用户名: 密码: 验证码:
肴肉微生物多样性与特定腐败菌控制机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真空包装水晶肴肉是引进现代肉制品加工技术生产的一种凝胶型低温肉制品,在其加工过程中由于原、辅材料种类较多,来源不同,且营养丰富,极易造成微生物污染;加之加工过程没有高温杀菌,因此易导致产品出现质量问题。这不仅限制了真空包装水晶肴肉产品的货架期及其销售半径,也影响了肴肉加工企业的生产规模。而解决该问题的关键是建立以真空包装水晶肴肉中腐败微生物为核心的研究方法与控制技术。
     本论文针对真空包装水晶肴肉贮藏温度低、货架期短、易腐败变质等问题,从肉制品中微生物生态学的角度,揭示真空包装水晶肴肉中微生物污染的多样性和动态变化,并运用天然产物防腐保鲜功能,针对肴肉中的特定腐败菌(SSO)研发天然、安全、高效的防腐抑菌剂及其作用机制,实现对肴肉品质与安全的有效控制。主要研究内容和结果如下:
     (1)以感官评定、pH值、Aw、TVB-N、TBARS及微生物数量等为指标,对不同季节生产的真空包装水晶肴肉4℃贮藏期间的贮藏特性进行研究,掌握其变化规律。结果表明:
     ①亚硝酸盐含量呈现先上升后下降的趋势,贮藏7d后其含量达到峰值,但在样品货架期内不会对其食用安全性造成影响。
     ②感官品质下降的主要表现为肉色变淡、有异味产生、卤冻混浊、表面湿润、肉质松散,其主要因素是微生物作用下的蛋白质及氨基酸降解。
     ③pH值随贮藏时间的延长呈缓慢下降的趋势;Aw和TBARS值在贮藏期间变化不大,说明Aw和脂肪氧化不是造成肴肉腐败变质的主要因素;TVB-N值在贮藏期间呈上升趋势,在30d的货架期过后,夏季和秋季的样品很快腐败致不能食用,说明微生物生长及其作用下蛋白质降解是造成产品腐败的主要因素。
     ④微生物数量总体呈上升趋势,冬季样品在贮藏初期的细菌总数最少,贮藏末期的细菌总数也最少,为105cfu/g;夏季样品在贮藏初期的细菌总数最大,贮藏期间增长速度最快,贮臧末期的细菌总数也最大达到108cfu/g;样品在春、秋季的细菌总数略低于夏季,其最大菌落数为107cfu/g;贮藏期间主要的微生物类型是假单胞菌和肠杆菌。
     ⑤生产季节对真空包装水晶肴肉的贮藏特性有直接影响:夏季样品在贮藏末期的pH值最低、TVB-N值最高,且贮藏初期的细菌总数最高、贮藏末期的细菌总数也最高。
     (2)将传统细菌培养法与基于宏基因组学的454焦磷酸测序技术相结合,对真空包装水晶肴肉在4℃、30d贮藏期内的微生物的多样性和动态变化进行研究。结果表明:
     ①细菌纯培养的方法共分离鉴定出真空包装水晶肴肉在贮藏期内26个属的36种细菌,其中弧菌Vibrio rumoiensis是样品贮藏初期的主要微生物;乳杆菌Lactobacillus sakei是样品贮藏中期的主要微生物;肠球菌Enterococcus faecium、肠杆菌Yersinia intermedia和嗜冷杆菌Psychrobacter glacincola是样品贮藏末期主要的微生物。
     ②454焦磷酸测序的方法可以获得真空包装水晶肴肉中细菌群落变化的更丰富和更准确的数据。454焦磷酸测序共鉴定出169个属的细菌,53,363个有效序列,能够提供关于细菌群落变化更丰富和更准确的数据;Vibrio是贮藏0d、7d、30d时的优势菌群;Lactobacillus及Yersinia是贮藏15d、22d、30d时的优势菌群;所有样品在贮藏期内微生物多样性呈增加趋势且有不同的群落结构,15d后群落结构开始发生很大的变化,30d后群落结构有显著性差异。
     ③与传统纯培养方法相比,454焦磷酸测序提供的微生物多样性和群落结构信息更接近于微生物生态中真实的组成情况,从而对样品中微生物多样性进行更全面的分析与判断,尤其是对于低丰度致病菌的检测更有意义。
     (3)采用菌种反接方法,考察了5株优势菌对真空包装水晶肴肉贮藏期间品质变化的影响。结果表明:
     ①Yersinia intermedia、Enterococcu faeciums和Lactobacillus sakei能增加样品脂肪氧化的速率,并且有较强的蛋白质分解能力,在真空包装水晶肴肉中可以快速生长,是导致肴肉样品腐败的SSO。
     ②在真空包装水晶肴肉生产线的主要工艺环节取样,运用变性梯度凝胶电泳对其特定腐败菌进行溯源。结果表明:Yersinia intermedia和Enterococcus faecium存在猪肉原料中,煮制工艺可以将其杀灭,但是在产品后续的压块及包装过程还有可能污染腐败菌;Lactobacillus sakei出现在煮制以后的样品中,应来自于香辛料等植物性调味料。因此,在真空包装水晶肴肉的加工过程中,原料与环境的卫生及操作规范不容忽视。
     (4)运用天然产物的抑菌功能,以18种不同来源的天然产物为材料,研究其对3株SSO的抑制作用,并优化出最佳复合生物抑菌剂。结果表明:
     ①大蒜、肉桂、肉豆蔻及茶多酚对SSO均具有较好的抑菌效果;采用此四种植物提取物,利用正交t值法进行制备工艺优化,确定最佳的复合生物抑菌剂为大蒜提取物和茶多酚以1:1的比例复配,该复合生物抑菌剂对Lactobacillus sakei的最低抑菌浓度为0.56mg/mL。
     ②制备的复合生物抑菌剂能明显降低真空包装水晶肴肉样品中的微生物数量,抑制脂肪氧化及蛋白质降解,有效延长产品的货架期。
     (5)以复合生物抑菌剂对细菌细胞膜和细胞壁的完整性、蛋白质合成、脂肪酸组成及有机酸代谢的影响为基础,对复合生物抑菌剂的抑菌机制进行初步研究。结果表明:
     ①复合生物抑菌剂都可以破坏SSO的细胞超微结构及细胞膜的完整性,并可使细胞膜的通透性增加、流动性减弱,且能改变细胞内有机酸的代谢水平。
     ②复合生物抑菌剂对不同SSO的作用机制有所不同:复合生物抑菌剂对Yersinia intermedia和Lactobacillus sakei胞内蛋白质的合成无显著影响,但能显著影响Enterococcu faeciums胞内某些关键的结构或功能蛋白的合成;能够破坏Yersinia intermedia及Lactobacillus sakei细胞壁的完整性,可造成细胞发生壁膜分离,但对Enterococcu faeciums而言主要是影响细胞壁附属物的生物合成从而影响其生理活性。
Vacuum-packed Zhenjiang Yao meat is a marinated-jellied pork product which is produced by using modern low-temperature meat processing technology. It is easily contaminated by microorganisms due to different sources and rich nourishment of raw materials. The low-temperature sterilization process can endue Zhenjiang Yao meat quality problems, which not only limit the shelves and sales radius, but also affect the scale of production of the meat processing enterprises. To solve the problem is to establish the research methods and control technology according to the spoilage microorganisms in vacuum-packed Zhenjiang Yao meat.
     The vacuum-packed Zhenjiang Yao meat should be storaged under low temperature, has short shelf life and easily become perishable deterioration, which is dued to indigenous microorganisms. In this study, the microbial diversity and dynamic main flora of the meat were determined and a natural, safe, efficient antibacterial agent used to control the specific meat dish special spoilage organisms (SSO) was developed using the natural products. The antibacterial mechanism of the agent was investigated to understand its effectiveness controlling the quality and safety of vacuum-packed Zhenjiang Yao meat. The main research contents and results are as follows:
     (1) The storage characteristics of vacuum-packed Zhenjiang Yao meat produced in different seasonswere studied under4℃by sensory evaluation, pH value, AW, TVB-N, TBARS and microbial quantity determination. The results reveal that:
     First, the nitrite content increased firstly, then downward. The highest content of nitrite appears on the seventh day, but the nitrite content is still among the safty range for eating during the shelf life.
     Second, the sensory quality of Yao meat mainly become worse as like pale flesh, off-odor, cloudy, moist surface and looses structure, which is caused by the action of microorganisms made degradation of protein and amino acids.
     Third, the pH value of Yao meat become downward slowly within the extension of storage. The AW and TBARS values changed little during storage, indicating Aw and fat oxidation were not the main cause of Yao meat spoilage. During storage, the TVB-N value showed a upward trend. Products producd in summer and autumn season became quickly spoilage and were not edible after the30d's shelf life, indicating microbial growth and its action on protein degradation as the major factors to cause spoilage.
     Fourth, the numbesr of microorganisms showed overall upward trend. Products producd in winter harboured the lowest total number of bacteria in the early stages, the total number of bacteria was105cfu/g at the end of storage. Summer samples had the highest total number of bacteria in the early stages of storage, and the growth rate was fastest during the storage period, the total number of bacteria reached108cfu/g at the end of storage. Samples in spring and autumn had a slightly lower total number of bacteria than that of the summer sample, whose maximum number of colonies was107cfu/g. During storage, the main groups were Pseudomonas and Enterobacteriaceae.
     Fifth, producing seasons had a direct impaction on the storage characteristics of vacuum-packed Zhenjiang Yao meat. Summer's samples had the lowest pH value, the highest TVB-N value, and the highest total number of bacteria at the end of storage.
     (2) Bacterial diversity and dynamic populations under4℃in30days were determined using a combination of culture-independent (454pyrosequencing) and Cultivation methods. The results showed that:
     First, bacterial isolates of26genera and36species were cultivated from vacuum-packed Zhenjiang Yao meat during storage, among which Vibrio rumoiensis was the main group at the early storage period. Lactobacillus sakei was the main microorganism at the middle storage; Enterococcus faecium, Yersinia intermedia and Psychrobacter glacincola were the main microorganisms at t the end of storage.
     Second, phylotypes of one hundred and sixty-nine genera were identified and53,363tags were obtained by454Pyrosequencing method. Vibrios were the main flora at0d,7d and30d, while Lactobacillus and Yersinia were the main flora at15d,22d and30d. All of the samples had different bacterial communities. The bacterial community changed greatly after15days of storage, and the bacterial communities at30d differed significantly from the other samples.
     Third, Pyrosequencing provide a more comprehensive estimatination of microbial diversity and closer to the real bacterial composition of meat compared with culture-dependent techniques.
     (3) the quality changes of vacuum-packed Zhenjiang Yao meat during storage were investigated by inoculating five dominant bacteria in samples.. The results showed that:
     First, Yersinia intermedia, Enterococcu faeciums and Lactobacillus sakei can grow rapidly in samples can increase the rate of fat oxidation and protein degradation. These bacteria were the SSO that cause the spoilage of vacuum-packed Zhenjiang Yao meat.
     Second, the SSO of vacuum-packed Zhenjiang Yao meat were tracked by sampling at different production links,and then analyses using denaturing gradient gel electrophoresis. The results showed that:Yersinia intermedia and Enterococcus faecium were presented in raw pork materials and can be killed in the cooking process. However, Yao meat may be contaminated by the two bacteria in the subsequent briquetting and packaging process. Lactobacillus sakei occurring in samples after cooking revealed that the bacterium joins in with the spices. Hence sanitary and operating rulls for raw materials and the environment can not be ignored.
     (4)18kinds of natural products were used to study the inhibitory effect upon the three SSOs, and then the best composites of biological antibacterial agents were optimized. The results showed that:
     First, Garlic, cinnamon, nutmeg, and tea polyphenols had good antibacterial effect on SSOs. According to Orthogonal t value method by using these four natural products extracts, the optimal composite biological antibacterial agents was acquired: Garlic extract and tea polyphenols mixed in1:1, and the minimum inhibitory concentration of the biological antibacterial agents against Lactobacillus sakei was0.56mg/mL.
     Second, the biological antibacterial agent complex can significantly reduce the number of microorganisms, inhibit the rate of fat oxidation and protein degradation, and the shelf life of vacuum-packed Zhenjiang Yao meat was effectively extend.
     (5) To understand the antibacterial mechanism of the biological antibacterial agent compounds, the impact of integrity of the bacterial cell membrane and cell wall, the protein synthesis, fatty acids composed and organic acid metabolism were studied. The results showed that:
     First, the biological antibacterial agent complex can damage the cell ultra structure and cell membrane integrity, can increase the permeability and reduce the mobility of cell membranes, and change the metabolism of organic acids in the cells of three SSOs.
     Second, there were some different in antibacterial mechanism of the biological antibacterial agent complex on different SSOs. The biological antibacterial agent complex had no significant effect on the intracellular protein synthesis of Yersinia intermedia and Lactobacillus sakei, but can significantly affect the synthesis of some intracellular key structural or functional proteins of Enterococcu faeciums. It can destroy the integrity of cell wall of Yersinia intermedia and Lactobacillus sakei, and cause the cell wall membrane separation. For Enterococcu faeciums it mainly affect the biosynthesis of the cell wall appendage and then affect its physiological activity.
引文
[1]孙源源,张德权.低温肉制品保鲜技术研究进展[J].肉类研究,2008(5):14-17.
    [2]刘超群,王宏勋,侯温甫.低温肉制品微生物控制与预测模型应用研究进展[J].食品科学,2009,30(21):481-483.
    [3]Peirson, M.D., Guan, T.Y., Holley, R.A. Aerococci and carnobacteria cause discoloration in cooked cured bologna[J]. Food microbiology,2003,20 (2):149-158.
    [4]徐宝才,任发政,王前武,等.牛肉火腿切片的腐败微生物鉴定及贮藏过程中的品质变化[J].食品与发酵工业,2004,30(5):124-128.
    [5]Doulgeraki, A.I., Ercolini, D., Villani, E, et al. Spoilage microbiota associated to the storage of raw meat in different conditions[J]. International journal of food microbiology, 2012,157(2):131-140.
    [6]Borch, E., Kant-Muermans, M.L., Blixt, Y. Bacterial spoilage of meat and cured meat products[J]. International journal of food microbiology,1996,33 (1):103-120.
    [7]Liang, R., Yu, X., Wang, R., et al. Bacterial Diversity and Spoilage-Related Microbiota Associated with Freshly Prepared Chicken Products under Aerobic Conditions at 4C[J]. Journal of food protection,2012,75 (6):1057-1062.
    [8]Vasilopoulos, C., De Maere, H., De Mey, E., et al. Technology-induced selection towards the spoilage microbiota of artisan-type cooked ham packed under modified atmosphere[J]. Food microbiology,2010,27 (1):77-84.
    [9]Han, Y., Jiang, Y, Xu, X., et al. Effect of high pressure treatment on microbial populations of sliced vacuum-packed cooked ham[J]. Meat science,2011,88 (4):682-688.
    [10]Hu, P., Zhou, G., Xu, X., et al. Characterization of the predominant spoilage bacteria in sliced vacuum-packed cooked ham based on 16S rDNA-DGGE[J]. Food control,2009,20 (2):99-104.
    [11]Vasilopoulos, C., De Mey, E., Dewulf, L., et al. Interactions between bacterial isolates from modified-atmosphere-packaged artisan-type cooked ham in view of the development of a bioprotective culture[J]. Food microbiology,2010,27 (8):1086-1094.
    [12]Andrade, M.J., Rodas, E., Durban, A., et al. Characterization and control of microbial black spot spoilage in dry-cured Iberian ham[J]. Food control,2012,23 (1):128-136.
    [13]Audenaert, K., D'haene, K., Messens, K., et al. Diversity of lactic acid bacteria from modified atmosphere packaged sliced cooked meat products at sell-by date assessed by PCR-denaturing gradient gel electrophoresis[J]. Food microbiology,2010,27 (1):12-18.
    [14]Liu, F., Wang, D., Du, L., et al. Diversity of the predominant spoilage bacteria in water-boiled salted duck during storage[J]. Journal of food science,2010,75 (5):317-321.
    [15]Janssens, M., Myter, N., De Vuyst, L., et al. Species diversity and metabolic impact of the microbiota are low in spontaneously acidified Belgian sausages with an added starter culture of Staphylococcus carnosus [J]. Food microbiology,2012,29 (2):167-177.
    [16]Fonseca, S., Cachaldora, A., Gomez, M., et al. Monitoring the bacterial population dynamics during the ripening of Galician chorizo, a traditional dry fermented Spanish sausage[J]. Food microbiology,2012,33(1):77-84.
    [17]Rungrassamee, W., Tosukhowong, A., Klanchui, A., et al. Development of bacteria identification array to detect lactobacilli in Thai fermented sausage[J]. Journal of microbiological methods,2012,91(3):341-353.
    [18]Tran, K., May, B.K., Smooker, P.M., et al. Distribution and genetic diversity of lactic acid bacteria from traditional fermented sausage[J]. Food research international,2011,44 (1):338-344.
    [19]Matsui, H., Tsuchiya, R., Isobe, Y., et al. Analysis of bacterial community structure in Saba-Narezushi (Narezushi of Mackerel) by 16S rRNA gene clone library[J]. Journal of food science and technology,2011:1-6.
    [20]Dykes, G., Cloete, T., Von Holy, A. Taxonomy of lactic acid bacteria associated with vacuum-packaged processed meat spoilage by multivariate analysis of cellular fatty acids[J]. International journal of food microbiology,1995,28 (1):89-100.
    [21]Samelis, J., Kakouri, A., Rementzis, J. Selective effect of the product type and the packaging conditions on the species of lactic acid bacteria dominating the spoilage microbial association of cooked meats at 4 C[J]. Food microbiology,2000,17 (3):329-340.
    [22]Barakat, R., Griffiths, M., Harris, L. Isolation and characterization of Carnobacterium, Lactococcus, and Enterococcus spp. from cooked, modified atmosphere packaged, refrigerated, poultry meat[J]. International journal of food microbiology,2000,62 (l):83-94.
    [23]Susiluoto, T, Korkeala, H., Bjorkroth, K.J. Leuconostoc gasicomitatum is the dominating lactic acid bacterium in retail modified-atmosphere-packaged marinated broiler meat strips on sell-by-day[J]. International journal of food microbiology,2003,80 (1):89-97.
    [24]Bjorkroth, J., Ristiniemi, M., Vandamme, P., et al. Enterococcus species dominating in fresh modified-atmosphere-packaged, marinated broiler legs are overgrown by Carnobacterium and Lactobacillus species during storage at 6°C[J]. International journal of food microbiology,2005,97 (3):267-276.
    [25]Gram, L., Dalgaard, P. Fish spoilage bacteria-problems and solutions[J]. Current opinion in biotechnology,2002,13 (3):262-266.
    [26]周德庆.微生物教程[M].北京:高等教育出版社.2002,第一版.
    [27]Rantsiou, K., Urso, R., Iacumin, L., et al. Culture-dependent and-independent methods to investigate the microbial ecology of Italian fermented sausages[J]. Applied and environmental microbiology,2005,71 (4):1977-1986.
    [28]Jones, R.J. Observations on the succession dynamics of lactic acid bacteria populations in chill-stored vacuum-packaged beef[J]. International journal of food microbiology,2004, 90 (3):273-282.
    [29]Amann, R.I., Ludwig, W., Schleifer, K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiological reviews,1995,59 (1):143-169.
    [30]Ranjard, L., Poly, F., Nazaret, S. Monitoring complex bacterial communities using culture-independent molecular techniques:application to soil environment[J]. Research in microbiology,2000,151 (3):167-177.
    [31]Winding, A. Fingerprinting bacterial soil communities using Biolog microtitre plates[J]. 1994:85-94.
    [32]Klingler, J., Stowe, R., Obenhuber, D., et al. Evaluation of the Biolog automated microbial identification system[J]. Applied and environmental microbiology,1992,58 (6):2089-2092.
    [33]Lee, J.-S., Chun, C.O., Kim, H.-J., et al. Analysis of cellular fatty acid methyl esters (FAMEs) for the identification of Leuconostoc strains isolated from kimchi[J]. The journal of Microbiology,1996,34:225-228.
    [34]Lee, J. S., Chun, C.O., Hector, M., et al. Identification of Leuconostoc strains isolated from kimchi using carbon-source utilization patterns[J]. The journal of microbiology, 1997,35:10-14.
    [35]Khatri, B., Fielder, M., Jones, G., et al. High Throughput Phenotypic Analysis of Mycobacterium tuberculosis and Mycobacterium bovis Strains' Metabolism Using Biolog Phenotype Microarrays[J]. Plos one,2013,8 (1):52-67.
    [36]McCaig, A.E., Grayston, S.J., Prosser, J.I., et al. Impact of cultivation on characterisation of species composition of soil bacterial communities[J]. FEMS microbiology ecology, 2001,35 (1):37-48.
    [37]Yi, H., Kim, C.-g. Effects of transgenic watermelon with CGMMV resistance on the diversity of soil microbial communities using PLFA[J]. Animal Cells and Systems,2010, 14 (3):225-236.
    [38]Baath, E., Anderson, T. H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques[J]. Soil Biology and Biochemistry,2003, 35 (7):955-963.
    [39]Frostegard, A., Tunlid, A., Baath, E. Use and misuse of PLFA measurements in soils[J]. Soil biology and biochemistry,2011,43 (8):1621-1625.
    [40]Fischer, S., Lerman, L. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels:correspondence with melting theory[J]. Proceedings of the national academy of sciences,1983,80 (6):1579-1583.
    [41]Li, M., Zhou, G., Xu, X., et al. Changes of bacterial diversity and main flora in chilled pork during storage using PCR-DGGE[J]. Food microbiology,2006,23 (7):607-611.
    [42]Ercolini, D., Russo, F., Torrieri, E., et al. Changes in the spoilage-related microbiota of beef during refrigerated storage under different packaging conditions[J]. Applied and environmental microbiology,2006,72 (7):4663-4671.
    [43]Hu, P., Xu, X., Zhou, G., et al. Study of the Lactobacillus sakei protective effect towards spoilage bacteria in vacuum packed cooked ham analyzed by PCR-DGGE[J]. Meat science,2008,80 (2):462-469.
    [44]Muyzer, G, De Waal, E.C., Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and environmental microbiology,1993,59 (3):695-700.
    [45]Suzuki, M.T., Rappe, M.S., Haimberger, Z.W., et al. Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample[J]. Applied and environmental microbiology,1997,63 (3):983-989.
    [46]Mulder, I., Schmidt, B., Stokes, C., et al. Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces [J]. BMC biology, 2009,7 (1):79.
    [47]Franzolin, R., St-Pierre, B., Northwood, K., et al. Analysis of rumen methanogen diversity in water buffaloes (Bubalus bubalis) under three different diets[J]. Microbial ecology, 2012,64 (1):131-139.
    [48]梁晓媛,龚瑶琴.PCR技术在cDNA文库构建中的应用[J].国外医学:遗传学分册,2001,24(1):1-5.
    [49]DeSantis, T.Z., Brodie, E.L., Moberg, J.P., et al. High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment[J]. Microbial ecology,2007,53 (3):371-383.
    [50]Revetta, R.P., Matlib, R.S., Santo Domingo, J.W.16S rRNA gene sequence analysis of drinking water using RNA and DNA extracts as targets for clone library development[J]. Current microbiology,2011,63 (1):50-59.
    [51]Liu, W., Mao, Z., Yang, Y., et al. Analysis of soil bacterial diversity by using the 16S rRNA gene library][J]. Wei sheng wu xue bao Acta microbiologica Sinica,2008,48 (10):1344.
    [52]V Wintzingerode, F, Gobel, U.B., Stackebrandt, E. Determination of microbial diversity in environmental samples:pitfalls of PCR-based rRNA analysis[J]. FEMS microbiology reviews,1997,21 (3):213-229.
    [53]Thompson, J.R., Marcelino, L.A., Polz, M.F. Heteroduplexes in mixed-template amplifications:formation, consequence and elimination by'reconditioning PCR'[J]. Nucleic acids research,2002,30 (9):2083-2088.
    [54]Margulies, M., Egholm, M., Altrman, W.E., et al. Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature,2005,437 (7057):376-380.
    [55]Cardenas, E., Tiedje, J.M. New tools for discovering and characterizing microbial diversity[J]. Current opinion in biotechnology,2008,19 (6):544-549.
    [56]McKenna, P., Hoffmann, C., Minkah, N., et al. The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis[J]. PLos pathogens,2008,4 (2):20.
    [57]Cole, J., Wang, Q., Cardenas, E., et al. The Ribosomal Database Project:improved alignments and new tools for rRNA analysis[J]. Nucleic acids research,2009,37 (suppl 1):141-145.
    [58]Caporaso, J.G., Kuczynski, J., Stombaugh, J., et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature methods,2010,7 (5):335-336.
    [59]Herlemann, D.P., Labrenz, M., Jurgens, K., et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea[J]. The ISME journal,2011,5 (10):1571-1579.
    [60]Zhang, T., Shao, M.-E, Ye, L.454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[J]. The ISME journal,2011,6 (6):1137-1147.
    [61]Keijser, B., Zaura, E., Huse, S., et al. Pyrosequencing analysis of the oral microflora of healthy adults[J]. Journal of dental research,2008,87 (11):1016-1020.
    [62]Andersson, A.F., Lindberg, M., Jakobsson, H., et al. Comparative analysis of human gut microbiota by barcoded pyrosequencing[J]. PloS one,2008,3 (7):28-36.
    [63]Nam, Y.-D., Jung, M.-J., Roh, S.W., et al. Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing[J]. PloS one,2011,6 (7):e22109.
    [64]Nam, Y.-D., Lee, S.-Y, Lim, S.-I. Microbial community analysis of Korean soybean pastes by next-generation sequencing[J]. International journal of food microbiology,2012, 155 (1):36-42.
    [65]Leite, A., Mayo, B., Rachid, C, et al. Assessment of the microbial diversity of Brazilian kefir grains by PCR-DGGE and pyrosequencing analysis[J]. Food microbiology,2012.
    [66]Nieminen, T., Koskinen, K., Laine, P., et al. Comparison of microbial communities in marinated and unmarinated broiler meat by metagenomics[J]. International journal of food microbiology,2012,31(2):215-221.
    [67]Ercolini, D., De Filippis, F., La Storia, A., et al. A "remake" of the microbiota involved in the production of water buffalo mozzarella cheese by high throughput sequencing[J]. Applied and environmental microbiology,2012.
    [68]孙婷婷,徐艺青.不同方法提取香辛料精油对低温肉制品抑菌效果的影响[J].农产品加工,2012(7).
    [69]徐宝才,任发政,周辉,等.防腐保鲜剂对牛肉火腿切片腐败菌抑制效果的研究[J].食品科学,2005,26(7):93-98.
    [70]Vermeiren, L., Devlieghere, F., Debevere, J. Co-culture experiments demonstrate the usefulness of Lactobacillus sakei 10A to prolong the shelf-life of a model cooked ham[J]. International journal of food microbiology,2006,108 (1):68-77.
    [71]Vercammen, A., Vanoirbeek, K.G, Lurquin, I., et al. Shelf-life extension of cooked ham model product by high hydrostatic pressure and natural preservatives[J]. Innovative Food science and emerging technologies,2011,12 (4):407-415.
    [72]Ekwenye, U., Elegalam, N. Antibacterial activity of ginger (Zingiber of ficinale Roscoe) and garlic (Allium sativum L.) extracts on Escherichia coli and Salmonella typhi[J]. International journal of molecular medicine and advance science.2005,1:411-416.
    [73]段静芸,徐幸莲,周光宏.壳聚糖和气调包装在冷却肉保鲜中的应用[J].食品科学,2002,23(2):138-142.
    [74]傅伟昌,顾仁勇,马美湖,等.小包装分割冷却肉保鲜技术研究[J].肉类工业,2002,3:26-29.
    [75]刁益韶,贾萌,朱璐瑶.食品防腐剂的使用现状及安全性分析[J].河北化工,2012,35(010):63-66.
    [76]Kong, M., Chen, X.G, Liu, C.S., et al. Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli [J]. Colloids and surfaces B:Biointerfaces, 2008,65 (2):197-202.
    [77]Xu, J., Zhou, F., Ji, B.P., et al. The antibacterial mechanism of carvacrol and thymol against Escherichia coli[J]. Letters in applied microbiology,2008,47 (3):174-179.
    [78]Tomasinsig, L., Skerlavaj, B., Scarsini, M., et al. Comparative activity and mechanism of action of three types of bovine antimicrobial peptides against pathogenic Prototheca spp[J]. Journal of peptide science,2012,18 (2):105-113.
    [79]曾亮,黄建安,李赤翎,等.儿茶素的抑菌效果及机理研究[J].食品工业科技,2009,30(5):89-92.
    [80]Wu, V.C.-H., Qiu, X., Bushway, A., et al. Antibacterial effects of American cranberry (Vaccinium macrocarpon) concentrate on foodborne pathogens[J]. LWT-Food science and technology,2008,41 (10):1834-1841.
    [81]Fu, Y., Chen, L., Zu, Y., et al. The antibacterial activity of clove essential oil against Propionibacterium acnes and its mechanism of action[J]. Archives of dermatology,2009, 145 (1):86.
    [82]Campos, D.A., Ribeiro, A.C., Costa, E.M., et al. Study of antimicrobial activity and atomic force microscopy imaging of the action mechanism of cashew tree gum[J]. Carbohydrate polymers,2012,90(l):270-274.
    [83]唐艳,邓尚贵,张宾,等.乌梅提取物脱色工艺及其抑菌机理的初步研究[J].中国食品学报,2012,12(5):102-109.
    [84]卢亚萍,潘宏涛.Aegis溶菌酶的抑菌作用及抑菌机理初步研究[J].饲料与畜牧,2007(12):54-58.
    [85]Ulanowska, K., Tkaczyk, A., Konopa, G., et al. Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains[J]. Archives of microbiology,2006,184 (5):271-278.
    [86]Powers, J.-P.S., Hancock, R.E. The relationship between peptide structure and antibacterial activity[J]. Peptides,2003,24 (11):1681-1691.
    [87]Delgado, M.A., Salomon, R.A. Molecular characterization of a DNA fragment carrying the basic replicon of pTUC100, the natural plasmid encoding the peptide antibiotic microcin J25 system[J]. Plasmid,2005,53 (3):258-262.
    [88]汪金莲,邱业先,扶教龙,等.茶多酚对稻瘟病菌的抑制作用及抑菌机理[J].天然产物研究与开发,2011,23(5):918-922.
    [89]刘梦茵,刘芳,周涛,等.乌梅提取物对蜡状芽孢杆菌的抑菌机理研究[J].食品科学,2012,33(1):103-105.
    [90]Brudzynski, K., Abubaker, K., Miotto, D. Unraveling a mechanism of honey antibacterial action:Polyphenol/H2O2-induced oxidative effect on bacterial cell growth and on DNA degradation[J]. Food chemistry,2012,133 (2):329-336.
    [91]周光宏.肉品学.中国农业科技出版社,1999.
    [92]孟少华,傅琳秋,王令建,等.低温熏煮香肠的贮藏特性研究[J].现代食品科技,2010,26(003):244-246.
    [93]白艳红,毛多斌,王玉芬,等.低温熏煮香肠的贮藏特性研究[J].食品工业科技,2006,5:56-62.
    [94]Kotzekidou, P., Bloukas, J. Microbial and sensory changes in vacuum-packed frankfurter-type sausage by Lactobacillus alimentarius and fate of inoculated Salmonella enteritidis [J]. Food microbiology,1998,15 (1):101-111.
    [95]Vermeiren, L., Devlieghere, F., Vandekinderen, I., et al. The sensory acceptability of cooked meat products treated with a protective culture depends on glucose content and buffering capacity:A case study with Lactobacillus sakei 10A[J]. Meat science,2006,74 (3):532-545.
    [96]Lo Fiego, D., Santoro, P., Macchioni, P., et al. The effect of dietary supplementation of vitamins C and E on the a-tocopherol content of muscles, liver and kidney, on the stability of lipids, and on certain meat quality parameters of the longissimus dorsi of rabbits[J]. Meat science,2004,67 (2):319-327.
    [97]Du, M., Ahn, D. Effect of dietary conjugated linoleic acid on the growth rate of live birds and on the abdominal fat content and quality of broiler meat[J]. Poultry science,2002,81 (3):428-433.
    [98]Cassens, R., Ito, T, Lee, M., et al. The use of nitrite in meat[J]. Bioscience,1978:633-637.
    [99]Cassens, R.G. Nitrite-cured meat:a food safety issue in perspective[J]. Publications in food science and nutrition,1990.
    [100]Cassens, R.G Residual nitrite in cured meat[J]. Food technology,1997,51 (2):53-55.
    [101]薛丽,蓝红英.Vc对降低香肠亚硝酸钠残留量的研究[J].食品科技,2006,6:65-67.
    [102]McMeekin, T.A., Ross, T. Shelf life prediction:status and future possibilities[J]. International journal of food microbiology,1996,33 (1):65-83.
    [103]Gram, L., Ravn, L., Rasch, M., et al. Food spoilage-interactions between food spoilage bacteria[J]. International journal of food microbiology,2002,78 (1):79-97.
    [104]Xiong, Y.L., Decker, E., Faustman, C., et al. Protein oxidation and implications for muscle food quality[J]. Antioxidants in muscle foods:nutritional strategies to improve quality, 2000:85-111.
    [105]Huff-Lonergan, E., Lonergan, S.M. Mechanisms of water-holding capacity of meat:The role of postmortem biochemical and structural changes[J]. Meat science,2005,71 (1):194-204.
    [106]Rowe, L., Maddock, K., Lonergan, S., et al. Influence of early postmortem protein oxidation on beef quality[J]. Journal of Animal Science,2004,82 (3):785-793.
    [107]白艳红.低温熏煮香肠腐败机理及生物抑菌研究[D]:博士论文.2005.
    [108]De Wit, M., Osthoff, G, Viljoen, B., et al. A comparative study of lipolysis and proteolysis in Cheddar cheese and yeast-inoculated Cheddar cheeses during ripening[J]. Enzyme and microbial technology,2005,37 (6):606-616.
    [109]Koutsoumanis, K., Stamatiou, A., Skandamis, P., et al. Development of a microbial model for the combined effect of temperature and pH on spoilage of ground meat, and validation of the model under dynamic temperature conditions[J]. Applied and environmental microbiology,2006,72 (1):124-134.
    [110]Stanbridge, L., Board, R. A modification of the Pseudomonas selective medium, CFC, that allows differentiation between meat pseudomonads and Enterobacteriaceae[J]. Letters in applied microbiology,1994,18 (6):327-328.
    [111]Stewart Jr, C.N., Via, L.E. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications[J]. Biotechniques,1993,14 (5):748-750.
    [112]Schloss, P.D., Westcott, S.L., Ryabin, T., et al. Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and environmental microbiology,2009,75 (23):7537-7541.
    [113]舒蕊华,芦士玲,徐幸莲.粪肠球菌(Enterococcus faecalis)和屎肠球菌(Enterococcus faecium)产生物胺交互作用研究[J].食品与发酵工业,2011,37(6):16-20.
    [114]Brenner, D.J., Bercovier, H., Ursing, J., et al. Yersinia intermedia:A new species of enterobacteriaceae composed of rhamnose-positive, melibiose-positive, raffinose-positive strains (formerly called Yersinia enterocolitica or Yersinia enterocolitica-like)[J]. Current microbiology,1980,4 (4):207-212.
    [115]Ransal, N., Sinha, I., Virdi, J.S. Arsenic and cadmium resistance in environmental isolates of Yersinia enterocolitica and Yersinia intermedia[J]. Canadian journal of microbiology, 2000,46 (5):481-484.
    [116]Melis, R., Chalvignac, M.-A. Pigmented strains of Yersinia intermedia isolated from water, in Annales de l'Institut Pasteur/Microbiologie.1983:Elsevier.
    [117]Sinha, I., Choudhary, I., Virdi, J. Isolation of Yersinia enterocolitica and Yersinia intermedia from wastewaters and their biochemical and serological characteristics[J]. Current science,2000,79 (4):510-513.
    [118]Whitfield, F.B., Jensen, N., Shaw, K.J. Role of Yersinia intermedia and Pseudomonas putida in the development of a fruity off-flavour in pasteurized milk[J]. Journal of dairy research,2000,67 (04):561-569.
    [119]Kono, Y., Fridovich, I. Isolation and characterization of the pseudocatalase of Lactobacillus plantarum[J]. Journal of Biological Chemistry,1983,258 (10):6015-6019.
    [120]Yumoto, I., Iwata, H., Sawabe, T., et al. Characterization of a facultatively psychrophilic bacterium, Vibrio rumoiensis sp. nov., that exhibits high catalase activity[J]. Applied and environmental microbiology,1999,65 (1):67-72.
    [121]蓝蔚青,谢晶.PCR结合生理生化鉴定对冷藏带鱼主要细菌菌相组成分析[J].食品与发酵工业,2012,38(002):11-17.
    [122]郝建华,孙谧,王跃军,等1.产脂肪酶海洋嗜冷菌的鉴定及酶学性质研究[J].高技术通讯,2008,18(7):748-753.
    [123]何燕飞,李和生,董亚辉,等.腌鱼中硝酸盐还原菌的筛选及系统发育分析[J].食品工业科技,2011,8:064.
    [124]Nychas, G., Marshall, D., Sofos, J., et al. Meat, poultry and seafood[J]. Food microbiology: Fundamentals and frontiers,2007(Edn.3):105-140.
    [125]Gonzalez-Rodriguez, M., Santos, J., Otero, A., et al. PCR detection of potentially pathogenic aeromonads in raw and cold-smoked freshwater fish[J]. Journal of applied microbiology,2002,93 (4):675-680.
    [126]Joffraud, J.-J., Cardinal, M., Cornet, J., et al. Effect of bacterial interactions on the spoilage of cold-smoked salmon[J]. International journal of food microbiology,2006,112 (1):51-61.
    [127]Liew, W., Leisner, J., Rusul, G, et al. Survival of Vibrio spp. including inoculated V. cholerae 0139 during heat-treatment of cockles (Anadara granosa)[J]. International journal of food microbiology,1998,42 (3):167-173.
    [128]董洋,王虎虎,闫振国,等.真空包装盐水鹅加工过程中微生物污染状况与菌群多样性研究[J].南京农业大学学报,2012,35(003):121-126.
    [129]Makela, P.M., Korkeala, H.J., Laine, J.J. Survival of ropy slime-producing lactic acid bacteria in heat processes used in the meat industry [J]. Meat science,1992,31 (4):463-471.
    [130]Bjorkroth, J., Ridell, J., Korkeala, H. Characterization of Lactobacillus sake strains associating with production of ropy slime by randomly amplified polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE) patterns[J]. International journal of food microbiology,1996,31 (1):59-68.
    [131]Samelis, J., Kakouri, A., Rementzis, J. The spoilage microflora of cured, cooked turkey breasts prepared commercially with or without smoking[J]. International journal of food microbiology,2000,56 (2):133-143.
    [132]Doulgeraki, A.I., Paramithiotis, S., Nychas, G.-J.E. Characterization of the Enterobacteriaceae community that developed during storage of minced beef under aerobic or modified atmosphere packaging conditions[J]. International journal of food microbiology,2011,145 (1):77-83.
    [133]Labadie, J. Consequences of packaging on bacterial growth. Meat is an ecological niche[J]. Meat science,1999,52 (3):299-305.
    [134]Ercolini, D., Russo, F., Blaiotta, G, et al. Simultaneous Detection of Pseudomonas fragi, P. lundensis, and P. putida from Meat by Use of a Multiplex PCR Assay Targeting the carA Gene[J]. Applied and environmental microbiology,2007,73 (7):2354-2359.
    [135]Arnaut-Rollier, I., De Zutter, L., Van Hoof, J. Identities of the Pseudomonas spp. in flora from chilled chicken[J]. International journal of food microbiology,1999,48 (2):87-96.
    [136]Nychas, G.-J.E., Skandamis, P.N., Tassou, C.C., et al. Meat spoilage during distribution [J]. Meat science,2008,78 (1):77-89.
    [137]Ntzimani, A.G., Paleologos, E.K., Savvaidis, I.N., et al. Formation of biogenic amines and relation to microbial flora and sensory changes in smoked turkey breast fillets stored under various packaging conditions at 4 C[J]. Food microbiology,2008,25 (3):509-517.
    [138]Gram, L., Huss, H.H. Microbiological spoilage of fish and fish products[J]. International journal of food microbiology,1996,33 (1):121-137.
    [139]Kato, M., Hayashi, R. Effects of High Pressure on Lipids and Biomembranes for Understanding High-Pressure-Induced Biological Phenomena[J]. Bioscience, biotechnology, and biochemistry,1999,63 (8):1321-1328.
    [140]马汉军,潘润淑,周光宏.不同温度下高压处理牛肉TBARS值的变化及抗氧化剂和螯合剂的抑制作用研究[J].食品科技,2006,31(9):126-130.
    [141]Dainty, R., Shaw, B., Roberts, T. Microbial and chemical changes in chill-stored red meats. in Society for Applied Bacteriology symposium series.1983.
    [142]Blixt, Y., Borch, E. Comparison of shelf life of vacuum-packed pork and beef[J]. Meat science,2002,60 (4):371-378.
    [143]张鹰,曾新安,温其标.生物防腐剂及其在食品中的应用[J].食品与机械,2006,22(1):77-79.
    [144]Holley, R.A., Patel, D. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials[J]. Food microbiology,2005,22 (4):273-292.
    [145]孙卫民,孙瑞元.中药方剂研究的正交t值法[J].中药药理与临床,1992,8(1):41-41.
    [146]李广清,汪悦,夏卫军.痹痛灵抗炎作用处方筛选正交t值法实验研究[J].时珍国医国药,2006,17(11):2159-2160.
    [147]Oonmetta-aree, J., Suzuki, T., Gasaluck, P., et al. Antimicrobial properties and action of galangal (Alpinia galanga linn.) on Staphylococcus aureus[J]. LWT-Food Science and Technology,2006,39 (10):1214-1220.
    [148]Aiyegoro, O., Adewusi, A., Oyedemi, S., et al. Interactions of antibiotics and methanolic crude extracts of Afzelia Africana (Smith.) against drug resistance bacterial isolates[J]. International journal of molecular sciences,2011,12 (7):4477-4487.
    [149]石碧,狄莹.植物多酚.科学出版社,2000.
    [150]张宝善,王君,陈锦屏,等.大蒜汁对枯草芽孢杆菌抑制作用的研究[J].西北植物学报,2009,29(6):1269-1275.
    [151]徐文静,杜茜,赵洪锟,等.大蒜提取液抑菌活性及其稳定性分析[J].中国生物防治,2008,24:76-80.
    [152]苏凤贤.大蒜汁生物抑菌特性的研究[D].2007,西安:陕西师范大学.
    [153]葛红莲,赵锦慧,李军伟.大蒜液抗菌活性的研究[J].河南农业科学,2011,40(10):102-104.
    [154]宋卫国,李宝聚,刘开启.大蒜化学成分及其抗菌活性机理研究进展[J].园艺学报,2004,31(2):263-268.
    [155]邱世翠,李连锦,刘云波,等.肉桂体外抑菌作用研究[J].时珍国医国药,2001,12(1):13-13.
    [156]彭雪萍,王花俊,王春晖,等.肉桂提取物在冷却肉保鲜中的应用研究[J].肉类研究,2008,22(12):46-48.
    [157]白传记,孔德荣,张淑伟,等.茶多酚抑菌活性的实验研究[J].肉品卫生,1997,5:3-5.
    [158]Almajano, M.P., Carbo, R., Jimenez, J., et al. Antioxidant and antimicrobial activities of tea infusions[J]. Food Chemistry,2008,108 (1):55-63.
    [159]马丽珍,南庆贤,戴瑞彤.几种天然防腐剂的抑菌性能研究[J].食品工业科技,2003,1.
    [160]刘书亮,夏静华,叶劲松,等.三种天然保鲜剂对肉中腐败菌和致病菌的抑制效果[J].食品与发酵工业,2010(003):46-50.
    [161]黄蕾蕾,薛承斌.大蒜提取物的药理作用与临床应用[J].医药导报,2003,22 (1):70-70.
    [162]Delaha, E.C., Garagusi, V.F. Inhibition of mycobacteria by garlic extract (Alliwn sativum)[J]. Antimicrobial agents and chemotherapy,1985,27 (4):485-486.
    [163]O'Gara, E.A., Hill, D.J., Maslin, D.J. Activities of garlic oil, garlic powder, and their diallyl constituents against Helicobacter pylori[J]. Applied and environmental microbiology,2000,66 (5):2269-2273.
    [164]Coppi, A., Cabinian, M., Mirelman, D., et al. Antimalarial activity of allicin, a biologically active compound from garlic cloves[J]. Antimicrobial agents and chemotherapy,2006,50 (5):1731-1737.
    [165]Pedraza-Chaverri, J., Gil-Ortiz, M., Albarran, G, et al. Garlic's ability to prevent in vitro Cu2+-induced lipoprotein oxidation in human serum is preserved in heated garlic:effect unrelated to Cu2+-chelation[J]. Nutrition journal,2004,3 (1):10.
    [166]Ogita, A., Fujita, K.-i., Taniguchi, M., et al. Enhancement of the fungicidal activity of amphotericin B by allicin, an allyl-sulfur compound from garlic, against the yeast Saccharomyces cerevisiae as a model system[J]. Planta medica,2006,72 (13):1247-1250.
    [167]Ogita, A., Fujita, K.-i., Tanaka, T. Enhancement of the fungicidal activity of amphotericin B by allicin:effects on intracellular ergosterol trafficking[J]. Planta medica,2008,75 (03):222-226.
    [168]An, M., Shen, H., Cao, Y., et al. Allicin enhances the oxidative damage effect of amphotericin B against Candida albicans [J]. International journal of antimicrobial agents, 2009,33 (3):258-263.
    [169]Jacob, C. A scent of therapy:pharmacological implications of natural products containing redox-active sulfur atoms[J]. Natural product reports,2006,23 (6):851-863.
    [170]Ogita, A., Nagao, Y., Fujita, K.-i., et al. Amplification of vacuole-targeting fungicidal activity of antibacterial antibiotic polymyxin B by allicin, an allyl sulfur compound from garlic[J]. The Journal of antibiotics,2007,60 (8):511-518.
    [171]Perez-Giraldo, C., Cruz-Villalon, G., Sdnchez-Silos, R., et al. In vitro activity of allicin against Staphylococcus epidermidis and influence of subinhibitory concentrations on biofilm formation[J]. Journal of applied microbiology,2003,95 (4):709-711.
    [172]徐小江,肖文军,陈庆,等.大蒜素抗菌作用及其机制研究进展[J].医药导报,2010,29(8):1048-1051.
    [173]代腊,袁超,蒋媛婧,等.大蒜素抗菌特性及其作用机理[J].中国饲料,2012,6:9-12.
    [174]钱丽红,陶妍,谢晶.茶多酚对金黄色葡萄球菌和铜绿假单胞菌的抑菌机理[J].微生物学通报,2010,37(11):1628-1633.
    [175]蓝蔚青,谢晶,侯伟峰,等.复合生物保鲜剂对松鼠葡萄球菌的抑菌性能及其作用机理研究[J].天然产物研究与开发,2012,24(006):741-746.
    [176]Cho, Y, Schiller, N., Kahng, H., et al. Cellular responses and proteomic analysis of Escherichia coli exposed to green tea polyphenols[J]. Current microbiology,2007,55 (6):501-506.
    [177]Bunthof, C.J., Bloemen, K., Breeuwer, P., et al. Flow cytometric assessment of viability of lactic acid bacteria[J]. Applied and environmental microbiology,2001,67 (5):2326-2335.
    [178]雷晓燕.大蒜汁抑菌作用的研究[J].沈阳化工大学学报,2012,26(1):47-52.
    [179]Alvarez-Barrientos, A., Arroyo, J., Cant6n, R., et al. Applications of flow cytometry to clinical microbiology[J]. Clinical Microbiology Reviews,2000,13 (2):167-195.
    [180]Berge, J.-P., Barnathan, G. Fatty acids from lipids of marine organisms:molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects, in Marine biotechnology I.2005, Springer, p.49-125.
    [181]Nichols, D.S., McMeekin, T.A. Biomarker techniques to screen for bacteria that produce polyunsaturated fatty acids[J]. Journal of microbiological methods,2002,48 (2):161-170.
    [182]Wassall, S.R., Stillwell, W. Docosahexaenoic acid domains:the ultimate non-raft membrane domain[J]. Chemistry and physics of lipids,2008,153 (1):57-63.
    [183]Chapkin, R.S., Wang, N., Fan, Y.-Y., et al. Docosahexaenoic acid alters the size and distribution of cell surface microdomains[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2008,1778 (2):466-471.
    [184]邱小文,韦娜,蒋薇,等.n-6/n-3多不饱和脂肪酸不同比例对乳腺癌细胞膜脂组成和膜功能的影响[J].实用医学杂志,2012,28(15):2493-2495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700