用户名: 密码: 验证码:
三江平原挠力河流域水文要素变化特征及其影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三江平原为中国面积最大的淡水沼泽分布区,随着湿地垦殖活动的加强,地表景观基质由湿地转化为农田,成为国家重要的商品粮基地。改变了地表水循环过程,水资源安全、粮食安全和生态安全问题突出。挠力河位于三江平原腹地,是典型的沼泽性河流,由于流域湿地垦殖等人类活动的影响,流域水文要素发生显著改变,对生态环境产生不利影响。论文基于GIS技术,结合流域水文气象资料及土地利用等数据,综合运用多种统计分析方法、水文模型和变动范围法分析挠力河流域水文要素对土地利用变化的响应,为湿地保护和流域水资源合理配置提供科学依据。主要结论如下:
     (1)分析挠力河流域1956~2008年水文气象数据,流域径流、降水、蒸发、气温等要素均发生改变,其中径流变化明显。径流年内分布不均,夏汛流量大于春汛,各站洪峰流量差异明显。流域降水和蒸发减少,气温升高,但趋势不明显,气象要素变化不是径流改变的主要原因。
     (2)20世纪50年代以来挠力河流域湿地大面积开垦为耕地,1954~2005年,湿地面积由9453.4km2减少为1837.2km2,减少32.2%;耕地面积由3287.7km2增加为14699.1km2,增加48.2%。通过野外采样与资料分析,求出1954和2005年湿地100cm深土壤饱和含水量为52.7×108m3和10.2×108m3;地表积水量为18.4×108m3和3.7×108m3;求出湿地蓄水量为71.1×108m3和13.9×108m3,湿地蓄水量减少80.5%。
     (3)针对挠力河地势地貌特征,率定SWAT模型,得到不同的参数组合。菜咀子站除径流曲线系数、土壤含水量、蒸发系数、河道水力传导系数等参数外,湿地模块参数、地下水参数、径流滞后时间参数等也较敏感。根据水文相似性原理和参数移植法将宝清站率定的SWAT模型应用到挠力河支流—七星河流域。经计算,挠力河上游与七星河流域水文相似度为0.910。根据模拟效果评价指标,年和月径流NS值和R2值均大于0.64,相对误差绝对值均小于9,证明SWAT模型在挠力河流域的适用性。
     (4)设定模拟情景,分析湿地和林地转化为耕地对流域径流和蒸发等水文要素的影响。湿地减少38%时,年均径流量减少36.73%,蒸发增加3.39%;湿地全部开垦为耕地时,年均径流量减少49.18%,蒸发增加16.78%。应用挠力河上游分析林地转化为耕地对水文要素的影响,林地减少90.81%,年均径流增加83.48%,蒸发减少0.04%。
     (5)根据突变分析,将挠力河流域年径流分为近自然状态河流(1956-1966)和人工干扰状态河流(1967-2005)。应用RVA分别分析宝清站和菜咀子站33个水文指标的变化,求得两站水文综合改变度分别为0.69和0.68,均为高度改变,水文情势的改变对生态环境产生不利影响。
Sanjiang Plain, locating in Heilongjiang province of Northeast China, coveredthe largest area of fresh water marshs of China. With construction of manystate-owned farms, Sanjiang Plain has experienced great agricultural developmentand extensive agricultural land expansion since the1950s. Widespread wetlands inand around the farms has experienced shrinkage and fragmentation. The unbalancebetween ecological water requirements of wetland ecosysterm and agricultural waterrequirements was significant. The Naoli River, locating in the center of the SanjiangPlian, was typical marsh river. However, the hydrological elements of Naoli Riverwatershed has changed significantly because of the firece variation of lands usepattern. The objects of the paper were to analysize the change of hydrologicalelements and its eco-environmental effect induced by the variation of lands usepattern in the Naoli River watershed. The methods used in the paper are the SWAT(Soil and Water Assessment Tool) model and the Range of Variability Approach(RVA) based on the land use maps and hydo-meteorological data and the majorconclusions are as follows:
     (1) Analysizing the variation of hydo-meteorological elements during1956~2008using mathematical statistical methods in the Naoli River watershed. Theaverage annual runoff was decreased notably and the abrupt change of runoffoccurred in1966. The distribution of seasonal runoff was quite uneven. The floodevents in summer were larger than that in spring. The flood frequency curves weredifferent between the Baoqing station and the Caizuizi station. Moreover, the average annual precipitation and ET all decreased while the temperature increased inthe past sixty years. However, the trends of decreasing or increasing wereunsignificant which suggested that the meteorological elements were not the mainfactors leading to the runoff reduction.
     (2) Large scale land reclamation activites have happened and wetlands havebeen shrinking following the farmland expanding since the1950s. The area ofwetlands was9453.4km2in1954and decreaed to1837.2km2in2005. Thepercentage of wetland area occupied with total area of the Naoli River watershedreduced by32.2%. In contrast, the area of farmland was3287.7km2in1954andincreased to14699.1km2in2005. The percentage of the farmland occupied withtotal area of the Naoli River watershed increased by48.2%. Also, the water storagefunctions of wetlands were calculated based on field sampling and lands use maps.In1954and2005, the soil water-holding capacities were52.7×108m3and10.2×108m3within the100cm soil layer, respectively. Since marshes distribute atlow land, average water level is15cm, then the water storage amount were18.4×108m3and3.7×108m3in1954and2005, respectively. Therefore, the total waterstorage capacities of the wetlands were71.1×108m3and13.9×108m3in1954and2005, respectively.
     (3) Ascertain the sensitivity parameters of the SWAT model according to thedifferent characteristics of the terrain and natural features in the upper and middle ofthe Naoli River watershed. The sensitivity parameters in Caizuizi station includedCN, SOL_AWC, ESCO, and CH_K2, et al, which were the same as that in Baoqingstation. In addition, the SURLAG, GWQMN, REVAPMN and wetland parameterswere sensitivity parameters as well in Caizuizi station. Because of no or sparsehydro-meteorological data, the calibrated SWAT model was applied to the QixingRiver watershed according to hydrological similarity and model parameterstransplantation method. The similarity degree between the upper Naoli Riverwatershed and the Qixing River watershed was0.910. By the model effectivenesstesting, the values of NS and R2were both larger than0.64, and PBIAS was smallerthan9for calibration and validation periods. Above all, the SWAT model was appropriate to simulate the runoff of the Naoli River watershed.
     (4) Making land use change scenarios based on lands use pattern change inorder to analysize the effects of two lands use transformations, that were fromwetland to farmland and from forest to farmland to runoff and ET in the Naoli Riverwatershed. When wetland area decreased by38%, the average annual runoff reducedby36.73%while the average annual ET increased by3.39%. When wetlandtransfromed into farmland totally, the average annual runoff decreased by49.18%corrisponding with the increasing rate of16.78%of ET. Besides, the effects of landuse change between forest and farmland was analysed in the upper Naoli Riverwatershed. The forest decreased by90.81%along with the runoff raisng of83.48%and ET reduction of0.04%.
     (5) The annual runoff series in the Naoli River watershed were divided into twostages namely the period of more natural or less altered flow conditions (1956-1966)and the period of more altered conditions (1967-2005) according to theMann-Kendall test. Computing the33IHA (Indicators of Hydrologic Alteration)factors in both Baoqing station and Caizuizi station with the RVA (Range ofVariability Approach), and the degrees of comprehensive hydrologic alteration were0.69and0.68, respectivily, indicating high alteration of hydrological regime.
引文
Abbaspour K C. User manual for SWAT-CUP4, SWAT calibration and uncertainty programs,Eawag: Swiss Federal Institute ofAquatic Science and Technology,2011.
    Andrea W, Fohrer N, Moler D, Long-term land use changes in a mesoscale watershed due tosocio-economic factors--Effects on landscape structures and functions [J].Ecologicalmodeling,2001,140(1/2):125-140.
    Arheimer B, Wittgren H B. Modelling nitrogen removal in potential wetlands at the catchmentscale [J]. Ecological Engineering,2002,19:63-80.
    Arnold J G, Allen P M, Bernhardt G. A comprehensive surface-groundwater flow model [J].Journal of Hydrology,1993,142(1-4):47-69.
    Arnold J G., Srinivasan R, Muttiah R S, et al. Continental scale simulation of the hydrologicbalance [J].Journal of theAmerican Water Resources Association.1999,35(5):1037-1051.
    Arnold J G, Williams J R, Srinivasan R et al. Large area hydrologic modeling and assessmentpart I: Model development [J]. Journal of the American Water Resources Association,1998,34(1):73-89.
    Arnold J G, Allen PM, Morgan D S. Hydrological model for design and constructed wetlands [J].Wetlands,2001,21(2):167-178.
    Bouraoui F, Benabdallah S, Jrad A, et al. Application of the SWAT model on the Medjerda riverbasin(Tunisia)[J]. Physics and Chemistry of the Earth, Parts A/B/C.2005,30(8-10):497-507.
    Brooks P D,Troch P A,Durcik M,et al. Quantifying regional scale ecosystem response tochanges in precipitation: Not all rain is created equal [J]. Water Resources Research,2011,47,W00J08.
    Convention on Wetlands. Integrating Wetland Conservation and Wise Use into River BasinManagement [R]. Ramsar Convention Bureau Publication,2000.
    Dahl T E, Johnson G E. Status and Trends of Wetlands in the Conterminous United States,Mid-1970s to Mid-1980s [R]. Department of the Interior, Fish and Wildlife Service,Washington D C,1991.
    Di Luzio M, Arnold J G. Formulation of a hybrid calibration approach for a physically baseddistributed model with NEXRAD data input [J]. Journal of Hydrology.2004,298(1-4):136-154.
    Drexler J Z, Snyder R L, Spano D, Kyaw Tha Paw U. A review of models andmicrometeorological methods used to estimate wetland evapotranspiration [J]. HydrologicalProcesses,2004,18:2071-2101.
    Eckhardt K, Haverkamp S, Fohrer N, et al. SWAT-G, a version of SWAT99.2modified forapplication to low mountain range catchments [J]. Physics and Chemistry of the Earth, PartsA/B/C.2002,27(9-10):641-644.
    Forsberg B R, Rosenqvist A, imentel T P, et al. Modeling of flooding patterns and methaneemissions in the Jau River Floodplain(Central Amazon) using Jers-1imagery [M]. Quebec2000: MillenniumWetland Event, Program withAbstracts,2000.
    Francis J M, Keith H N. Changes in hydrologic regime by dams [J]. Geomorphology,2005,71:61-78.
    Fontaine T A, Cruickshank T S, Arnold J G, et al. Development of a snowfall-snowmelt routinemountainous terrain for the soil water assessment tool (SWAT)[J]. Journal of Hydrology,2002,262:209–223.
    Gllvear D J, Bradley C. Hydrological monitoring and surveillance for wetland conservation andmanagement; a UK perspective [J]. Phys. Chem. Earth (B),2000,25(7-8):571-588.
    Hargreaves G H, Samani Z A. Reference crop evapotranspiration from ambient air temperature[J]. Applied Engineering inAgriculture,1985,1:96-99.
    Harmel R D,Riehardson C W, King K W. Hydrologic response of a small watershed model toGenerated precipitation [J]. Transactions of theASAE,2000,43(6):1483-1488.
    Hayashi M, Quinton W L, Pietroniro A, et al. Hydrologic functions of wetlands in adiscontinuous permafrost basin indicated by isotopic and chemical signatures [J]. Journal ofHydrology,2004,296:81-97.
    Hiscock K M, Lister D H, Boar R R, et al. An integrated assessment of long-term changes in thehydrology of three lowland rivers in Eastern England [J]. Journal of EnvironmentalManagement,2001,61:195-214.
    Hjelmfelt A T. Empirical-investigation of curve number technique [J]. Journal of the HydraulicsDivision–ASCE,1980,106(9):1471–1476.
    Hollis G E, Thompson J R. Hydrological data for wetland management [J]. Water andEnvironment Journal,1998,(12):9-17.
    Jones T A, Hughes J M R. Wetland inventories and wetland loss studies: a European perspective[M]. Waterfowl and wetland conservation in the1990s: A global perspective, Proceedings ofthe IWRB Symposium, Florida,1993.
    Kadlec R H. The effects of wetland vegetation and morphology on nitrogen processing [J].Ecological Engineering,2008,33(2):126-141.
    Keller M, Jacob D J, Wofsy S C, et al. Effects of tropical deforestation on global and regional atmospheric chemistry [J].Climatic Change,1991,145-158.
    Leavesley G H, Markstrom S L, Restrepo P J, et al. A modular approach to addressing modeldesign, scale, and parameter estimation issues in distributed hydrological modeling [J].Hydrological Processes,2002,16(2):173-187.
    Milly PC D, Dunne K A. Macroscale water fluxes-2.Water and energy supply control of theirinterannual variability [J]. Water Resources Research,2002,38(10):24.
    Mitsch W J, Gosselink J G. Wetlands [M]. NewYork: Van Nostrand Reinhold,1986.
    Monteith J L. Climate and the efficiency of crop production in Britain [J]. PhilosophicalTransactions of the Royal Society of London,1965,281:277-329.
    Moore PD. Wetland [M]. NewYork: Facts on File Inc,2001,8-11.
    Neitsch S L, Arnold J G, Kiniry J R, et al. Soil and water assessment tool, Theoreticaldocumentation, version2005, USDA-ARS, Temple, TX, USA,2005.
    Overton D E. Muskingum flood routing of upland streamflow [J]. Journal of Hydrology,1966,4:185-200.
    O’Connell M J. Detecting, measuring and reversing changes to wetlands [J]. Wetlands Ecologyand Management,2003,11:397-401.
    Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation usinglarge-scale parameters [J]. Monthly Weather Review,1972,100:81-92.
    Quinton W L, Hayashi M, Pietroniro A. Connectivity and storage functions of channel fens andfat bogs in northern basins [J]. Hydrological Processes,2003,17(18):3665-3684.
    Richter B D, Baumgartner J V, Wigington R, et al. How much water does a river need [J].Freshwater Biology,1997,37:231-249.
    Richter B D, Mathews R, Harrison D L, et al. Ecologically sustainable water management:managing river flows for ecological integrity [J]. Ecological Applications,2003,13(1):206-224.
    Sánchez-Carrillo S, Angeler D G, Sanchez-Andres R, et al. Evapotranspiration in semi-aridwetlands: relationships between inundation and the macrophyte-cover: open-water ratio [J].Advances in Water Resources,2004,27(6):643-655.
    Scott D A. Wetland inventories and the assessment of wetland loss: a global overview [J].InMoser, Prentice, and van Vessem,1993.
    Sloan P G, Morre I D, Coltharp G B et al. Modeling surface and subsurface stormflow onsteeply-sloping forested watersheds [R]. Lexington, Kentucky: Water Resouces Inst. Report142, University of Kentucky,1983.
    Smakhtin V U, Batchelor A L. Evaluating wetland flow regulating functions using dischargetime-series [J]. Hydrological processes,2005,19:1293-1305.
    Stanford J A, Ward J V.An ecosystem perspective of alluvial rivers—connectivity and thehyporheic corridor [J]. Journal of the North American Benthological Society1993,12(1):48-60.
    Taylor R D, Howard G W, Begg G W. Developing wetland inventories in Southern Africa: areview [J]. Vegetatio,1995,118:57-79.
    Tweedy K L, Evans R O. Hydrologic characterization of two prior converted wetland restorationsites in eastern North Carolina [J]. Trans. ASAE,2001,44(5):1135-1142.
    Todd A K, Buttle J M, Taylor C H. Hydrologic dynamics and linkages in a wetland-dominatedbasin [J]. Journal of Hydrology,2006,319(4):15-35.
    Vining K C. Simulation of streamflow and wetland storage, Starkweather Coulee subbasin, NorthDakota, water years1981-1998[A].Water-Resources Investigations Report02-4113[C].Washington D.C.: U S Geological Survey,2002.
    Wang X X, Yang W H, Melesse A M. Within SWAT to estimate streamflow in watersheds withnumerous wetlands [J]. Trans. ASABE,2008,51(1):55-72.
    Wang X X, Shang S Y, Qu Z Y, et al. Simulated wetland conservation-restoration effects on waterquantity and quality at watershed scale [J]. Journal of Environmental Management,2010,91:1511-1525.
    Wessel D A, Rouse W R. Modeling evaporation from wetland tundra [J]. Boundary-LayerMeteorol,1993,68(1):109-130.
    Williams J R. Flood routing with variable travel time or variable storage coefficients [J].Transactions of theAmerican Society ofAgricultural Engineers,1969,12(1):100-103.
    Zhang Q, Xu C U, Chen Y Q, et al. Spatial assessment of hydrologic alteration across the PearlRiver Delta, China, and possible underlying causes [J]. Hydrological Processes,2009,23:1565-1574.
    Delta, China, and possible underlying causes [J]. Hydrological Processes,2009,23:1565-1574.
    Hudson B D.土壤有机质含里与其有效含水量的关系[J].水土保持科技情报,1995,1:51-52.
    陈刚起,牛焕光,吕宪国.三江平原沼泽研究[M].北京,科学出版社,1996.
    程维明,周成虎,李建新.新疆玛纳斯湖景观演化及其生态效应[J].第四纪研究,2001,21(6):560-565.
    崔保山,刘兴土.三江平原挠力河流域湿地生态特征变化研究[J].自然资源学报,2001,16(2):107-114.
    戴向前,黄晓丽,柳长顺,等.潮白河生态流量估算及恢复保障措施[J].南水北调与水利科技,2012,10(1):72-76.
    邓伟,潘响亮,栾兆擎.湿地水文学研究进展[J].水科学进展,2003,14(4):521-527.
    高俊琴,吕宪国,刘红玉.湿地冷湿效应初探[J].农村生态环境,2003,19(1):18-21.
    侯伟,张树文,张养贞,等.三江平原挠力河流域50年代以来湿地退缩过程及驱动力分析[J].自然资源学报,2004,19(6):725-731.
    郭龙珠,王福林,吴昌友,等.三江平原挠力河流域水文地质参数的分析和确定[J].东北农业大学学报,2008,39(9):44-48.
    胡兴林.甘肃省主要河流径流时空分布规律及演变趋势分析[J].地球科学进展,2000,15(5):516-521.
    胡远安,程声通,贾海峰.非点源模型中的水文模拟——以SWAT模型在芦溪小流域的应用为例[J].环境科学研究.2003,16(5):29-32,36.
    黄锡畴主编.中国沼泽研究[M].北京:科学出版社.1988.
    季友,张琳.挠力河流域湿地和耕地面积变化对径流深的影响分析[J].2009,37(2):37-39.
    贾志军,张稳,黄耀,等.三江平原沼泽湿地垦殖对蒸散量的影响[J].环境科学,2010,31(4):833-842.
    康淑媛,张勃,柳景峰,等.基于Mann-Kendall法的张掖市降水量时空分布规律分析[J].资源科学,2009,31(3):501-508.
    李成六.基于SWAT模型的石羊河流域上游山区径流模拟研究[D].兰州大学硕士论文,2011.
    李道峰,田英,刘昌明.黄河河源区变化环境下分布式水文模拟[J].地理学报,2004,59(4):565-573.
    李剑锋,张强,陈晓宏,等.考虑水文变异的黄河干流河道内生态需水研究[J].地理学报,2011,66(1):99-110.
    李硕. GIS和遥感辅助下流域模拟的空间离散化和参数化研究与应用[D].南京师范大学博士论文,2002.
    李晓,李致家,董佳瑞. SWAT模型在伊河上游径流模拟中的应用[J].河海大学学报(自然科学版),2009,37(1):23-26.
    李英华,崔保山,杨志峰.白洋淀水文特征变化对湿地生态环境的影响[J].自然资源学报,2004,19(1):62-68。
    刘红玉,张世奎,吕宪国.20世纪80年代以来挠力河流域湿地景观变化过程研究[J].自然资源学报,2002,17(6):698-705.
    刘红玉.湿地景观变化与环境效应[M].北京:科学出版社,2005.
    刘红玉,李兆富.挠力河流域湿地景观演变的累积效应[J].地理研究,2006,25(4):606-616.
    刘红玉,林振山,王文卿.湿地资源研究进展与发展方向[J].自然资源学报,2009,24(12):2204-2212.
    刘建立,徐绍辉,刘慧.几种土壤累积粒径分布模型的对比研究[J].水科学进展,2003,14(5):588-592.
    刘兴土.三江平原湿地及其合理利用与保护[A].陈宜瑜.中国湿地研究.长春:吉林科学技术出版社,1995,108-117.
    刘兴土,马学慧.三江平原自然环境变化与生态保育[M].北京:科学出版社,2002.
    刘兴土主编.东北湿地[M].北京:科学出版社,2005.
    刘兴土.三江平原沼泽湿地的蓄水与调洪功能[J].湿地科学,2007,5(1):64-68.
    刘正茂,孙永贺,吕宪国,等.挠力河流域龙头桥水库对坝址下游湿地水文过程影响分析[J].湿地科学,2007,5(3):201-207.
    刘正茂,吕宪国,赵艳波.挠力河流域湿地和耕地变化对径流深的影响研究[J].水文,2009,29(6):93-96.
    刘正茂,吕宪国,夏广亮,等.近50年挠力河流域上游径流深变化过程及其驱动机制研究[J].水文,2011,31(3):44-50.
    娄彦景,赵魁义,马克平.洪河自然保护区典型湿地植物群落组成及物种多样性梯度变化[J].生态学报,2007,27(9):3883-3891.
    栾兆擎.三江平原典型沼泽湿地界面水文过程研究[D].中科院东北地理与农业生态研究所博士学位论文,2004.
    栾兆擎,宋长春,邓伟.三江平原挠力河流域湿地不同开垦年限肥力的变化[J].吉林农业大学学报,2003,25(5):544-547.
    栾兆擎,邓伟.三江平原人类活动的水文效应[J].水土保持通报,2003,23(5):11-14.
    栾兆擎,胡金明,邓伟,等.人类活动对挠力河流域径流情势的影响[J].资源科学,2007,29(2):46-51.
    罗春雨,倪红伟,高玉慧.黑龙江挠力河自然保护区生物多样性分析[J].国土与资源研究,2007,4:59-61.
    罗巧,王克林,王勤学.基于SWAT模型的湘江流域土地利用变化情景的径流模拟研究[J].中国生态农业学报,2011,19(6):1431-1436.
    罗先香,何岩,邓伟,等.三江平原典型沼泽性河流径流演变特征及趋势分析—以挠力河为例[J].资源科学,2002,24(5):52-57.
    马倩.新疆甘家湖湿地土地利用变化及其生态环境效应[J].干旱区资源与环境,2012,26(1):189-193.
    马学慧,杨青,刘银良.三江平原沼泽开垦前后土壤水分物理特性的变化[A].陈刚起.三江平原沼泽研究[C].北京:科学出版社,1996,52-59.
    潘杰,胡尊乐,谷洪彪,等.基于SWAT模型的辽西走廊海岸带无观测资料流域地表径流模拟[J].水文,2009,29(6):62-64.
    戚晓明,陆桂华,吴志勇,等.水文相似度及其应用[J].水利学报,2007,38(3):355-360.
    任宪友.两湖平原湿地系统稳定性评价与生态恢复设计[D].华东师范大学博士论文,2004.
    邵晓梅,徐月卿,严昌荣.黄河流域降水序列变化的小波分析[J].北京大学学报(自然科学版),2006,1(1):1-7.
    宋文献,江善虎,杨春生,等.基于SEBS模型的老哈河流域蒸散发研究[J].水资源与水工程学报,2012,23(5):115-122.
    田昆,陆梅,常凤来,等.云南纳帕海岩溶湿地生态环境变化及驱动机制[J].湖泊科学,2004,16(l):35-42.
    王金花,康玲玲,赵广福.基于Mann-Kendall法的水沙系列突变点研究[J].人民黄河,2010,32(1):43-45.
    王颖.野鸭湖湿地变化的生态环境效应研究[D].首都师范大学硕士论文,2006.
    王亚军,周陈超,贾绍凤,等.基于SWAT模型的湟水流域径流模拟与评价[J].水土保持研究,2007,14(6):394-397.
    王中根,刘昌明,等.基于DEM的分布式水文模型构建方法[J].地理科学进展,2002,21(5):430-439.
    王中根,刘昌明,黄友波. SWAT模型的原理、结构及应用研究[J].地理科学进展.2003,22(1):79-86.
    徐宗学,张玲,阮本清.北京地区降水量时空分布规律分析[J].干旱区地理,2006,29(2):186-192.
    姚允龙.三江平原挠力河流域湿地垦殖与气候变化的水文效应研究[D].中科院东北地理与农业生态研究所博士学位论文,2009.
    易丽萍,李俊峰,范文波.基于层次分析法的阿克苏地区水资源可持续开发利用评价[J].水资源与水工程学报,2007,18(1):44-48.
    于世青,祝伟.挠力河流域地下水系统动态特征研究[J].黑龙江水利科技,2006,34(2):62-64.
    翟晓燕,夏军,张永勇.基于SWAT模型的沙澧河流域径流模拟[J].武汉大学学报(工学版),2011,44(2):142-155.
    詹蕾,汤国安,杨昕. SRTM DEM高程精度评价[J].地理与信息科学,2010,26(1):34-36.
    张东,张万昌,朱利,等. SWAT分布式流域水文物理模型的改进及应用研究[J].地理科学.2005,25(4):434-440.
    章光新,邓伟,宋新山.吉林省西部湿地资源可持续利用方略探讨[J].环境保护,2001,1:31-32.
    张树文主编.东北地区土地利用/覆被时空特征分析[M].北京:科学出版社,2006.
    张雪刚,毛媛媛,董家瑞,等. SWAT模型与MODFLOW模型的耦合计算与应用[J].水资源保护,2010,26(3):49-52.
    张养贞.三江平原沼泽土壤的发生、性质与分类[J].地理科学,1981,1(2):171-180.
    张芸,吕宪国,杨青.三江平原湿地水平衡结构研究[J].地理与地理信息科学,2005,21(1):79-82.
    赵焕平,汪海洋,张壮壮.宿鸭湖水库年径流特征及丰枯划分初探[J].河南水利与南水北调,2011,10:16-18.
    赵魁义主编.中国沼泽志[M].北京:科学出版社,1999.
    赵魁义,娄彦景,胡金明,等.三江平原湿地生态环境受威胁现状及其保育研究[J].自然资源学报,2008,23(5):790-796.
    赵艳波,孙东海,刘正茂.近30年来三江平原七里沁河水文过程研究[J].水利规划与设计,2010,5:24-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700