用户名: 密码: 验证码:
非圆齿轮数控滚切加工误差分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非圆齿轮既有凸轮的优点又有圆柱齿轮的优点,广泛地应用在各种场合。常见的非圆齿轮有椭圆齿轮、Pascal(巴斯噶)蜗线齿轮等,其精密加工一直是研究的热点。滚齿是一种最为常见的非圆齿轮加工方式,随着对非圆齿轮精度要求的日益提高,非圆齿轮滚切加工误差分析显得尤为重要。对此,论文首先推导非圆齿轮滚切加工运动模型,获得机床运动轴与误差源的关系。在此基础上,分析工艺误差对非圆齿轮部分精度指标(节曲线、齿距和根切)的影响,研究插补算法对非圆齿轮滚切加工的影响。根据数控伺服进给系统模型,以椭圆齿轮节曲线为例,研究非圆齿轮节曲线轮廓误差形成机理。本文的主要研究工作和获得的结论如下:
     (1)根据推导出的非圆齿轮滚切加工运动模型,获得运动轴与误差源的关系。
     (2)根据非圆齿轮滚切加工运动模型,分别推导工作台转角误差和中心距误差作用下非圆齿轮节曲线误差矢量表达式,以及工作台转角误差和齿条水平移动量误差作用下非圆齿轮齿距误差的表达式,并进行实例计算。
     根据齿条与工件间的相对速度和啮合方程,提出并建立非圆齿轮根切界限函数。以椭圆齿轮为例,分析非圆齿轮发生根切的极角位置和工艺误差、设计参数对椭圆齿轮根切的影响。
     (3)根据推导的非圆齿轮滚切加工运动模型,获得非圆齿轮滚切插补算法,从程序段弧长和机床运动轴两方面研究不同插补算法对非圆齿轮滚切加工的加工精度和控制难易程度的影响。为对比程序段弧长的均匀性,提出程序段弧长均匀度的概念。
     (4)根据数控伺服进给系统模型,以椭圆齿轮节曲线为例,分析一阶、二阶、高阶伺服进给系统动态特性对非圆齿轮节曲线轮廓误差的影响规律。借助数学推导获得非圆齿轮节曲线轮廓误差的形成机理。为减小轮廓误差,提出PID交叉耦合控制方法(cross-coupled control,简称CCC方法)。仿真结果表明交叉耦合控制能改善非圆齿轮节曲线的轮廓精度。
Noncircular gear with the advantages of cam and circular gear has been widely usded on diversified situation. The frequent noncircular gears are elliptical gears, pascal gears and so on, which precision manufacturing is always the research hotspot. As we know, CNC hobbing is the most widely used as a processing gears method, with the increase of gears machining precision, it is very important to analysis the errors of CNC hobbing non-circular gears. Thus, this thesis presents the relationship between the machine motion axis and the errors source according to the derived motion models of CNC hobbing non-circular gears. Based on the above, the influence of process errors on part precision indices (pitch curve, tooth pitch and undercut) of non-circular gears are analysed; and the effects of interpolation algorithms on hobbing noncircular gear are studied. Taking the elliptic gear as a case, the influence regularities of dynamical characteristics of one order, second order and high order servo system on the noncircular gear pitch curves contour error are analyzed. The main research contents and conclusions are as follows:
     (l)The relationship between the machine motion axis and the errors source is obtained form the derived motion models of CNC hobbing non-circular.
     (2)According to the mathematical model for hobbing noncircular gear, the expression of the noncircular gear tooth pitch deviation and tooth pitch accumulated error caused by the workbench rotary angle errors and the rack horizontal movement amount errors are presented. And the vector expression of the noncircular gear pitch curve errors caused by the stage rotary angle error and the centre space error are derived, respectively.
     Based on the known relative velocity and meshing equation between hobbing cutter and the gear blank, the noncircular gear tooth profile undercut limit function is proposed and deduced. Then, the change regularity of undercut limit functions with the polar angle of elliptic and the design parameters are analyzed through the numerical method. The polar angle position of noncircular gear undercut can been confirmed.
     (3)According to the derived mathematical model for hobbing noncircular gear, interpolation algorithms of hobbing noncircular gear are obtained. Developing regularity of different interpolation algorithms arc length of segment and machine motion axis were compared, the concept of the arc length of segment uniformity degree is proposed, thereby the uniformity of the arc length of segment can be judged.
     (4)Taking elliptic gear as a case, influence regularities of dynamical characteristics of one order, second order and high order servo system on noncircular gear pitch curves contour error is analyzed based on the CNC servo system model. Also the change laws of noncircular gear pitch curves contour error is obtained by using of mathematical derivation. In order to reduce the contour error, PID cross-coupled control (CCC) is proposed, the simulation results show that CCC can improve noncircular gear pitch curves contour accuracy.
引文
[1]齿轮手册编委会.齿轮手册(上、下)[M].北京:机械工业出版社,2000
    [2]《齿轮制造手册》编委会.齿轮制造手册[M].北京:机械工业出版社,1997
    [3]陶晓杰.滚齿误差及补偿研究[D].合肥:合肥工业大学,2006
    [4]吴序堂,王贵海.非圆齿轮及非匀速比传动[M].北京:机械工业出版社,1997
    [5]李福生.非圆齿轮[M].北京:机械工业出版社,1975
    [6]刘大伟,任廷志.由补偿法构建封闭非圆齿轮节曲线[J].机械工程报,2011,13(47):147-152
    [7]T. Nonaka, A. Kubo, Kato S. Design of silent gears considering the scattering in tooth for maccuracy of mass production Gears [J]. Transactions of JSME,1991, C57:3869-3874
    [8]F. Chaari, T. Fakhfakh, R. Hbaieb, et al. Influence of manufacturing errors on the dynamic behavior of planetary gears [J]. The International Journal of Advanced Manufacturing Technology,2006,7-8 (27):738-74
    [9]F. Takeoka, M. Komori, A. Kubo, et al. High-precision measurement of an involute artefact by a rolling method and comparison between measuring instruments [J]. Measurement Science and Technology,2009,4(20): 045105
    [10]李彦征.基于多体系统运动学的数控插齿机加工误差分析与实验研究[D].天津:天津大学,2004
    [11]喻宏波.加工误差驱动的数控插齿机设计方法研究[D].天津:天津大学,2008
    [12]侯东海.空间变传动比齿轮传动的啮合理论及设计制造研究[D].西安:西安交通大学,2001
    [13]Dunkerly. Mechanism [M]. Longmans:Green, and Co. Publishers,1910
    [14]武丽梅,鲁墨武.非圆齿轮技术的发展及应用[J].沈阳航空工业学报,2000,17(1):23-25
    [15]高雪强.非圆齿轮传动技术概述[J].机械传动,2003,27(3):5-8
    [16]F. L. Litvin. Gear geometry and applied theory [M]. Nueva York:Prentice Hall,1994
    [17]D. B. Dooner. Use of noncircular gears to reduce torque and speed fluctuations inrotating shafts [J]. Journal of Mechanical Design,1997, 119(6):299-306
    [18]D. Dooner, H. D. Yoon, A. Seireg. Kinematics considerations for reducing the circulating power effects in gear-type continuously variable transmissions [J]. Proc. of the Inst.of Mech. Engnr, Part D-J. of Automobile Engineering,1998,212(6):463-478
    [19]J. Bernard. Optimization of mechanism timing using noncircular gearing [J]. Mechanism:Design and synthesis, ASME-Engineering Division,1992, (46):565-570
    [20]E. Doege, M. Hindersmann. Optimized kinematics of mechanical presses with noncircular gears [J]. CIRP Annals-Manufacturing Technology,1997, 46(1):213-216
    [21]D. B. Dooner. Function generation utilizing an eight-link mechanism and optimized non-circular gear elements with application to automotive steering [J]. Proc. of the Inst. of Mech. Eng,2001,215(7):847-857
    [22]E. Doege, J. Meinen, T. Neumaier, M. Schaprian.Numerical design of a new forging press drive incorporating noncircular gears [J]. Proc of the Inst. of Mech. Eng,2001, (5):465-471
    [23]B. W. Bair. Computer aided design of non-standard elliptical gear drives [J]. J. of Mech. Eng. Science, Part C,2002,216 (4):473-483
    [24]B. W. Bair. Computerized tooth profile generation of elliptical gears manufactured by shaper cutters [J]. Journal of Materials Processing Technology,2002,122:139-147
    [25]B. W. Bair. Computer aided design of elliptical gears with circular-arc teeth [J]. Mechanism and Machine Theory,2004,39(2):153-168
    [26]C. F. Chen, C. B. Tsay. Computerized tooth profile generation and analysis of characteristics of elliptical gears with circular-arc teeth [J]. Journal of Materials Processing Technology,2004,148(2):226-234
    [27]G. Figliolini, J. Angeles. Geometric modeling of elliptical gears generated by shapercutters [J]. Proc of the ASME Design Engineering Technical Conf.,5A,2002, (5):661-670
    [28]G. Figliolini, C. Lanni, M. Ceccarelli. On kinematic synthesis of non-circular gears [J]. International Journal of Gearing and Transmssions,2003, 3(1):90-98
    [29]G. Figliolini, J. Angeles. Synthesis of the base curves for N-lobed elliptical gears [J]. Journal of Mechanical Design,2005,127(5):997-1005
    [30]D. Barkah, B. Shafiq, D. Dooner.3D mesh generation for static stress determination in spiral noncircular gear used for torque balancing [J]. Journal of Mechanical Design,2002,124(2):313-319
    [31]G. A. Danieli. Analytical description of meshing of constant pressure angle teeth profiles on a variable radius gear and its applications [J]. Journal of Mechanical Design,2000,122(1):123-128
    [32]G. A. Danieli, D. Mundo. New developments in variable radius gears using constant pressure angle teeth [J]. Mechanism and Machine Theory,2005, 40(2):203-217
    [33]D. Mundo. Geometric design of a planetary geartrain with non-circular gears [J]. Mechanism and Machine Theory,2006,41(4):456-472
    [34]M. F. Tsay, Z. H. Fong. Study of the generalized mathematical model of noncircular gears [J]. Mathematical and computer modeling,2005, (41): 555-569
    [35]F. L. Litvin. Generation of planar and helical elliptical gears by application of rack-cutter, hob, and shaper [J]. Comput. Methods Appl. Mech. Engrg, 2007, (196):4321-4336
    [36]李福生.非圆齿轮与特种齿轮传动设计[M].北京:机械工业出版社,1983
    [37]李建生,李华敏.变中心距非圆行星齿轮机构运动规律的研究[J].机械传动.1994,18(1):16-19
    [38]李建生,李华敏.不同类型非圆行星齿轮液压马达的性能分析[J].中国机械工程,1994,5(4):21-22
    [39]徐辅仁.试探非圆齿轮机构瞬时角速比规律[J].齿轮,1991,(2):25-28
    [40]徐辅仁.议椭圆齿轮机构与摆动导杆机构之组合[J].机构设计,1996,(2):17-18
    [41]崔希烈.非圆齿轮齿廓分析[J].齿轮,1985,9(6):18-21
    [42]崔希烈.非圆齿轮齿廓分析(二)[J].齿轮,1986,10(1):20-23
    [43]胡恩楚.计算机辅助设计一非圆齿轮半径与转角计算[J].机械设计与制造,1994,(3):13-14
    [44]徐晓俊,唐德威,陈卓如等.非圆齿轮副重合度的精确计算方法[J].机械传动,1995,19(2):8-11
    [45]孙文磊,朱颖,庞远棣.非圆齿轮传动的计算机动态模拟及CAD[J]机械传动,1997,21(1):4-6
    [46]唐德威.新型非圆齿轮液压马达的CAD/CAM系统与测量方案的研究[D].哈尔滨:哈尔滨工业大学,2000
    [47]孟涛.齿轮与滚动轴承故障的振动分析与诊断[D].西安:西北工业大学,2004
    [48]熊振芹.非圆齿轮CAD/CAM关键技术及其应用研究[D].西安:西安交通大学,2004
    [49]王伏林.数字化齿面展成加工及误差补偿研究[D].武汉:华中科技大学,2005
    [50]刘润爱.零传动滚齿机关键技术研究与应用[D].重庆:重庆大学,2006
    [51]刘凯.弧齿锥齿轮数控铣齿机运动分析及控制系统研究[D].南京:南京航空航天大学,2007
    [52]杨洁.齿轮双面啮合多维测量理论及技术研究[D].北京:北京工业大学,2009
    [53]田芳勇.非圆齿轮数控滚切加工理论与自动编程系统研究[D].兰州:兰州理工大学,2011
    [54]谭伟明,胡赤兵,阎树田等.基于电子齿轮原理的滚齿加工CNC系统的联动结构[J].中国机械工程,1998,9(5):42-45
    [55]胡赤兵,姚运萍,邬再新.非圆齿轮滚切加工运动控制模型[J].制造技术与机床,1999(9):41-42
    [56]谭伟明,胡赤兵,魏周宏等.非圆齿轮滚切加工CNC系统联动结构[J].中国机械工程,1998,9(8):24-27
    [57]何贵平,胡赤兵,靳岚等.外啮合非圆齿轮加工模型及根切特性研究[J].兰州理工大学学报,2006,32(6):40-43
    [58]胡赤兵,田芳勇,操良伟等.三阶椭圆斜齿轮滚切加工联动控制模型研究[J].机械传动,2009,33(2):5-8
    [59]刘永平,吴序堂,李鹤岐.数控锥面砂轮磨齿机磨削非圆齿轮[J].机械工程学报,2006,42(12):70-75
    [60]贺敬良.非圆齿轮的成形砂轮展成磨削原理[J].农业机械学报,2007,38(10):145-149
    [61]刘忠明,侯东海,王小椿等.卵形齿轮副计算机辅助分析系统研究[J].机械设计,2000(3):37-41
    [62]侯东海,刘忠明,吴序堂.用工具斜齿条法加工斜齿非圆齿轮的啮合理论模型[J].机械程学报,2003,39(8):49-54
    [63]肖本贤,王治森,赵长明.基于STD总线的非圆齿轮插齿机柔性数控系统[J].机电一体化,1996(6):15-17
    [64]吴焱明,王治森.非圆齿轮数控滚齿的一种插补方法[J].组合机床与自动化加工技术,2005(8):78-79
    [65]韩江,程治,何高清等.基于工控机的非圆齿轮插齿数控加工技术研究[J].机械传动,2006,4(30):72-74
    [66]任敬心,刘洪忠,张应昌等.齿轮工程学[M].北京:国防工业出版社,1985:87
    [67]王明侗.渐开线齿轮精度[M].北京:机械工业出版社,1983:24
    [68]庄葆华,李真.齿轮近代测量技术与仪器[M].北京:机械工业出版社,1986
    [69]C. Brecher, C. Gorgels, J. Hesse, et al. Dynamic transmission error measurements of a drive train [J]. Prod. Eng. Res. Devel.2011,5:321-327
    [70]J. Wei, W. Sun and L. C Wang. Effects of flank deviation on load distributions for helical gear [J]. Journal of Mechanical Science and Technology,2011,25 (7):1781-1789
    [71]商向东,金嘉琦,付景顺等.齿轮加工精度[M].北京:机械工业出版社,2000
    [72]黄立里,钟行群.齿轮的动态全误差曲线及其测量方法[J].中国科学,1973,4
    [73]振鹏.齿轮加工误差理论与补偿技术研究[D].沈阳:东北大学,1998
    [74]庞庆,柏永新.圆柱齿轮加工误差分布规律的研究[J].机械传动,2004,28(1):7-10
    [75]韩江.开放式网络化齿轮加工数控系统研究[D].合肥:合肥工业大学,2006
    [76]董国庆,徐晓俊,唐德威等.非圆齿轮精度指标及其综合测量方法的初步研究[J].机械传动,1999,23(3):37-40
    [77]董国庆.非圆齿轮精度指标及测量方法研究[D].哈尔滨:哈尔滨工业大学,1998
    [78]唐进元,曹康,周超,李国顺.小轮齿面误差与调整参数误差敏感性研究[J].航空动力学报,2009,9(24):2145-2151
    [79]任永强,杨建国,窦小龙等.五轴数控机床综合误差建模分析[J].上海交通大学学报,2003,37(1):30-35
    [80]J. Bryan. International status of thermal error research [J]. Keynote Paper Annals of the CIPP,1990,39(2):645-656
    [81]杨建国,张宏韬,童恒超等.数控机床热误差实时补偿应用[J].上海交通大学学报,2005,9(139):1389-1392
    [82]彭东林,郑永,陈自然等.基于误差传递理论及误差修正技术的高精度蜗轮母机研制[J].机械工程学报,2011,9(47):159-165
    [83]赵宁,郭辉,方宗德等.用球形滚刀滚切面齿轮的理论误差[J].航空动力学报,2009,3(24):677-682
    [84]粟时平.多轴数控机床精度建模与误差补偿方法研究[D].安徽:国防科技大学,2001
    [85]杜建铭,吴序堂,吴宏等.数控滚齿运动误差补偿的建模、仿真和应用[J].系统仿真学报,2002,12(14):1680-1682
    [86]李丽霞,李培军,刘新状.机床调整误差对弧齿锥齿轮大轮齿面形状影响规律的研究[J].机械传动,2006,3(40):13-17
    [87]吴序堂.通过基圆半径误差分析滚齿精度方法的探讨[J].西安交通大学学报.1977,3:51-76
    [88]杨洪成,秦大同,刘恒学.基于坐标测量的准双曲面齿轮齿形精度控制[J].重庆大学学报(自然科学版),2000,23(5):1-4
    [89]K. Kawasaki, H. Tamura, Y. Nakano. A method for inspection of spiral bevel gears in kling elnberg cyclspallokd system[C]. Proc. of International Gearing Conference, Newcastle upon Tyne,1994,9,305-310
    [90]F. L. Litvin, C. Kuan, J. C. Wang, et al. Minimization of deviation of gear real tooth surfaces determined by coordinate measurements [J]. Journal of Mechanical Design,1993,115(4),995-1001
    [91]王克诚.歪斜滚刀的齿形误差分析[J].制造技术与机床,1991,11:21-24
    [92]唐德威,于红英,李建生等.非圆齿轮加工中刀具齿根与轮齿齿顶干涉分析[J],中国机械工程学报,2002,13(12):1045-1047
    [93]杨洪成,秦大同,刘恒学.基于坐标测量的准双曲面齿轮齿形精度控制[J].重庆大学学报(自然科学版),2000,5(23):1-4
    [94]王明德.控制工程在机械传动中的应用[J].机械工程学报,1980,16(2):6
    [95]刘润爱,张根保.滚齿机及滚齿加工技术的发展趋势[J].现代制造工程,2003,11:84-86
    [96]胡建中.数控机床的误差补偿的实现[J].硅谷,2009,11:120
    [97]肖本贤.多轴运动下的轮廓跟踪误差控制与补偿方法研究[D].合肥:合肥工业大学,2004
    [98]B. S. Kim, S. K. Ro, J. K. Park. Development of a 3-axis desktop milling machine and a CNC system using advanced modern control algorithms [J]. International Journal of Precision Engineering and Manufacturing,2010, 11(1):39-47
    [99]徐跃.面向高性能数控系统的误差控制技术研究[D].天津:天津大学,2009
    [100]《小模数齿轮加工》编写组.小模数齿轮加工.北京:国防工业出版社,1972
    [101]经以广.齿轮误差机理、诊断及补偿[M].沈阳:沈阳出版社,1991
    [102]金建新.机床CNC系统中任意空间曲线的可控步长插补方法[J].机械工程学报,2000,36(4):95-97
    [103]张瑞,吴序堂,聂钢等.椭圆类齿轮CAD系统的研究[J].农业机械学报,2006,37(3):138-141
    [104]S. L. Chang, C. B. Tsay. Computerized tooth profile generation and undercut analysis of noncircular gears manufactured with shaper Cutters[J]. J. Mech. Des..1998,120(1):92-99
    [105]S. H. Tong, C. H. Yang. Generation of identical noncircular pitch curves [J]. Journal of Mechanical Design, Transactions of the ASME,1998(120): 982-985
    [106]F. Q. R. Hector, C. F. Salvador, J. N. Liuisa. The synthesis of a n-lobe noncircular gear using bezier and b-spline nonparametric curve on the design of its displacement law [J]. Journal of Mechanical Design, Transactions of the ASME,2007, (129):982-985
    [107]田立俭.非圆齿轮节曲线设计的新方法[J].机械工程学报,1997,33(6):95-102
    [108]谭伟明,胡赤兵,冼伟杰.非圆齿轮滚切最简数学模型及其图形仿真[J].机械工程学报,2001,37(5):26-29
    [109]唐德威,于红英,徐晓俊等.数控插齿加工的非圆齿轮极径与极角误差分析[J].哈尔滨工业大学学报,2006,38(9):1465-1468
    [110]刘永平,吴序堂,李鹤岐.常见的凸封闭节曲线非圆齿轮副设计[J].农业机械学报,2007,38(6):143-146
    [111]刘永平,孟鹏飞.巴斯噶蜗线型齿轮的啮合特性及数字制造技术研究[J].制造技术与机床,2011,(12):90-93
    [112]B. W. Bair. Computer aided design of elliptical gears [J]. Journal of Mechanical Design,2002,124:787-793
    [113]李建刚,吴序堂,李泽湘.基于插齿数值计算模型的非圆齿轮根切分析[J].农业机械学报,2007,38(6):138-143
    [114]傅则绍.微分几何学与齿轮啮合原理[M].东营:石油大学出版社,1999
    [115]任玉田,包杰,喻逸君等.新编机床数控技术[M].北京:北京理工大学出版社,2009
    [116]郭新贵.面向高速切削的高速高精度插补技术研究[D].上海:上海交通大学,2002
    [117]赵巍.控系统的插补算法及加减速控制方法研究[D].天津:天津大学,2004
    [118]王涛.数控系统的可靠性设计理论和方法研究[D].天津:天津大学,2008
    [119]游有鹏.改进最小偏差法一种高精度快速插补算法[J].机械工业自动化,1995,17(1):32-3
    [120]罗欣,李光斌,朱涵梁.时间分割法抛物线插补算法的研究[J].组合机床与自动化加工技术,1994,(6):34-38
    [121]张春良.时间分割法摆线插补算法[J].组合机床与自动化加工技术,2000,(5):13-16
    [122]丁国龙.基于圆柱螺旋样条的刀具轨迹模型研究[D].武汉:华中科技大学,2008
    [123]张志强.数控系统参数曲线、曲面插补算法及加减速控制研究[D].天津:天津大学,2007
    [124]徐荣珍.面向高速加工的NURBS曲线插补及直线电机鲁棒控制技术研究[D].上海:上海交通大学,2007
    [125]蔡淮,苏波.线形与非线形多轴联动加工控制的插补算法及其实现[J].西南交通大学学报,1993,(1):58-62
    [126]苏宏涛.多轴联动插补的规划算法[J].制造技术与机床,1999,(3):19-31
    [127]傅云忠,王永章,富宏亚,等.多轴联动线性插补及其″S加减速”规划算法[J].制造技术与机床,2001,9:9-11
    [128]李志勇,赵万生,张勇.用Huffman树实现的多坐标联动插补算法[J].中国机械工程,2003,14(13):1097-1099
    [129]付云忠,富宏亚,路华,等.多轴联动线性插补及其速度的理解[J].组合机床与自动化加工技术,2001,(8):42-43
    [130]T.Sata, F.Kimura, et al. A New Method of NC Interpolation for Machining the Sculptured Surface,Annals of CIRP 30,1981:369-372
    [131]杜道山,燕存良,李从心.一种实时前瞻的自适应NURBS插补算法[J].上海交通大学学报,2006,40(5):843-847
    [132]盛晓岩.非圆齿轮数控滚切加工数模的探讨及动态验证[D].兰州:甘肃工业大学,1998
    [133]Y.S.Tang, H. Y. Chuang and W. T. Hsu. An optimization approach to the contour error control of CNC machine tools using genetic algorithms [J]. Adv. Manuf. Technol,1997,13:359-366
    [134]虞文华.数控机床轮廓加工误差建模、识别与控制的研究[D].杭州:浙江大学,1995
    [135]杨江照.双轴运动平台上的连续轨迹控制[D].哈尔滨:哈尔滨工业大学,2006
    [136]Oram Koren and Joseph Ben Uri. Digital control of multi. Axial Motion System, IFAC5'World Conference, Paris, June 1992, Patl, Section2,1-8
    [137]孙开珊.多轴空间轮廓误差的建模与交叉耦合补偿[D].武汉,华中科技大学,2007
    [138]Q. Zhong, Y. Shi, J. Mo. A linear cross-coupled control system for high-speed machining. Int J Adv Manuf Technol,2002,19(8):558-563
    [139]王广炎,张润孝,帅梅等.数控机床的轮廓误差的控制[J].机床与液压,1999,6:59-61
    [140]郑子文.超精密机床伺服控制技术研究[D].合肥:国防科学技术大学,2001
    [141]赵国勇.数控系统运动平滑处理、伺服控制及轮廓控制技术研究[D].大连:大连理工大学,2006
    [142]虞文华,吴昭同,杨世锡.伺服系统动力特性对数控机床圆轨迹加工精度影响的机理[J].中国机械工程,1995,6(1):21-23
    [143]李宏胜.轮廓跟踪运动控制系统关键技术的研究[D].南京:东南大学,2005
    [144]黄东兆,周会成,李斌等.面向轮廓精度控制的误差补偿方法[J].华中科技大学学报(自然科学版),2008,36(2):13-16
    [145]肖本贤,王群京,昂卫兵等.基于神经网络的轮廓误差控制仿真研究[J].系统仿真学报,2003,15(4):572-574
    [146]李学伟,赵万华,卢秉恒.轨迹误差建模的多轴联动机床轮廓误差补偿技术[J].西安交通大学学报,2012,46(3),47-52
    [147]张建国.基于滑模变结构控制的多轴协调运动控制策略研究[D].济南:山东大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700