李文贵,章海涛,等.干式冷风车削不锈钢的高速钢刀具磨损试验[J].工具技术,2007(10):61-63.
    [201]刘新,徐文骥,孙晶,等.导电加热切削加热电阻特性研究[J].电加工与模具,2011(06).
    [202]娄岩.导电加热切削技术关键问题研究[D].大连:大连理工大学,2008.
    [203]孙鹏.淬硬钢导电加热切削技术基础研究[D].大连:大连理工大学,2005.
    [204]孙鹏,徐文骥,刘新,等.淬硬钢的导电加热切削实验研究[J].电加工与模具,2006(2):35-37.
    [205]张琳.导电加热切削有限元模拟及实验研究[D].大连:大连理工大学,2010.
    [206]陈涛.淬硬钢GCr15精密切削过程的建模与加工表面完整性预测[D].哈尔滨:哈尔滨理工大学,2009.
    [207]文东辉,刘献礼,严复钢,等.用PCBN刀具精密切削GCr15淬硬轴承钢[J].工具技术,2002(3):11-13.
    [208]文东辉,刘献礼,王敏杰PCBN刀具切削GCr15淬硬轴承钢的研究[J].机械制造,2002(7):17-19.
    [209]张凌飞,张弘弢.硬态切削对GCrl 5耐磨性能影响的研究[J].工具技术,2004(9):87-88.
    [210]李玉甫,严复钢,王宇,等.PCBN刀具切削淬硬GCr15轴承钢的切削力研究[J].哈尔滨理工大学学报,2005(2):136-138.
    [211]李玉甫,严复钢PCBN刀具切削GCr15淬硬轴承钢时刀具磨损的研究[J].机械工程师,2005(7):72-73.
    [212]曹永泉,张弘弢,董海,等PCBN刀具切削淬硬钢GCrl5的磨损实验研究[J].中国机械工程,2006(21):2305-2308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700